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Abstract
Soil analysis to estimate soil fertility parameters is of great importance for precision agriculture but nowadays it still relies mainly
on complex and time-consuming laboratory methods. Optical measurement techniques can provide a suitable alternative.
Raman spectroscopy is of particular interest due to its ability to provide a molecular fingerprint of individual soil components.
To overcome the major issue of strong fluorescence interference inherent to soil, we applied shifted excitation Raman
difference spectroscopy (SERDS) using an in-house-developed dual-wavelength diode laser emitting at 785.2 and 784.6 nm. To
account for the intrinsic heterogeneity of soil components at the millimeter scale, a raster scan with 100 individual measurement
positions has been applied. Characteristic Raman signals of inorganic (quartz, feldspar, anatase, and calcite) and organic
(amorphous carbon) constituents within the soil could be recovered from intense background interference. For the first time,
the molecule-specific information derived by SERDS combined with partial least squares regression was demonstrated for the
prediction of the soil organic matter content (coefficient of determination R2 = 0.82 and root mean square error of cross
validation RMSECV = 0.41%) as important soil fertility parameter within a set of 33 soil specimens collected from an agricultural
field in northeast Germany.
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Introduction

In modern agricultural practice, the concept of precision
agriculture1,2 is becoming increasingly important on a global
level, for example, in terms of securing the food supply for a
steadily increasing world population. Controlled site-specific
and demand-oriented application of fertilizer and pesticides
can ensure the sustainable use of limited resources and is, at
the same time, crucial for environmental protection.3 For the
successful implementation of precision agriculture, detailed
knowledge of soil fertility parameters, for example, nutrient
and organic matter contents, is essential to determine fer-
tilizer demands. However, current standard procedures for
soil testing in many countries mainly rely on the collection of
one mixed sample from large areas in the order of 3 ha or
more4,5 followed by subsequent standard laboratory analysis.
Due to the natural and anthropogenic soil variability at field
scale6 and even down to the range of meters,7 a larger number
of samples would ideally be required to enable farmers to
make data-driven and demand-oriented management deci-
sions about crop choice, planting time, fertilizer application

rates, or irrigation.8 Unfortunately, a simple increase of the
sample quantity is not practically feasible due to the time-
consuming and expensive nature of conventional laboratory
analysis.9

To address these unmet needs of precision agriculture for
soil data at high spatial resolution, the application of advanced
proximal sensing methods is required. With this goal in mind,
the multidisciplinary project consortium, “Intelligence for Soil
(I4S)–Integrated System for Site-Specific Soil Fertility Man-
agement”, funded within the German national program “Bo-
naRes: Soil as a Sustainable Resource for the Bioeconomy”, is
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seeking to develop an integrated sensor system for in situ
field application by combining a range of complementary
measurement techniques with individual benefits. Selected
atomic spectroscopic methods include X-ray fluorescence,10

laser-induced breakdown spectroscopy,11–13 or gamma
spectroscopy,14,15 whereas molecular spectroscopic tech-
niques comprise mid-infrared,4 near-infrared,16 and Raman
spectroscopy.17

While atomic spectroscopy can reveal the total mass
fractions of elements, their binding form within the soil cannot
be determined by such methods.11 Thus, complementary
techniques to derive molecule-specific information of indi-
vidual soil constituents are required, ideally with the intention
to combine both approaches.10 Infrared spectroscopy can
provide such molecular data but generally suffers from in-
terference by water. This is not problematic when analyzing
dried samples in the laboratory but could become a potential
issue for in situ investigations directly on agricultural fields
where a wide variety of moisture conditions can be present.18

Raman spectroscopy can provide a molecular fingerprint of
the sample but shows only weak interference from water in
the fingerprint spectral range. Conventional Raman spec-
troscopy is, however, rarely applied in the area of soil analysis
as the intense fluorescence interference inherent to soil can
easily superimpose the Raman spectroscopic signature making
investigations challenging19,20 or even impossible.21 One way
to address the fluorescence issue is the application of exci-
tation wavelengths in the deep ultraviolet spectral range
below 250 nm. A serious drawback of this excitation with
high-energetic laser photons is the radiation-induced damage
of specimens that has been reported, particularly for organic
compounds.22

