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Abstract

T cells play an important role in the adaptive immune response to a variety of infections

and cancers. Initiation of a T cell mediated immune response requires antigen recog-

nition in a process termed MHC (major histocompatibility complex) restri ction. A T

cell antigen is a composite structure made up of a peptide fragment bound within the

antigen-binding groove of anMHC-encoded class I or class II molecule. Insight into the

precise composition and biology of self and non-self immunopeptidomes is essential to

harness T cellmediated immunity to prevent, treat, or cure infectious diseases and can-

cers. T cell antigendiscovery is anarduous task! Thepioneeringwork in theearly1990s

has made large-scale T cell antigen discovery possible. Thus, advancements in mass

spectrometry coupledwith proteomics and genomics technologiesmakepossible T cell

antigendiscoverywith ease, accuracy, and sensitivity. Yetwehaveonly begun tounder-

stand the breadth and the depth of self and non-self immunopeptidomes because the

molecular biology of the cell continues to surprise us with new secrets directly related

to the source, and the processing and presentation of MHC ligands. Focused on MHC

class I molecules, this review, therefore, provides a brief historic account of T cell anti-

gen discovery and, against a backdrop of key advances in molecular cell biologic pro-

cesses, elaborates on how proteogenomics approaches have revolutionised the field.
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1 INTRODUCTION

The immune system consists of two arms—the innate and the adaptive

immune systems—that work in concert to sense alteration(s) in the

internal milieu, to process the perceived information, and to actuate

a response tailored to the altered state(s). Most times, the response
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of the innate immune system is sufficient to return the host’s internal

milieu back to normalcy; when not, the adaptive immune system is

engaged. One end-product of the innate immune response is the

display of fragments—fragments derived from agents that incite

alterations in the host’s internal milieu—on the surface of certain

innate immune cells called dendritic cells (DCs). Such fragmentary

end-products are recognised by T lymphocytes to initiate an adaptive

immune response.

T cells play an important role in the adaptive immune response to a

variety of infections and cancers. Initiation of a T cellmediated immune

response requires antigen recognition in a process termedMHC (major

histocompatibility complex) restriction. A T cell antigen is a compos-

ite structure made up of a peptide fragment bound within the antigen-

binding groove of an MHC (Major Histocompatibility Complex)-encoded

class I (MHC-I) or class II (MHC-II) molecule. The chemical features

of the peptide ligands presented by MHC molecules, their source(s),

and their generation are hotly pursued. The discoveries so made have

led to the elucidation of the basic molecular and cellular principles of

antigen processing and presentation, and to rational vaccine design

and therapies against infectious diseases and cancers. How advances

inmass spectrometry, and proteomics technologies and platforms cou-

pledwith genomics approaches have led to basic understanding of anti-

gens presented by T cells are narrated below. The focus is on MHC-I

immunopeptidomes—the collection of peptides presented by a given

MHC-I displayed on the surface of a cell—because of their pivotal

role in CD8+ T cell mediated immune surveillance against intracellu-

lar pathogens and cancers. This focus notwithstanding, we do acknowl-

edge that MHC-II immunopeptidomes and their roles in CD4+ T cell

mediated immune surveillanceagainst intracellular pathogens andcan-

cers are important but are not discussed herein.

2 ESSENTIAL HISTORY OF THE FIELD

The 1980s and 1990s were exciting times for students of antigen

processing and presentation, and T cell biology. By this time immu-

nologists and geneticists had established that the antigen(s) coded

by the MHC controlled allogeneic skin and tumour graft rejection

both in mice and men [1, 2]. As well, the 70s witnessed the first

descriptions of MHC restriction [3, 4]—a process that controlled

host T and B cell responses to proteins, viruses, and bacteria. These

two seemingly distinct immunologic recognition processes needed a

biochemical definition. By the late 1970s and early 1980s Nathenson

and colleagues had devised ways to cleave MHC-I molecules from cell

surfaces and adapted a radiochemical method which, coupled with

Edman degradation, unveiled the first primary structure of an MHC

molecule—H-2Kb (H-2, histocompatibility-2, the MHC of the mouse).

