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The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
its rapid international spread has caused the coronavirus disease 2019 (COVID-19)
pandemics, which is a global public health crisis. Thus, there is an urgent need to
establish biological models to study the pathology of SARS-CoV-2 infection, which
not only involves respiratory failure, but also includes dysregulation of other organs
and systems, including the brain, heart, liver, intestines, pancreas, kidneys, eyes,
and so on. Cellular and organoid models derived from human induced pluripotent
stem cells (iPSCs) are ideal tools for in vitro simulation of viral life cycles and drug
screening to prevent the reemergence of coronavirus. These iPSC-derived models could
recapitulate the functions and physiology of various human cell types and assemble the
complex microenvironments similar with those in the human organs; therefore, they can
improve the study efficiency of viral infection mechanisms, mimic the natural host-virus
interaction, and be suited for long-term experiments. In this review, we focus on the
application of in vitro iPSC-derived cellular and organoid models in COVID-19 studies.
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INTRODUCTION

Since its outbreak in 2019, the coronavirus disease (COVID-19) pandemics have infected more
than 190 million people and caused more than 4 million deaths1. COVID-19 is caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped positive-sense single-
stranded RNA virus. It enters the host cells using angiotensin-converting enzyme 2 (ACE2) as the
cell surface receptor and transmembrane serine protease 2 (TMPRSS2) as the effector to cleave
its spike protein (Hoffmann et al., 2020). SARS-CoV-2 spreads mainly through the respiratory

1www.worldometers.info/coronavirus
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tract (Lu et al., 2020). Respiratory failure is the most common
cause of death in COVID-19 patients; meanwhile, severe fatal
manifestations are also observed in other organs, such as
the brain, heart, liver, intestines, and pancreas (Puelles et al.,
2020). Therefore, it is of particular importance to find models
that can imitate the natural host-virus interactions of SARS-
CoV-2 in a variety of human cell types and organs, thus
improving the study efficiency for identifying key molecular
regulators and the underlying mechanisms of virus infection and
disease progression.

There have been both animal models (e.g., transgenic mice
expressing human ACE2 and non-human primates) and cell line
models (e.g., African green monkey Vero E6 cells and human
cancer cell lines) available for COVID-19 research (Takayama,
2020). However, animal models are quite costly and display
very different physiological characteristics from human, and cell
line models have limitations in reproducing the viral life cycle
and the pathology of COVID-19 in different human organs and
tissues that contain a variety of cell types (Liu et al., 2011).
For example, the entry routes of SARS-CoV-2 vary between cell
lines and human tissues, as do immune responses and host-
virus interactions (Milewska et al., 2020). In addition, human
cancer cells carry numerous tumor-associated mutations, such as
P53 mutations, which could interfere the SARS-CoV-2 infection
(Ma-Lauer et al., 2016). Therefore, there is an urgent need to
establish more cost-efficient and human-relevant models for
COVID-19 research.

The emergence of human induced pluripotent stem cells
(iPSCs) has enabled derivation of functional human cells
or organoids to model human diseases, including infectious
diseases, to develop new therapeutic approaches and to promote
drug discovery (Yu et al., 2007; Luo et al., 2015a, 2018), without
ethical issues like the human embryonic stem cells (Luo et al.,
2014). For example, functional liver organoids generated by
human iPSCs have been developed as personalized models of
hepatitis B virus (HBV) infection, which is a powerful long-
term platform for both research and drug screening of HBV
(Nie et al., 2018). Recently, iPSC-derived cellular and organoid
models have been utilized to simulate SARS-CoV-2 infections
in multiple organs, not only the lung, but also the heart, brain,
liver, intestines, and pancreas (Jacob et al., 2020; Yu et al., 2020)
(Figure 1). These studies have demonstrated that SARS-CoV-
2 can infect and propagate in a variety of cell types, leading to
transcriptional alternations that indicate inflammatory responses
and changes in cell function (Marshall, 2020). The purpose of this
review is to describe the usefulness of these iPSC-derived cellular
and organoid models in simulating human cellular physiology
and tissue microenvironment, and enabling the study of host-
virus interaction and drug screening for the COVID-19 disease,
thus leading to a more comprehensive understanding of the
SARS-CoV-2 pathogenesis.