Shifted excitation Raman difference spectroscopy (SERDS)23,24

is a powerful physical approach to separate the characteristic
molecular fingerprint from interfering contributions. The
basic principle behind SERDS is that the sample is consec-
utively excited at two slightly different excitation wave-
lengths. The characteristic Raman signals will follow the shift
in excitation wavelength while static interfering contribu-
tions remain virtually unchanged. A following subtraction of
the two recorded Raman spectra thus provides a neat way of
separating the Raman spectroscopic fingerprint from back-
ground interferences. The technique does not only address
the above-mentioned fluorescence issue25 but also the in-
terference from ambient light,26 a topic of particular rele-
vance for investigations outside laboratory environments.27

We have recently demonstrated in a proof-of-concept study
that SERDS can be successfully applied for the qualitative
investigation of soil enabling the identification of different
mineral constituents.17

In this paper, for the first time SERDS, using a dual-
wavelength diode laser emitting at 785.2 and 784.6 nm
combined with a raster scan approach comprising 100 indi-
vidual measurement spots per sample, was applied to si-
multaneously address the issues of soil fluorescence and

heterogeneity. The objective of our study was to apply
multivariate analysis of the SERDS data in order to assess the
soil organic matter (SOM) content as important soil health
related parameter within a set of soil samples from an agri-
cultural field in northeast Germany. Furthermore, we aimed
at extending our previous work towards the identification of
selected inorganic (quartz, feldspar, anatase, and calcite) and
organic (amorphous carbon) soil constituents.

Materials and Methods

Shifted Excitation Raman Difference
Spectroscopy Setup

For our experiments, a compact laboratory setup for shifted
excitation Raman difference spectroscopy has been developed
specifically for soil analysis and is depicted in Fig. 1: An (1) in-
house developed 785 nm dual-wavelength diode laser28,29

serves as excitation light source having the laser operation
temperature of 25 °C and the laser injection current con-
trolled by a (2) custom-designed laser driver (Toptica Pho-
tonics). The two laser emission wavelengths are 785.2 and
784.6 nm, resulting in a spectral separation of 10 cm�1 for
SERDS. The emitted laser light is collimated by a (3) lens with a
focal length of 4.51 mm and a diameter of 6.33 mm (Thorlabs)
and passes through a (4) dual-stage optical isolator with 60 dB
blocking (FI-780-5TVC, Qioptiq) to prevent unwanted optical
feedback. Subsequently, a (5) lens with a focal length of
13.86 mm and a diameter of 9.25 mm (Thorlabs) launches the
laser light into an (6) optical fiber with a core diameter of

Figure 1. Scheme of SERDS setup with (1) SERDS laser, (2) laser
driver, (3, 5, 7, 11, 16) lenses, (4) optical isolator, (6, 17) optical
fiber, (8) bandpass filter, (9, 15) Raman edge filter, (10) silver mirror,
(12) sapphire window, (13) soil sample, (14) motorized x,y sample
stage, (18) spectrometer, (19) CCD detector and (20) computer.
Dashed lines with arrows indicate data connections to synchronize
laser emission with CCD exposure and read-out as well as for
control of the motorized sample stage.
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100 µm (LEONI Fiber Optics). At the fiber output, the light is
collimated by a (7) lens with a focal length of 35 mm and a
diameter of 25.4 mm (Thorlabs) and passes through (8) two
bandpass filters (LL01-785-25, Semrock) to remove amplified
spontaneous emission. The following reflection at a (9) Raman
longpass filter (DI02-R785-25×36, Semrock) and a (10) silver
mirror (Qioptiq) guides the excitation light to an (11) ach-
romatic lens with a focal length of 30 mm and a diameter of
25.4 mm (Thorlabs) which focuses it downwards through a
(12) sapphire window (Newport Corporation) onto the (13)
soil sample with an excitation spot size of approximately
90 µm. The sample is mounted in a (14) motorized x,y stage
(Newport Corporation) allowing for sequential automatic
probing at multiple points.

The backscattered light from the specimen is collected by
(11) the same lens in 180° geometry and reflected by the (10)
silver mirror. For improved blocking performance in case of
highly scattering soil samples, a (9, 15) set of three Raman
longpass filters (DI02-R785-25x36 and LP02-785RU-25,
Semrock) rejects the elastically scattered radiation and anti-
Stokes contributions while only the Raman Stokes scattered
light (that is shifted to longer wavelengths with respect to the
excitation laser light) passes through. By means of an (16)
achromatic lens with a focal length of 60 mm and a diameter of
25.4 mm (Qioptiq), the light is then launched into an (17)
optical fiber with a core diameter of 200 µm (Thorlabs) and
transferred to the (18) spectrometer having an optical res-
olution of 4 cm�1 (Tornado U1, Tornado Spectral Systems)
with (19) attached charge-coupled device detector (CCD;
MityCCD H10141, CriticalLink) thermo-electrically cooled
down to �10 °C. In-house written software running on a
computer (20) was used to set the laser and detector op-
eration parameters, to facilitate recording of the Raman
spectra and to control the movement of the motorized sample
stage.

