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Abstract: The Delta variant of COVID-19 has been found to be extremely difficult to contain world-
wide. The complex dynamics of human mobility and the variable intensity of local outbreaks make
measuring the factors of COVID-19 transmission a challenge. The inter-suburb road connection
details provide a reliable proxy of the moving options for people between suburbs for a given region.
By using such data from Greater Sydney, Australia, this study explored the impact of suburban road
networks on two COVID-19-related outcomes measures. The first measure is COVID-19 vulnerability,
which gives a low score to a more vulnerable suburb. A suburb is more vulnerable if it has the
first COVID-19 case earlier and vice versa. The second measure is COVID-19 severity, which is
proportionate to the number of COVID-19-positive cases for a suburb. To analyze the suburban road
network, we considered four centrality measures (degree, closeness, betweenness and eigenvector)
and core–periphery structure. We found that the degree centrality measure of the suburban road
network was a strong and statistically significant predictor for both COVID-19 vulnerability and
severity. Closeness centrality and eigenvector centrality were also statistically significant predictors
for COVID-19 vulnerability and severity, respectively. The findings of this study could provide prac-
tical insights to stakeholders and policymakers to develop timely strategies and policies to prevent
and contain any highly infectious pandemics, including the Delta variant of COVID-19.

Keywords: suburban road network; centrality; COVID-19 Delta variant; vulnerability and severity

1. Introduction

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus
that was first reported in the Hubei Province of the People’s Republic of China in late
December 2019. It has since spread to most countries, including Australia. The WHO
Emergency Committee declared a global health emergency on 30 January 2020, citing rising
cases in Chinese and international locales. Coronavirus is a broad family of viruses that
can cause illnesses ranging from the common cold to more severe conditions, such as
severe acute respiratory syndrome [1]. The case-detection rate fluctuates daily and, for
Australia, it can be monitored in real-time on the Australian NSW Health and COVID
Live website and other platforms, such as Data.NSW [2]. Coronavirus has four genera:
alpha-, beta-, gamma-, and delta-coronaviruses. While alpha- and beta-coronaviruses are
found in mammals, especially bats, gamma- and delta-coronaviruses are found in pigs and
birds [3]. The beta-coronavirus genus can infect humans and cause serious sickness and
even death, whereas alpha-coronavirus induces asymptomatic or minimally symptomatic
infections [2,3]. The current COVID-19 pandemic is caused by the beta-coronavirus.

COVID-19 symptoms can develop within two to fourteen days of exposure. A patient
can also be infectious before any symptoms appear—known as the pre-symptomatic spread.
Symptoms range in severity and affect people differently. For most cases, the illness is mild
to moderate and requires no hospitalization. However, COVID-19 poses a greater risk of
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serious illness in the elderly that increases with age [4]. People with pre-existing medical
conditions or chronic diseases may be at a higher risk of developing a severe illness [4].

COVID-19 disproportionately impacts vulnerable populations, such as the elderly,
people with disabilities, people in prison, Aboriginal and Torres Strait Islander communi-
ties, people with chronic conditions, and people from culturally and linguistically diverse
backgrounds [5,6]. In many countries, access to primary and secondary healthcare is
not government-subsidized, and the cost and availability of healthcare are often out of
reach for the most vulnerable [7,8]. Furthermore, the elderly and disabled people rely
on public transport for essential services, such as grocery shopping and healthcare dur-
ing pandemics [9,10]. People from various sociodemographic and low socioeconomic
backgrounds and numerous racial and ethnic minorities are unlikely to have the financial
resources to make self-distancing and self-isolation a viable option [11,12]. Furthermore, if
not treated carefully, self-isolating aspirations worsen mental health difficulties among the
most vulnerable communities [13,14]. As a result, many governments are facing difficulty
taking initiatives to lower health inequalities by addressing social determinants of health.

Since the onset of the pandemic, a tremendous global scholarly effort has been put
into modeling the pandemic and predicting transmission. Using sociodemographic and
COVID-19-specific themes, Tiwari et al. [15] proposed a random-forest machine-learning-
based vulnerability model. The COVID-19 impact assessment technique incorporates
homogeneity and trend analysis, which aid in determining the severity of the pandemic
and training the vulnerability model. Another study [16] applied a machine-learning-based
improved model to analyze and predict the growth of the epidemic and the possible threat
of COVID-19 in nations around the world. Prout et al. [17] have employed a random-
forest machine-learning technique to find the strongest predictors of distress. They also
developed regression trees to identify individuals at higher risk for anxiety, depression,
and post-traumatic stress.