LUNG ORGANOIDS

Human iPSC-derived airway and alveolar organoids have been
developed and used for studying the processes of SARS-CoV-2

infection and transmission in the lungs (Pei et al., 2020).
With these organoid models, the researchers have determined
the cellular tropism of the virus. Ciliated cells, club cells,
and alveolar type II cells (AT2) cells, which are arranged
from the proximal to the distal airway and terminal alveoli
in sequence, have been confirmed as SARS-CoV-2-targeted
cells in the study (Mulay et al., 2021). Moreover, the viral
infection downregulates metabolic processes, particularly the
lipid metabolism, which, together with the already known
upregulation of immune responses, is another molecular feature
of SARS-CoV-2-infected cells (Pei et al., 2020). On the other
hand, infected SARS-CoV-2 can decrease the level of its
target ACE2 on the host cell surface through a variety of
mechanisms. A comprehensive analysis of these information
might enable better understanding about the viral pathogenesis
and discovery therapeutic targets for the treatment of COVID-19
(Pei et al., 2020).

In addition, the early immune responses to viral infections
were investigated using iPSC-derived AT2 (iAT2) cells (Huang J.
et al., 2020). The results showed that AT2 cells are a central
component of the inflammatory signaling that responds to
SARS-CoV-2 infection within the first 24 h, with NF-κB
signaling predominating this response (Huang J. et al., 2020).
These findings are consistent with those in newly purified
primary AT2 cells infected with SARS-CoV-2 (Mulay et al.,
2021). They also observed cellular stress, toxicity, iAT cell
death, and significant loss of surfactant genes expression in
their model (Huang J. et al., 2020). These findings may
be clinically relevant, as similar results were found in lung
autopsies of multiple individuals who died of COVID-19
(Bradley et al., 2020; Hou et al., 2020). Other researchers have
previously shown that the primary AT2 cells can be infected
with SARS-CoV in the body (Qian et al., 2013); it has also
been recently shown that AT2 cells may help promote lung
regeneration in COVID-19 survivors (Chen J. et al., 2020). The
correlation between AT2 cells and SARS-CoV-2 infection was
further emphasized.

Furthermore, the researchers have demonstrated that
human iPSC-derived lung cells and organoids could serve
as powerful platforms for discovering and testing anti-
SARS-CoV-2 drugs (Huang J. et al., 2020; Pei et al.,
2020). They have demonstrated that Remdesivir, a predrug
nucleotide analog that inhibits virus replication (Eastman
et al., 2020), CB6, a human neutralizing antibody (Shi R.
et al., 2020), as well as TMPRSS2 protease inhibition could
effectively inhibit the replication of SARS-CoV-2 in the
iPSC-derived models. These results are consistent with those
in fundamental studies using primary cell models and in
clinical trials (Beigel et al., 2020; Wang M. et al., 2020).
Therefore, iPSC-derived in vitro human models could be
employed to identify and test therapeutic entities for the
treatment of COVID-19.

Taken together, the above results demonstrated that lung cells
and organoids derived from human iPSCs can be utilized as
pathophysiological models to study the potential mechanisms of
SARS-CoV-2 transmission and to identify and test COVID-19
therapeutic agents (Pei et al., 2020).
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FIGURE 1 | Application of human induced pluripotent stem cell-derived cellular and organoid models for COVID-19 research.

CARDIOMYOCYTES

There is growing evidence that patients with COVID-19 exhibit
severe heart complications, elevated biomarkers of heart damage,
and cardiac function deterioration, including cardiovascular
complications such as cardiomyopathy, acute myocardial
infarction, arrhythmia, and heart failure, greatly increasing the
risk of death (Aggarwal et al., 2020a; Bansal, 2020; Long et al.,
2020; Madjid et al., 2020; Shi S. et al., 2020). Several compounds
and antibodies, such as Remdesivir, Olumiant + Remdesivir,
Casirivimab + Imdevimab, Bamlanivimab + Etesevimab,
Sotrovimab and Tocilizumab are currently licensed drug
for treatment of COVID-19 patients under emergency use
authorization2. However, there is limited safety information
on these recommended drugs, especially since heart toxicity
caused by the drug can lead to lethal complications, including
myocardial ischemia, arrhythmias, and heart failure. Therefore,
it is critical to evaluate any potential adverse effects on the
cardiovascular system associated with current COVID-19
medications to avoid fatal side effects (Aggarwal et al., 2020b).