Sample Material and Reference Analyses

A set of 33 soil samples investigated in this study were col-
lected at randomly selected locations from the topsoil layer
(0–30 cm depth) across an agricultural field in northeast
Germany (Latitude: 52.394316N; Longitude: 14.461156E) in
2017. The region was largely shaped by the Pleistocene gla-
ciations and the Scandinavian inland ice sheet most of all by the

Weichselian (115–12 ka) and the preceding Saalian glacial belt
(150–130 ka).30 The study field covers a considerably high
within-field soil variability with respect to selected soil pa-
rameters. This can be seen exemplarily in Table I showing the
descriptive statistics of laboratory reference data from our 33
specimens. The SOM content varies between 0.75% and
4.15% with a median at 1.4% while the total nitrogen content
(N) ranges from 0.05% to 0.28% with a median of 0.09%. The
pH values comprise a range from 5.3 (strongly acidic) to 7.3
(slightly alkaline) with a median at 6.6 (slightly acidic). Ac-
cording to the German soil classification system KA5,31 the
soil texture (determined by the mass fractions of clay, silt, and
sand) ranges from pure sand (class: Ss) to loamy sand (class: Sl)
showing a dominance of loamy sand and silty sand (classes:
Sl, Su).

All 33 collected specimens were air-dried at room tem-
perature and subsequently sieved to grain sizes smaller than
2 mm with a 2 mm mesh stainless steel sieve before further
analysis. After homogenization, samples were divided into
multiple subsets for laboratory reference analyses and for the
SERDS experiments. Our study exemplarily focusses on the
SOM and nitrogen content as selected important soil pa-
rameters and these were determined by the following stan-
dard laboratory methods. Elemental analysis with a Vario EL
Cube (Elementar Analysensysteme GmbH) was applied ac-
cording to Association of German Agricultural Investigation
and Research Institutes method A 4.1.3.2 to determine soil
organic carbon (SOC) content (as mass fraction in %). SOC
content was then converted into SOM content using a
conversion factor of 1.72 assuming that SOM contains ap-
proximately 58% of organic carbon.32 Total nitrogen content
(as mass fraction in %) was determined using elemental
analysis according to DIN ISO 13878 (1998-11) (dry com-
bustion method).

Shifted Excitation Raman Difference Spectroscopy
Measurement Conditions

For the SERDS experiments, the soil samples were trans-
ferred into small aluminum cups (diameter 30 mm) and
covered with a 1 mm thick sapphire window. The specimens
were mounted in a motorized x,y stage and probed at 100
positions in a 10 × 10-point grid pattern within an area of
1 cm2. For an evaluation of the raster scan method, the

Table I. Descriptive statistics of selected soil parameters determined from 33 specimens collected from the study field.

SOM (%) N (%) pH Clay (%) Silt (%) Sand (%)

Average 1.65 0.10 6.5 6.7 19.6 73.7
Median 1.40 0.09 6.6 6.0 19.0 74.0
Minimum 0.75 0.05 5.3 2.0 5.0 48.0
Maximum 4.15 0.28 7.3 17.0 36.0 90.0
Range 3.40 0.23 2.0 15.0 31.0 42.0
Standard deviation 0.75 0.05 0.4 3.5 7.3 10.2
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distance between raster points (1.1 mm) and the overall covered
raster area have been selected to take intrinsic soil variability at the
millimeter scale into account. In an alternating operation mode
between the two excitation wavelengths, at each spot 10 single
Raman spectra with an accumulation time of 1 s were recorded.
The optical power at the sample position was set to 20 mW to
avoid potential sample heating and damage.