Immediately thereafter, primary structures of several other MHC

molecules were determined [5, 6].

Having unraveled the primary structures of several mouse and

human MHC-I and MHC-II molecules, the stage was set to elucidate

the biochemical basis of MHC restriction. Prior to this, the works of

Unanue and colleagues had revealed that the activities of T lympho-

cytes were intimately linked to their interactions with macrophages

[7–9], and the independent works of Unanue and colleagues, and

Grey and coworkers demonstrated that the macrophage-T cell inti-

macy was to process antigens [7–12]. So also, it was known that

nucleo-cytoplasmic proteins, notably the SV40 T antigen and influenza

A nucleoprotein and derived peptides, or proteins deliberately deliv-

ered to the cytosol by fusion of non-replicative influenza A virus or by

osmotic shock (e.g., ovalbumin)were targets ofMHC-I restrictedCD8+

T cells [13–17]. The in vitro binding studies that followed [18–21]

and the solution of the three-dimensional structure of a human MHC-

I molecule—human leukocyte antigen (HLA) class I molecule—HLA-

A*02:01 [22, 23], revealed that theMHCwas a receptor for processed

peptides with a single binding site [24–27]. The question now became,

what sorts of peptides doMHCmolecules bind and display to T cells in

vivo? This was a burning question forMHCand T cell enthusiasts in the

mid to late 1980s and early 1990s.

The radiochemical approach—invented to determine the amino

acid sequences of peptides and proteins that were available in limited

quantities [6]—returned yet another time to unveil the biology of

MHC molecules. The first three-dimensional structure of A*02:01

had revealed that the binding site was occupied by a conglomerate

of ligands whose chemical identities eluded Bjorkman, Strominger,

Wiley and colleagues [22]. They postulated, and the general notion

that followed was, that not a few or several but numerous peptides

were bound in that A*02:01 antigen-binding groove indicating that

the isolation of associated ligands in sufficient quantities to permit

amino acid sequence determination by Edman method would be

challenging. Hence, Nathenson and Van Bleek reasoned that if cells

infectedwith a virus that shuts off host protein synthesis (a la vesicular

stomatitis virus, VSV) were tagged with radiolabelled amino acids, the

tag would get incorporated into newly synthesised viral proteins. The

peptides processed from the radiolabelled viral proteins would then

be available for binding to MHC class I molecules. Such peptides could

then be isolated from the restricting MHC-I molecule and subjected

to Edman sequencing. Indeed, the skilled execution of this experiment

revealed one of the first peptide antigen isolated from an MHC

molecule: the VSV N protein-derived RGYVYQGL—coining the term

‘naturally processed’ to indicate the cellular source of the antigen as

opposed to synthetic [28]! Concurrently, Rammenssee and colleagues,

deploying a completely different approach, had acid (trifluoroacetic

acid) extracted, specific influenza virus-derived peptides from whole

infected cells without the need for MHC purification and determined

the identities of the two distinct peptides that were presented by H-

2Kd and H-2Db—the two mouse MHC-I molecules [29–32]. Similarly,

several groups showed peptide binding and presentation by MCH-II

molecules [33–37]. All of these studies culminated in a molecular

definition of MHC restriction. That is, MHC restriction entailed the

display of proteolytically processed short peptide fragments of self

and nonself proteins by the antigen-presenting MHC molecules in a

manner recognizable by T cells.

These initial reports were shortly followed by direct amino acid

sequence determination of individual peptides eluted from the

MHC with the aid of the mass spectrometer [36–38]. A critical early

application of this technology led to the discovery of antigenic phos-

phopeptides, which now have found use in cancer immunotherapy
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[39–44]. Advances in mass spectrometers and proteomics technolo-

gies and platforms have since paved the way to directly elucidate the

amino acid sequences of antigenic peptides [45–52]. Nonetheless, the

nature of naturally processed peptide antigens derived fromnumerous

re-emerging and newly emerging pathogens—for example, Dengue,

Marburg, Ebola, Mycobacterium tuberculosis, Plasmodium vivax, and

Plasmodium falciparum—yet remains. This knowledge is a prerequisite

to track T cell mediated protective immunity in experimental models

and in vaccine trials in humans.