Most related work has explored historical COVID-19 infection data with both classical
mechanistic models and machine-learning models. Similar to effective forecasting models
for other epidemics, Hernandez-Matamoros [18] assessed the autoregressive integrated
moving average (ARIMA) model for 145 countries in six regions, and this turned out
to be also effective for COVID-19. Swaraj [19] proposed an ARIMA-based model that
could capture the linear and non-linear components of the data by integrating an autore-
gressive neural network (NAR). Machine-learning and deep-learning models have also
shown outstanding ability to forecast from time-series data, especially Long Short-Term
Memory (LSTM), due to their capability to unveil dependencies over a long distance in
time. Hssayeni [20] employed the LSTM model on a county level. Kim’s two-level LSTM-
based model [21], Hi-COVIDNet, gave better performance by combining country-level and
continent-level encoders.

Intuitively, mobility data are closely related to the spread of epidemics. COVID-19
is no exception. Badr et al. [22] presented daily mobility data derived from aggregated
cell-phone data and fitted a statistical model for each county. Nevertheless, many network-
based models have been introduced to analyze COVID-19 spread across different levels
of areas because these models are deemed to capture mobility data characteristics better.
Chang et al. [23] proposed a metapopulational susceptible–exposed–infectious–removed
(SEIR) model that integrates dynamic mobility networks consisting of movements from
CBGs (census block groups) to POIs (point of interests). The social-network-based model
introduced by Block et al. [24] demonstrates that reduced contact between people improves
the effectiveness of social-distancing strategies. Many other mobility simulations have
shown a strong correlation between human movement and the spread of COVID-19, even
without proper models to analyze the prediction [25].

While many studies explored the relation between mobility and COVID-19 propaga-
tion, they primarily focused on larger geographic areas, e.g., cities, states, etc. [26,27], and
predicting case counts. However, this approach often ignores the more granular movements
of people across the suburbs through local roads and the chances of introducing the virus
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to adjacent suburbs. This study aims to fill in this gap. We looked at both suburb-level road
connections and sociodemographic factors to explore how these affect the chance of getting
the first COVID-19 case (vulnerability) when adjacent suburbs are infected, as well as the
severity of cases after having the first case in the Australian context.

2. Materials and Methods
2.1. Data Source

This study considered data from 19 local government areas (LGA) of Greater Sydney
of New South Wales, Australia. These LGAs were severely affected by the Delta variant of
COVID-19, and the first locally acquired case was identified on 16 June 2021 [28]. There
are 137 postal areas in these 19 LGAs. Supplementary Table S1 briefly summarizes the
sociodemographic information of these postal areas. The data in this table are extracted
from the Australian Bureau of Statistics [29]. We used Google maps to calculate road
connectivities between two suburbs. All research methods were performed in accordance
with relevant guidelines and regulations.

2.2. Suburban Road Network: Construction and Analysis

A network is a collection of nodes and edges, where nodes represent different entities
and edges indicate connections between two nodes [30]. A suburban road network is a
network of suburbs that are connected through one or more roads. We consider postcodes
as nodes to construct the suburban road network, i.e., a postcode represents a suburb. An
edge between two suburbs demonstrates that at least a road connects them directly without
going through any intermediate suburb. We used the number of roads connecting two
suburbs as their edge weight. Figure 1 illustrates the construction process of a suburban
road network, using data from Google maps.

Figure 1. A suburban road network construction: Left: Google map of Belfield (shaded by light red
color) and its road connections with five other neighboring suburbs. The ‘=’ sign represents a road
connection between two suburbs. Right: The corresponding road network. The edge weight between
Belfield and Campsie is 4, since four roads connect these two suburbs. We repeated these two steps
for each suburb considered in this study to have the final suburban road network, as presented in in
the results section.

We used centrality measures and core–periphery structure to analyze the suburban
road network. The four centrality measures that we considered are degree, closeness,
betweenness, and eigenvector. The degree centrality of a node in a network indicates
its direct connectivity with other network nodes [30]. A node with a higher number of
connections to other network nodes will have a higher degree centrality and vice versa.
The closeness centrality represents the reachability of a node from other nodes of the
network [30]. A node that is easily reachable by other network nodes will have a higher
closeness centrality value and vice versa. The betweenness centrality is based on the
shortest paths, and it gives a node a higher score if that node falls in the shortest paths
of any other pair of nodes more often [30]. The eigenvector centrality is also known as
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the ‘prestige score’. A high eigenvector centrality for a node means that it is connected to
many other nodes that have high scores [30]. Further details of each of these four centrality
measures are presented in Supplementary Figure S1.

We then used the core–periphery structure to explore the coreness of each node of
the suburban road network. Core–periphery structure analysis of a network assigns a
coreness score to each node of that network [30]. A node tightly connected with other
network nodes has a higher coreness value and vice versa. Using an abstract network
dataset, Supplementary Figure S2 illustrates the analysis of a core–periphery structure.