Spectral Processing and Data Analysis

For each probed spot, the recorded single Raman spectra were
averaged resulting in two mean Raman spectra, one for each
excitation wavelength. From these Raman spectra, the SERDS
spectra were calculated according to an in-house developed
algorithm implemented in Matlab (The MathWorks, Inc., USA).
Initially, the difference of the two Raman spectra recorded at
the slightly different wavelengths is calculated. To remove
residual baseline modulations, this difference spectrum is fitted
by a cubic spline function. The fitted function is then subtracted
from the difference spectrum to achieve a baseline centered
around zero. This is an important step to avoid the creation of
spectral artifacts during the subsequent reconstruction pro-
cedure. In the next step, the baseline-corrected difference
spectrum exhibiting a derivative-like spectral pattern is re-
constructed by numerical integration to generate a Raman
spectrum in conventional form. Following the numerical in-
tegration, the baseline of the reconstructed SERDS spectrum
may not be exactly at zero. In the final step, an additional
baseline correction of the reconstructed SERDS spectrum is
therefore performed to achieve a straight horizontal baseline.
The latter can be beneficial for further data processing, for
example, intensity normalization.

For several measurement spots, very strong fluorescence in-
terference in combination with spectrally narrow luminescence
bands caused pronounced baseline distortions in the difference
spectra that, in turn, led to artifacts in the reconstructed SERDS
spectra. A similar issue with highly fluorescent/luminescent spec-
imens has already been reported in another study conducted by
our group.33 To remove such outliers from the spectral data set,
for each sample an empirically determined threshold of four times
the mean intensity of the spectra recorded at the 100 different
locations was calculated. On the one hand, this threshold allowed
to reliably identify outliers but on the other hand it enabled to
retain the natural variability of Raman signal intensities recorded on
heterogenous soil. Individual spectra with artifacts exceeding the
threshold value were then discarded. On rare occasions, fluo-
rescence was so intense to cause the CCD detector to saturate
and these spectrawere removed aswell.Overall, on average, seven
measurement spots out of 100were removed for each investigated
sample. To consider the inherent soil heterogeneity, the remaining
spectra were averaged before further processing to achieve one
representative mean spectrum for each specimen.

The spectral range from 340–1640 cm�1 has been selected for
the calculation of partial least squares (PLS) regression models in
our case as it contains characteristic Raman signals of the majority

of mineral and organic soil components. Prior to multivariate
regression, SERDS spectra were truncated to this range and
normalized to the intensity of the 418 cm�1 Raman band origi-
nating from the sapphire window. For the PLS regression of the
SERDS data against the determined reference laboratory values for
the SOM and nitrogen content, the Matlab function “plsregress”
based on the SIMPLS algorithm34 and included in the Statistics and
Machine Learning Toolbox was applied. Due to the relatively small
number of 33 samples, leave-one-out cross validation was selected
as suitable cross validation method.

Results and Discussion

Spatial Resolution of Shifted Excitation Raman
Difference Spectroscopy Setup

Prior to soil investigations, an important point is to evaluate
the spatial resolution of the SERDS setup in axial and lateral

Figure 2. Normalized SERDS net intensities of silicon Raman signal
at 520 cm�1. Dependence of axial sample position (black
diamonds) with fitted Lorentzian function (red curve) (a) and
dependence of lateral sample position (black squares) with fitted
Gaussian error function (blue curve), blue dashed lines indicate
transition width (b).
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direction. Using a silicon sample and translating it through the
laser focus along the beam propagation direction is a common
practice to determine the depth of focus of a Raman setup.35

In this way, SERDS spectra were recorded covering a total
axial range of 6 mm around the focal position. The determined
net intensities of the prominent silicon Raman band at
520 cm�1 were normalized to their maximum and are dis-
played as black open diamond symbols in Fig. 2a. It is well
known from theoretical considerations that such intensity
profiles represent a Lorentzian distribution.35,36 A corre-
sponding fit of the experimental data is displayed as red solid
line. The results show that the depth of focus where the
intensity drops to half of the maximum value (full width at half-
maximum, FWHM) amounts to 760 µm.

To assess the lateral resolution of the experimental setup,
the edge of the silicon sample has been translated perpen-
dicular towards the beam propagation direction within the
focal plane. This common procedure of moving the laser beam
across a well-defined edge has been described in the literature
previously.37,38 SERDS spectra were recorded comprising a
total lateral distance of 800 µm around the edge of the silicon
specimen. Figure 2b displays the calculated net intensities of
the 520 cm�1 silicon Raman band normalized to their max-
imum as black open square symbols. The experimental data
was then fitted using a Gaussian error function38 that is
displayed as solid blue line. Subsequently, the transition width
defined as four times the width parameter of the Gaussian
profile can be used to determine the lateral resolution. Its
value amounts to 98 µm and is close to the estimated laser
spot size of approximately 90 µm.