Human iPSC-derived cardiomyocytes (CMs) can be utilized
to recapitulate cardiac pathophysiology and are considered as
one of the most promising sources for cardic disease modeling,
heart repair and cardiac toxicology screening (Mitcheson et al.,
1998; Lan et al., 2013; Moreno and Pearson, 2013; Sharma et al.,
2014, 2017; Burridge et al., 2016). In this context, iPSC-CMs are
recommended as a reliable method of heart toxicity examination
in the comprehensive in vitro proarrhythmia assay (CiPA), as
a non-clinical safety pharmacological paradigm, to circumvent

2www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-
and-policy-framework/emergency-use-authorization#coviddrugs

the limitations of existing methods used in preclinical safety
assessment of drugs (Gintant et al., 2016; Goineau and Castagné,
2017; Sala et al., 2017). Choi et al. (2020) have shown that iPSC-
CMs acutely treated with Remdesivir show a risk of arrhythmia
and changes in the electrophysiological properties of myocardial
cells in a dose-dependent manner, indicating that overdose
or drug accumulation may lead to noteworthy adverse heart
reactions, such as prolonged QT interstitial periods. In addition,
they have demonstrated that iPSC-CMs not only allow SARS-
CoV-2 infection, but also support the propagation of infectious
viral particles (Choi et al., 2020).

INTESTINAL ORGANOIDS

Up to 50% of COVID-19 patients develop gastrointestinal
symptoms associated with longer duration and increased severity
of the disease (Luo et al., 2020; Wang F. et al., 2020; Wei
et al., 2020; Xiao et al., 2020). However, it remains debatable
whether the virus found in the intestines is contagious, as
few studies have examined infectious viruses in feces (Zang
et al., 2020). In cell culture, primary intestinal cells are highly
susceptible to SARS-CoV-2 and can produce infectious viral
particles. Intestinal organoids can quickly grow from adult stem
cells derived from cells of large intestine and small intestine
biopsy tissue (Sato et al., 2011). Stem cell-derived intestinal
organoids have similar characteristics with primary intestinal
cells and have been widely used to study viral infection (Sato et al.,
2011; Ettayebi et al., 2016).

Studies have employed human iPSC-derived intestinal
organoids to study SARS-CoV-2 tropisms in different intestinal
cell types. In both in vivo and iPSC-derived organoid models,
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ACE2 is strongly expressed in the small intestine, as well
as TMPRSS2. In contrast, colon organoids have lower
ACE2 expression (Zang et al., 2020). In intestinal organs,
TMPRSS4 performs the same functions as TMPRSS2 to
support virus entry (Zang et al., 2020). Experiments have
shown that two groups of small intestinal organoid models
can be infected with SARS-CoV-2 (Lamers et al., 2020;
Zang et al., 2020). In these organoid models, SARS-CoV-2,
like its closest relative SARS-CoV, mainly infects mature
enterocytes and dividing cells (Lamers et al., 2020; Zang
et al., 2020). On the other hand, studies have shown that
when the SARS-CoV-2 viruses are cultured in gastric fluid
in the large intestine and small intestine, they quickly lose
their infectious power (Simoneau and Ott, 2020; Zang et al.,
2020). Therefore, even though viral particles were found in
the feces occasionally, it might not be the primary pathway for
virus transmission.

Furthermore, human iPSC-derived intestinal organoids
generate valuable pathological models for studying the
underlying mechanisms of intestinal SARS-CoV-2 infection. It
is reported that SARS-CoV-2 actively infects both proximally
and distally patterned intestinal organoids, thus resulting
in production of infectious viral particles and significant
transcriptional alterations, such as upregulation of the interferon-
related genes, in multiple epithelial cell types (Mithal et al., 2021).
Another organoid study shows that SARS-CoV-2 can infect all
intestinal cell types investigated except goblet cells, and disrupt
intestinal integrity, which might be the cause of diarrhea and
other gastrointestinal symptoms associated with COVID-19
(Krüger et al., 2021).

More importantly, these organoids can serve as a potential
platform for organ-specific drug testing and drug screening. For
example, the researchers found that Remdesivir therapy inhibits
SARS-CoV-2 viral replication in the intestinal organoids (Krüger
et al., 2021). Therefore, clinical treatment with this drug may
prevent intestinal damage caused by SARS-CoV-2 and relieve
intestinal symptoms.