2.3. COVID-19 Vulnerability and Severity

This study used two COVID-19-related measures for each suburb: vulnerability and
severity. The vulnerability score of a suburb is the date difference between the first date
when a locally acquired COVID-19 Delta variant case was found in that suburb and the
‘date zero’. The ‘date zero’ is the date (i.e., 16 June 2021) when the first locally acquired
COVID-19 variant was found within the 19 LGAs considered in this study. A suburb
will have a higher vulnerability score if it has its first locally acquired COVID-19 Delta
case lately. A low score for this measure indicates that the underlying suburb is more
vulnerable to COVID-19. The severity measure of a suburb is the total number of locally
acquired COVID-19 Delta variant cases per thousand population as of the last date of our
data collection period. A higher value for this measure indicates that COVID-19 has badly
infected the underlying postal area or suburb.

3. Results

Figure 2 presents the resultant undirected suburban road network considering 137 postal
areas from 19 LGAs. The minimum and maximum edge weights are 1 and 18, respectively.
This undirected network has a density of 0.04; that is, only 4% of edges (405) are present in
the network out of 4658 possible edges.

Figure 2. Suburb road network and COVID-19 case count Greater Sydney LGAs for the second wave
of COVID-19, case count up to 10 October 2021. Postcode area’s shade indicates case count, network’s
node color indicates degree centrality, and edge thickness is proportionate to the number of shared
roads between the corresponding postal regions.
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3.1. Correlation Results

Figure 3 shows the correlation matrix, which is the summary of the correlations
between variables. Each of the colored cells shows a correlation coefficient value between
two variables. The cell color represents the strength of the correlation. As can be seen, we
find that degree centrality has the highest correlation coefficient value with both COVID-
19 vulnerability and COVID-19 severity measures. It has a negative correlation with
COVID-19 vulnerability (r = −0.452, p < 0.01) and a positive correlation with COVID-19
severity (r = 0.519, p < 0.01). The COVID-19 vulnerability measure negatively correlates
with closeness centrality (r = −0.200, p < 0.05) and eigenvector centrality (r = −0.195,
p < 0.01). The coreness measure positively correlates with the COVID-19 severity measure
(r = 0.253, p < 0.05). A low value of the COVID-19 vulnerability measure indicates that the
underlying postal area or suburb is more vulnerable to COVID-19; however, the COVID-19
severity measure is proportionate to the number of individuals identified by COVID-19 in
a postal area.

Figure 3. Correlation matrix among the variables considered in this study. Significance levels of 0.01
and 0.05 have been represented by two asterisks (**) and one asterisk (*), respectively.

3.2. Regression Results

Table 1 shows the results from the multiple linear regression (MLR) model for the
COVID-19 vulnerability measure. The corresponding coefficient of determination (R2

value) is 23.30%. Assessing only the p-values suggests that degree centrality and closeness
centrality are statistically significant at p < 0.05. The t-statistics magnitude can be used to
assess the relative relevance of the independent variables. In this case, degree centrality
is the most significant independent variable, followed by closeness centrality. Although
eigenvector centrality has a significant negative correlation (from Figure 3) with COVID-19
vulnerability, it does not reach the required statistical significance level in the MLR model.

Table 1. Multiple linear regression results for COVID-19 vulnerability.

Coefficient t-Value p-Value

Constant 41.468 13.80 0.000
Coreness 4.579 0.279 0.781
Degree −3175.511 −4.380 0.000

Closeness −8667.510 −2.054 0.042
Betweenness 22.737 0.360 0.720
Eigenvector −3.761 −0.296 0.768

Dependent variable: COVID-19 vulnerability.



Int. J. Environ. Res. Public Health 2022, 19, 2039 6 of 9

The MLR model of Table 2 reveals that degree centrality and eigenvector centrality
are statistically significant predictors for the COVID-19 severity measure. The perceived
coefficient of determination (R2 value) is 35.80%. The eigenvector centrality did not correlate
with the COVID-19 severity measure, as per Figure 3. However, this variable is found as a
statistically significant predictor for the COVID-19 severity measure because the degree
centrality variable acted as a suppressor for the eigenvector centrality in the corresponding
MLR model. A suppressor is a variable that can influence the relationship between a
predictor and an outcome measure when added to a regression model [31]. As per the
t-statistics, the most significant predictor is the degree centrality measure, followed by the
eigenvector centrality measure.

Table 2. Multiple linear regression COVID-19 severity.

Coefficient t-Value p-Value

Constant −80.131 −0.97 0.334
Coreness −0.098 0.000 1.000
Degree 1.46 × 105 7.342 0.000

Closeness −5.25× 104 −0.452 0.652
Betweenness −1423.047 −0.819 0.415
Eigenvector −1379.437 −3.944 0.000

Dependent variable: COVID-19 severity.