Our previous study has shown that in a confocal Raman
microscopic geometry, there is a need for active focus ad-
justment during the measurement when investigating soil
specimens.17 This is due to the presence of a surface topology
in combination with very small depths of focus in the range of a
few micrometers only. In the present investigation, the soil
samples have been prepared according to standard laboratory
procedures to contain particle sizes of up to 2 mm. It should
be noted that the actual surface roughness during the ex-
periments will however be much smaller than the maximum
particle size. A mixture of small and large particles will be
present in the samples and by pressing the plane sapphire
window on top of the soil specimens, a relatively flat surface
structure can be realized as confirmed by visual inspection.
The residual surface roughness due to the intrinsic soil
structure is therefore not an issue as the experimental setup
provides a sufficiently large depth of focus to compensate for
such variations.

Raman and Shifted Excitation Raman Difference
Spectroscopy Spectra of Soil

The averaged 100 single Raman spectra recorded for each
excitation wavelength from 10 measurement spots along a
distance of 10 mm are exemplarily displayed in Fig. 3 (top

curves) for one selected soil sample. It becomes obvious that
due to strong fluorescence interference, no Raman signals of
soil constituents can be observed. Application of SERDS ac-
cording to the procedure described above, however, can
reveal the previously masked Raman spectroscopic infor-
mation. The reconstructed SERDS spectrum (bottom curve in
Fig. 3) enables the identification of the strongest characteristic
Raman bands within the presented inspection range. Con-
tributions at 418 cm�1 and 750 cm�1 (marked by asterisks)
arise from the sapphire window used to cover the soil
sample.39 Furthermore, Raman signals of the mineral com-
ponents quartz40 (SiO2) at 465 cm

�1 and calcite41 (CaCO3) at
1083 cm�1 can be identified. The broad Raman signals around
1360 cm�1 and 1590 cm�1 can be attributed to the D-band
and G-band of amorphous carbon, respectively.40,42 In this
way, SERDS could successfully be applied to recover Raman
spectroscopic information from strong fluorescence inter-
ference in soil thus enabling the identification of selected
mineral soil constituents as well as amorphous carbon.

For comparison, Supplemental Figure S1 (Supplemental
Material) shows a plot of the Raman spectrum excited at
785.2 nm after polynomial background correction43 (seventh-
order polynomial function, 50 iterations) together with the
SERDS spectrum displayed in Fig. 3. It becomes obvious that
the polynomial procedure is unable to adequately separate the
characteristic Raman signals of soil constituents from back-
ground interferences. Here, only the major quartz Raman
signal at 465 cm�1 is barely visible while the other Raman
signals identifiable in the SERDS spectrum are completely
masked. This example highlights the capability of SERDS to

Figure 3. Average of 100 Raman spectra (top curves) excited at
785.2 nm and 784.6 nm, and corresponding reconstructed SERDS
spectrum (bottom curve) obtained from 10 individual measurement
positions along a distance of 10 mm of a selected soil sample. The
Raman spectrum excited at 784.6 nm is vertically offset by 1000
counts for clarity. The asterisks on the SERDS spectrum indicate
characteristic Raman signals of the sapphire window that is used to
cover the soil sample.
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properly address interfering contribution in the Raman
spectra leading to an efficient extraction of the Raman
spectroscopic information from the soil sample under
investigation.

Assessment of Soil Heterogeneity

It is well known that soil samples show an intrinsic spatial
heterogeneity at multiple length scales. In our previous study
using Raman microscopy with an excitation spot size in the
order of 1 µm on a soil microaggregate with <1 mm diameter,
we have shown that there exists a spatial variability of soil
components on the micrometer (μm) scale.17 In the present
investigation, this variability has been addressed by applying a
larger excitation spot size of ca. 90 µm. Furthermore, to
account for spatial variations occurring on the millimeter
(mm) scale, a raster of 100 points, comprised of a 10 × 10-
point grid covering a total area of 1 cm2, has been scanned for
all specimens. Based on visual inspection of the SERDS spectra
recorded at each measurement spot and comparison with the
characteristic Raman signals identified in the SERDS spectrum
displayed in Fig. 3, a coarse assessment has been made for the
presence of selected soil constituents. Figure 4 shows the
resulting plots for one selected soil specimen indicating
the detection of quartz, calcite, and amorphous carbon at
various measurement spots.