BRAIN ORGANOIDS

Approximately 36.4% of the COVID-19 patients develop a variety
of neurological complications, ranging from loss of smell, nausea,
dizziness, and headache to encephalopathy and stroke (Mao
et al., 2020). RNA of SARS-COV-2 was found in the brains of
some patients (Helms et al., 2020; Moriguchi et al., 2020). The
mechanisms of SARS-COV-2 disrupting the brain-blood barrier
and infecting the central nervous system (CNS) draw great
concerns (Li et al., 2020). Studies have shown that CNS infections
may lead to the pathophysiological and clinical manifestations
associated with COVID-19 (Steardo et al., 2020). Therefore, it
is necessary to establish a suitable in vitro model to study nerve
infection by SARS-CoV-2.

IPSC-derived brain organoids are valuable tools for
investigating the biological properties of SARS-CoV-2 in
the CNS (Bullen et al., 2020; Jacob et al., 2020). Studies using
iPSC-derive brain organoids find that choroid plexus epithelial

cells are the main target of SARS-CoV-2 infection in the
CNS; meanwhile, neurons, and astrocytes are sparsely infected
(Jacob et al., 2020; Pellegrini et al., 2020). This finding is
consistent with the discovery that the choroid plexus region
is one of the hotspots of ACE2 expression in the CNS under
inflammatory status, and it is more susceptible to SARS-
CoV-2 infection than other regions (Chen R. et al., 2020).
After SARS-CoV-2 infection, increased cellular remodeling
and inflammatory responses were observed in choroid
plexus epithelial cells (Chen R. et al., 2020). This finding
provides an evidence that SARS-CoV-2 infection of the
choroid plexus leads to disruptions in blood-cerebrospinal
fluid barrier (BCB) integrity. Researchers have proposed that
BCB decomposition can promote entry of the virus as well
as immune cells expressing cytokines into the cerebrospinal
fluid and brain tissue, potentially causing nerve inflammation
(Pellegrini et al., 2020).

Whether SARS-CoV-2 propagates in the CNS remains
controversial. Some studies have reported successful SARS-CoV-
2 replication in brain organoids (Zhang et al., 2020), while
the others suggest that the viral replication and proliferation
are less efficient in the brain organoids (Ramani et al., 2020).
These opposite results may be due to differences in the methods
of establishing brain organoid models and the multiplicities of
infection (MOI) used in these studies. In the former study, the
neural progenitor cell (NPC) population is also found to be a
target of SARS-CoV-2 (Ramani et al., 2020). This is an important
finding as NPCs are responsible for repairing brain lesions caused
by degenerative diseases or malignancies (Zhu et al., 2013, 2014;
Luo and Zhu, 2014; Luo et al., 2015b). The impaired NPC
population might be the reason for late or incomplete recovery of
neurological manifestations in COVID-19 patients. On the other
hand, it should be noted that although human brain organoids
represent valuable models for in vitro research on SARS-CoV-
2 infection, they merely have simplified structures (e.g., vein
systems and blood-brain barriers) like the developing fetal brain,
and lack mature cells, particularly asteroid cells and astrocytes
(Jacob et al., 2020; Ramani et al., 2020).

PANCREATIC ENDOCRINE CELLS

Single-cell RNA-seq analysis of primary human islets has
indicated that both alpha cells and beta cells are positive for ACE2
and TMPRSS2 (Yang et al., 2020). Further validation experiments
in humanized mouse model established by human iPSC-derived
pancreatic endocrine cells confirm that both alpha cells and
beta cells are susceptible to SARS-CoV-2 (Yang et al., 2020).
Infected pancreatic endocrine cells display higher expression of
pathways associated with apoptosis and viral infection, and lower
expression of pathways associated with the normal functions of
alpha cells and beta cells, thus leading to increased cell death and
loss of cell identities (Yang et al., 2020). The infected cells are also
expressing higher levels of chemokines, including CCL2, CXCL5,
and CXCL6, and other degenerative factors and cytokines, which
is similar with cells found in autopsies from COVID-19 patients
(Blanco-Melo et al., 2020).
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LIVER ORGANOIDS

More than 50% of COVID-19 patients have symptoms of viral
hepatitis (Ong et al., 2020). Particularly, the proportion of
patients with liver damage in patients with severe symptoms is
much higher than that in patients with mild symptoms (Huang C.
et al., 2020). However, due to the lack of suitable research
models, it was unclear whether the liver damages were caused
by a direct viral infection or by systemic dysfunctions, such as
cytokine storms.