Concerning the variable or feature importance, the random forest regression (RFR)
findings echoed the corresponding findings from the MLR. The two most important fea-
tures in Figure 4a,b, which have an importance score of ≥0.20, are the first two variables
according to the t-statistics order in Tables 1 and 2. However, the R2 value from the RFR is
higher than that of the MLR, as revealed in Table 3.

Figure 4. Feature importance results from the random forest regression for (a) COVID-19 vulnerability
and (b) COVID-19 severity.

Table 3. Comparison of R2 values between multiple linear regression and random forest regression.

Multiple Linear Regression Random Forest Regression

COVID-19 vulnerability 23.30% 82.44%
COVID-19 severity 35.80% 91.51%

4. Discussion and Conclusions

Network measures of the suburban road network have been found to be an impor-
tant predictor of COVID-19 vulnerability and severity. Degree centrality is an important
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predictor for both COVID-19 vulnerability and severity. Closeness centrality and eigenvec-
tor centrality can predict COVID-19 vulnerability and severity, respectively. Apparently,
this is the first study to explore COVID-19 vulnerability and severity by using suburban
road networks.

Although the eigenvector was not a significant predictor in the MLR model, it has
become the most important variable, followed by degree and closeness for vulnerability
in the random forest regression. This is because feature importance is not a measure of
effect size in random-forest algorithms. It is a measurement of a variable’s contribution to
out-of-bag prediction performance. A variable can be relevant in a random forest because
of how it interacts with other factors and separates the data independently. Nothing
prevents a non-significant variable (i.e., eigenvector) in a regression model from having
high importance in the random forest [31]. Indeed, even within the regression framework,
nothing prevents excluding a variable with a small effect size from having a large effect
on predictive accuracy, especially if that variable has strong confounding effects on other
predictors. Inclusion of those confounding effects leads to better predictions [31].

A postal area with comparatively more connections to other postal areas will have a
higher degree centrality value in the corresponding suburban road network. People living
in that postal area will therefore have more options to move to the neighboring postal
areas. Similarly, there is a higher chance that more people from those neighboring postal
areas will visit this postal area. Such opportunities will eventually put the people of this
postal area in more danger in terms of being infected by COVID-19 earlier (if not infected
yet) and a quicker COVID-19 spread among the community (once it is identified). This
is what is reflected in this study’s findings. For example, the degree centrality measure
negatively correlates with the COVID-19 vulnerability measure since a low value of the
latter indicates that the underlying suburb is more vulnerable to COVID-19. Closeness
centrality is a distance-based measure of a network. It puts a suburb or postal area of
the suburban road network in a position that is easily reachable by others. This means
that the people of that suburb are comfortably reachable by the people of other suburbs.
In the same way, people of that suburb can reach others easily. Such a reachable status
makes people more vulnerable to being infected sooner by any super-infectious diseases,
including COVID-19.

Relevant stakeholders and policymakers could consider this study’s findings in devel-
oping strategies to prevent the spread and reduce the severity of any pandemics, including
COVID-19. During Sydney’s second wave of the COVID-19 Delta variant, the State Gov-
ernment first imposed a local lockdown within a radius of 10 km and then within a 5-km
boundary on different dates. For example, for Sydney and its neighboring LGAs, the 10-km
restriction was imposed on 9 July 2021 [32]. According to this study, such lockdowns might
not be fully effective to stop the highly contagious virus from spreading to neighboring
suburbs. The reason is that many of those LGAs under lockdown have neighboring sub-
urbs or postal areas within a 10 km or 5 km radius. These restrictions, therefore, would
not stop people from moving in and out across infected suburbs, thus bringing the virus
to newer suburbs, as we have seen in our study case of the Delta outbreak in Sydney,
Australia. Fortunately, the outbreak did not go out of control, as the social distancing, mask
mandates, frequent testing, and lockdown measures were followed well. However, for
more transmissible variants (such as Omicron) or for any future cases, the finding of this
study gives evidence of suburb-wide lockdown as an effective containment measure.

Although this study considered only one study site from a country, the proposed study
design, based on the suburban road network, is original and can be followed to explore
the vulnerability and severity of COVID-19 (or other pandemics) in any other study areas
from the same country or other regions. It can also be followed to compare COVID-19
vulnerability and severity between its different variants. Moreover, the vulnerability and
severity from different pandemics (e.g., COVID-19 versus H1N1) can be compared by using
the methods followed in this study.
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Supplementary Materials: The followings are available online at https://www.mdpi.com/article/
10.3390/ijerph19042039/s1. Figure S1: A network consists of five edges and six nodes. Figure S2:
The corresponding core–periphery structure of the network in Figure S1. The core nodes are e and f
(shaded ones), and the peripheral nodes are a, b, c, and d. Table S1: Sociodemographic information of
137 postal areas [30]. Data were extracted at the postcode level.
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