Within the selected sample, quartz as one of the most
abundant soil constituents could be identified at 93 out of 100
measurement spots (see Fig. 4a). Beside its high concentration
in the samples, detection of quartz is eased by the strong and
relatively isolated major Raman signal at 465 cm�1. For calcite,
the spatial heterogeneity is more pronounced as depicted in
Fig. 4b. Identification based on the main Raman signal at
1083 cm�1 was possible at 31 spots in total. The spatial
distribution is characterized by numerous clusters comprising

up to six adjacent measurement spots, whereas there are also
extended areas without the presence of calcite. The spatial
distribution for amorphous carbon as selected organic con-
stituent is depicted in Fig. 4c. It should be noted that, based on
relatively noisy single spot spectra, the identification of the
rather broad Raman signals at 1360 cm�1 and 1590 cm�1 can
be challenging. Nevertheless, the applied visual inspection
method allows for a rough estimate of the spatial distribution
of amorphous carbon, indicating its presence at 41 out of 100
measurement spots. The distribution shows a couple of
isolated spots but is generally dominated by larger clusters of
adjacent measurement positions. The plots presented show
that a pronounced spatial variability of the content of selected
soil components is present on a millimeter-sized scale. In our
study, we have addressed the issue of soil heterogeneity at this
length scale by averaging the 100 SERDS spectra recorded
from within an area of ∼1 cm2 to obtain more representative
spectra of the investigated soil samples.

In Fig. 5, these averaged SERDS spectra obtained from
three different soil samples are presented. For better visu-
alization, the spectra were normalized to the intensity of the
sapphire Raman signal at 418 cm�1 and vertically offset. In
contrast to the average spectrum from 10 single measurement
spots displayed in Fig. 3, the mean SERDS spectra of all 100
probed locations now allow for the identification of a smaller
contribution from the sapphire window at 578 cm�1 as well.39

Furthermore, characteristic Raman signals of the additional
mineral soil components feldspar44 at 512 cm�1 and anatase
(TiO2)

45 at 634 cm�1 can be identified. Due to inherent soil
heterogeneity, as expected, the Raman signal intensities of the
indicated constituents exhibit pronounced variations with
individual components even being virtually absent in some
cases.

For a further assessment of the variations of individual soil
components between the investigated 33 specimens, the

Figure 4. Plots showing the spatial distribution of the soil constituents (a) quartz, (b) calcite, and (c) amorphous carbon for one selected soil
specimen. Colored squares (red, green, and blue) indicate measurement spots where the corresponding substance has been identified by
visual inspection of the SERDS spectra and comparison with the characteristic Raman signals indicated in the SERDS spectrum displayed in
Figure 3.
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respective Raman signal intensities of quartz (465 cm�1),
feldspar (512 cm�1), anatase (634 cm�1), calcite (1083 cm�1),
and amorphous carbon (1360 cm�1) have been calculated
from the SERDS spectra (average of three points around signal
maximum). Figure 6 presents the corresponding intensities
that have been normalized to their respective maximum and
were vertically offset for clarity. As a measure to assess the
distribution of individual components, the median was cal-
culated. This statistical value splits the data in such a way that
half of the data is above it and half of the data is below it. In our
case, the smaller the median, the more heterogenous the
distribution of the corresponding soil component can be
considered. For the two mineral components quartz and
feldspar the median amounts to 58% and 56% of their max-
imum intensity, respectively. The frequent occurrence of
these two constituents is not surprising as they are among the
most abundant materials within various soils.46 In the case of
anatase and carbon, the medians are 16% and 20% of the
maximum intensity, respectively, indicating a pronounced
heterogenous distribution among the 33 samples. The
strongest variation is present for calcite with a median of only
3% of the corresponding maximum value. Here, only very few
specimens contain medium and high relative intensities.

Visual inspection of Fig. 6 shows that some of the samples
with high calcite content also contain larger amounts of
amorphous carbon. Closer inspection reveals that there exists
a positive correlation between the intensities of both soil
constituents with a value of determination of R2 = 0.56. This
observation is in accordance with the literature where a
coincidence between organic matter and calcite has been
reported for certain soil types.22 In the next step, using
multivariate analysis, the SERDS spectra will be correlated
with the SOM and nitrogen contents as determined by

laboratory reference analyses to assess whether the spec-
troscopic data can be used to determine these key soil
parameters.