Relevant studies have deployed human organoids as tools
to study the correlations of SARS-CoV-2 infection and liver
damage at both cellular and molecular levels (Huch et al.,
2015; Dutta and Clevers, 2017). Some studies have established
human liver organoid models which are capable of preserving the
ACE2 + /TMPRSS2 + cholangiocyte population in long-term 3-
dimensional (3D) cultures (Yang et al., 2020; Zhao et al., 2020).
Further, the studies have confirmed that the cholangiocytes in the
human liver organoids are permissive to SARS-CoV-2 infection
and supporting strong viral propagation (Yang et al., 2020; Zhao
et al., 2020). Moreover, SARS-CoV-2 infection induces cell death
in the host cholangiocytes. Thus, these studies supports that liver
damage in COVID-19 patients might be caused by gallbladder
decomposition and subsequent accumulation of bile acid due to
viral infection (Yang et al., 2020; Zhao et al., 2020).

DISCUSSION AND FUTURE
PERSPECTIVES

Most COVID-19 patients have mild respiratory symptoms;
however, up to 20% of the patients develop severe pneumonia,
leading to multi-organ failures and even death (Zhu N.
et al., 2020). The development of iPSC technologies and the
resulting differentiated cell models have dramatically accelerated
studies of the pathogenesis of SARS-CoV-2 in various organs.
Current studies have employed iPSC-derived cells and organoids,
including iAT2 cells, cardiomyocytes, pancreatic endocrine cells,
lung organoids, brain organoids, intestinal organoids, liver
organoids, to investigate the underlying mechanisms of SARS-
CoV-2 infection (Ardestani and Maedler, 2020; Bojkova et al.,
2020; Huang J. et al., 2020; Jacob et al., 2020; Pei et al.,
2020; Mithal et al., 2021). As COVID-19 could also cause
kidney malfunctions (Chen N. et al., 2020), kidney organoids
derived from iPSCs may be a potential research model as well
(Phipson et al., 2019).

These iPSC-derived models are suited for leveraging the
powers of the latest genetic tools, such as single-cell RNA-
seq and CRISPR techniques, for COVID-19 research (Zhou
et al., 2020). Single-cell RNA-seq techniques have been developed
to investigate the viral tropisms and host transcriptional
responses to viruses or external stimuli in complex organs
and tissues (Zhu et al., 2018; Luo et al., 2019; Zhu D. et al.,
2020). In the above studies, single-cell RNA-seq has been
employed to screen for cell types that are positive of the
SARS-CoV-2 receptor ACE2 and effector protease TMPRSS2,
and to illustrate the transcriptional alternations after viral

infection (Huang J. et al., 2020; Yang et al., 2020; Zang et al.,
2020). Furthermore, the CRISPR system can be utilized to create
genetically modified iPSC models for mechanism study of the
candidate genetic factors (Luo et al., 2015c, 2016; Gkogkou et al.,
2020; Kim et al., 2020; Zang et al., 2020; Yu, 2021). For example,
with a CRISPR-engineered iPSC model, researchers have
demonstrated that the single-nucleotide polymorphism rs4702,
which is a common genetic variant located in the 3′ UTR of the
protease FURIN, influences the SARS-CoV-2 permissiveness of
alveolar and neuronal cells (Dobrindt et al., 2021).

On the other hand, there are a few limitations of iPSC-derived
cellular and organoid platforms, such as inadequate complexity
to reflect real tissue microenvironment and cell-cell interactions,
and lack of real-time monitoring methods for 3D cultures.
For examples, although the above studies have described the
susceptibility of various cell types to SARS-CoV-2 infection with
these iPSC derivatives, it is unclear whether these cell types are the
primary targets for viral infection in COVID-19 without a more
thorough analysis of samples from primary patients (Lamouroux
et al., 2020). Besides, these iPSC-derived models are simplified
ones compared to the fully functional and reacting human
organs. In the future, these platforms should be exploited to
produce more complex organoid models, including the immune
system components that are missing from the current analysis
(Yang et al., 2020).

CONCLUSION

In conclusion, human iPSC-derived cells and organoids can
be used as ideal models for studying the mechanisms of viral
infection and drug screening. Particularly, with the organoid
models, the viral tropism and host responses of different cell
types could be observed in a single system. These iPSC models
help us better understand the pathogenesis of SARS-CoV-2 in
different organs and systems, and provide powerful drug test and
discovery platforms.
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