Partial Least Squares Regression

Initially, averaged SERDS data of all 33 investigated soil samples
have been subjected to PLS regression analysis aiming for the
prediction of the SOM content. An important initial step is the
proper selection of the number of PLS components included
into the regression model. A commonly applied strategy for
the identification of a suitable number of PLS components is to
calculate the model root mean square error of cross validation
(RMSECV) as a function of the number of components and to
determine its minimum. In this way, a number of three
components have been identified and PLS regression of the
recorded SERDS spectra (normalized to the intensity of the
418 cm�1 sapphire Raman band) against the reference SOM
values determined by conventional laboratory analysis was
performed within the selected spectral range from 340 to
1640 cm�1.

A plot of the SOM contents predicted from the SERDS data
in dependence of the corresponding contents determined by
laboratory reference analysis is given in Fig. 7. Here, a very
good linear correlation between predicted and measured
SOM content with a coefficient of determination of R2 = 0.82
can be realized. A further measure to assess the performance
of the prediction is the slope of the linear fit (dashed line). As
the model should directly predict the measured value itself,
that is, without a scaling factor, the slope will ideally be 1.0.

Figure 6. Shifted excitation Raman difference spectroscopy signal
intensities of quartz (at 465 cm�1), feldspar (at 512 cm�1), anatase
(at 634 cm�1), calcite (at 1083 cm�1), and amorphous carbon (at
1360 cm�1) plotted versus sample number. Values are normalized to
their respective maximum and vertically offset for clarity.

Figure 5. Averaged SERDS spectra of three selected soil samples.
Vertical dashed lines highlight the Raman signal positions of
identified soil constituents and asterisks indicate Raman signals of the
sapphire window. Spectra are normalized to the intensity of the
sapphire signal at 418 cm�1 and are vertically offset for clarity.
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Here, the slope amounts to 0.97 and is thus very close to the
ideal 1:1 relation (solid line) between predicted and measured
SOM content. As a rough visualization of the model accuracy,
error bars with the length of RMSECV (0.41% SOM content)
have been added to the data points.

Besides the R2 value and the RMSECV, a further commonly
used measure to evaluate the model quality is the ratio of
percentage deviation (RPD).47 This value is calculated by di-
viding the standard deviation of the laboratory reference
values (0.75% in our case) by the RMSECV of the PLS re-
gression model and amounts to 1.81. Based on the classifi-
cation given by Viscarra Rossel et al.,47 RPD values between
1.8 and 2.0 indicate a sufficient model performance to enable
quantitative predictions. In this way, the molecule-specific
information derived from the SERDS data is suitable for the
quantitative assessment of the SOM content.

During the regression, the PLS algorithm identifies suitable
spectral channels that can be used to predict the SOM content
from the spectroscopic data. To assess these spectral char-
acteristics, a plot of the regression coefficients for the SOM
content in the investigated wavenumber range is presented in
Fig. 8. Overall, a couple of prominent signals can be identified.
High coefficients can be found at spectral positions related to
contributions coming from calcite at 1083 cm�1 and amor-
phous carbon at 1360 cm�1 and 1590 cm�1. In contrast, low
coefficients can be observed at spectral positions related to
contributions originating form quartz at 465 cm�1 and feld-
spar at 512 cm�1. As SOM is directly related to organic carbon
content, the presence of prominent signals at characteristic
Raman wavenumbers of amorphous carbon is reasonable. The
appearance of the calcite signal could be explained by the

above-mentioned correlation between calcite and carbon
content. In contrast, quartz and feldspar as some of the most
abundant soil constituents do not play a significant role in
SOM content prediction.

It is noteworthy that a similar investigation on Chinese
farmland soils applying conventional Raman spectroscopy (i.e.,
without using SERDS) at 785 nm excitation wavelength has
been conducted recently.48 As in our study, the characteristic
Raman fingerprint of the soil samples was superimposed by
strong fluorescence interference. The authors employed a
mathematical background correction and correlated their
spectra with laboratory values for SOM content using PLS
regression. Based on a number of 200 spectra (150 samples
for calibration set, 50 samples for validation set), their model
using seven factors achieved values of R2 = 0.74 and root mean
squared error of prediction RMSEP = 0.82%. However, no PLS
regression coefficients are given in this case to examine the
underlying spectral characteristics responsible for the ob-
tained prediction model.

Within their 200 samples, the range of investigated SOM
contents (0.57–9.70%) is about 2.7 times larger than the SOM
range present in our 33 specimens (0.75–4.15%). Despite the
reduced range of investigated SOM contents and the much
smaller number of specimens, our investigation shows better
performance for several important model indicators (higher
R2, lower RMSECV and smaller number of factors required).
The most likely cause for this behavior is the capability of
SERDS for the efficient extraction of the Raman spectroscopic
information from disturbing interferences such as fluores-
cence. As an example, our previous investigation on soil has
shown that a ten-fold improvement in the signal-to-
background noise ratio can be achieved by applying
SERDS.17 Additionally, in the study on Chinese farmland soils,

Figure 7. Soil organic matter content predicted from SERDS
spectra of 33 soil samples using PLS regression model with three
components plotted in dependence of corresponding SOM content
measured by laboratory reference analysis (dashed line: linear fit,
solid line: 1:1 dependence).

Figure 8. Regression coefficients of PLS model with three
components used to predict SOM content from SERDS spectra.
Vertical dashed lines indicate Raman band positions of identified soil
constituents.
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the authors identified fluorescence as a major obstacle to
obtain high quality soil Raman spectra.48 Due to the effective
fluorescence removal applied in our investigation, the input
quality of the SERDS data for PLS regression is expected to be
superior to conventional Raman data thus leading to improved
model performance.

In the case of nitrogen, a very good linear correlation be-
tween predicted values from the SERDS data and the measured
nitrogen content by laboratory reference analysis could be
realized using PLS regression (R2 = 0.86, RMSECV = 0.026%,
model with three components). The regression coefficients of
the PLS model show a nearly identical spectral pattern com-
pared to the one obtained for the SOM content that is displayed
in Fig. 8. It is, however, important to note that the achieved
correlation for the soil nitrogen content is only an indirect
correlation rather than being based on direct Raman spec-
troscopic information. In the SERDS spectra as well as in the
PLS regression coefficients, no evidence was found indicating
the presence of nitrogen-containing compounds, most likely
due to their low concentration within our investigated soil
samples (0.05–0.28% as determined by laboratory reference
analysis). The explanation for the very good prediction of the
nitrogen content can be found when considering the soil
composition. There exists a very strong positive correlation
with R2 = 0.97 between the reference values for SOM and
nitrogen content as determined by conventional laboratory
analyses. From a soil science perspective this is not surprising as
nitrogen in the topsoil layers is naturally present to more than
90% in an organic form.49 Consequently, the contents of ni-
trogen and SOMwithin topsoil are usually positively correlated.

The results obtained demonstrate that SERDS spectra ac-
quired on agricultural soil samples can be used for determi-
nation of the SOM content as well as for the identification of
other soil constituents. Laboratory investigations on air-dried
and sieved samples have shown the potential of SERDS for
qualitative and quantitative soil analysis. Sample preprocessing
was minimal in this case and done according to standard sample
preparation procedures in soil science. Raman spectroscopy,
however, does not require dry samples as interference from
water is only minimal in the investigated Raman fingerprint
range. Thus, in the future, potentially even in situ investigations
using portable SERDS instrumentation27 on agricultural fields
seem feasible for screening of selected soil parameters. With
respect to such practical applications of SERDS in agriculture,
an appropriate way to consider the soil spatial heterogeneity
on-site to obtain representative SERDS spectra suitable for
quantitative analysis is still under investigation. Further research
is directed towards the identification and confirmation of a
suitable sampling strategy, including the assessment of the
number of required measurement spots for each probed site.

Conclusion

This study successfully demonstrated that SERDS at 785 nm
excitation wavelength can effectively recover the characteristic

molecular fingerprint of selected inorganic (quartz, feldspar,
anatase, and calcite) and organic (amorphous carbon) com-
ponents within soil from intense fluorescence interference.
Soil spatial variability at the millimeter scale has been ad-
dressed by using a raster scan with 100 individual measure-
ment spots per sample. Results obtained on a set of 33 soil
samples collected from an agricultural field show that the
molecule-specific spectroscopic information provided can be
used for the prediction of the SOM content as important soil
parameter (R2 = 0.82, RMSECV = 0.41%). These outcomes
highlight the large potential of SERDS as a promising tool for
soil analysis in precision agriculture paving the way for efficient
soil nutrient management.
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