3 ESSENTIAL STRUCTURAL BASIS OF ANTIGEN
PRESENTATION

The nature of the peptides and antigens presented byMHCmolecules

depend on the physico-chemical features of the antigen-binding

groove. Here the focus is on MHC-I molecules and the peptides they

present.A landmarkadvance inourunderstandingof thebasis ofMHC-

restricted antigen recognition by T cells was the solution of the three-

dimensional structure of A*02:01 by X-ray crystallography [22, 23,

53]. MHC-I is a heterodimer made of a heavy chain—coded for by the

MHC-I genes that is noncovalently associated with the light chain β2-
microglobulin (β2m). The heavy chain folds into three domains: the

extracellular α1, α2 and α3 domains, which are membrane anchored

by the transmembrane region that ends in a short cytoplasmic tail.

The three-dimensional structure of A*02:01 revealed that the α1 and

α2 domains of the heavy chain folds into a super-domain to form the

antigen-binding groove: two antiparallel α-helices confine the lateral

sides of the antigen-binding groove with the two β-sheets, each made

upof four antiparallelβ-strands, supporting thebottom.Themembrane

proximal immunoglobulin-like α3 domain and β2m support the α1 and

α2 super-domain [22, 23, 53].

The first MHC-I structure revealed, in addition to the heavy-

and light-chain electron density, extra electron density within the

antigen-binding groove that could not be assigned a structure. As

it was known that MHC molecules presented antigens in the form

of peptides, it was speculated that the third component (the extra

electron density) consisted of a conglomerate of peptides derived from

proteins of the host cell that expressed A*02:01 used in the structural

studies [22]. Another key insight gleaned from this first structure

was that the antigen-binding grove contained six pockets—pockets

A through F. Of these pockets, pocket A and, to some extent, pocket

F were made of conserved amino acid residues. Side chains of these

conserved residues made conserved main chain interactions with

the amino-terminal amine, and carboxy-terminal carbonyl oxygen

and hydroxyl groups. In contrast to the conserved pockets A and

F, pockets B to E were made of highly variable amino acid residues

that were encoded by polymorphisms that distinguished each MHC-I

allele from the other even across vertebrate species. Thus, the good

majority of the amino acid alterations that distinguished the MHC-I

heavy chains mapped to the antigen-binding groove [53]. The resulting

physico-chemical architecture of the antigen-binding grove, therefore,

dictated the nature of the peptides presented by a given MHC-I

molecule.

3.1 HLA-I alleles and peptide binding motifs

To understand what feature/s in an antigen dictated its presentation

by an MHC-I molecule and not the others, Rammensse and coworkers

devised a simple but clever experiment. They immunoprecipitated

different mouseMHC-I molecules with specific monoclonal antibodies

and acid eluted associated ligands. After separating the low molecular

mass ligands associatedwith theMHC-I—presumably those that led to

the extra density in the structure described above, the pooled ligands—

were subjected to Edman degradation. This experiment revealed that

the ligands bound to the MHC-I were indeed peptides, and that they

were short, made up of 8—9 amino acid residues in length. The most

astounding revelation was, depending on the presenting MHC-I,

the peptides contained two to three conserved residues at defined

positions—that is, peptides bound to H-2Kb contained a structurally

invariant phenylalanine or tyrosine at position 5 and a hydropho-

bic, aliphatic residue—such as leucine, isoleucine, or valine—at the

carboxy-terminus, and, similarly, those bound to H-2Db contained

an invariant asparagine at position 5 and a hydrophobic, aliphatic

residue—such as methionine or isoleucine—at the carboxy-terminus.

And that the remaining positions within the peptide accommodated

one of the 20 naturally occurring amino acid residues. Hence, peptides

bound to an MHC-I contained a binding motif made of an internal

and a terminal anchor residues [32]. In conclusion, a given MHC-I

molecule can bind theoretically over a tenth-of-a-billion (∼206 8-mers)

to a billion (∼207 9-mers) peptides that are structurally related at the

anchors. So, then, if a cell displays ∼50–100 thousand MHC-I at the

surface, is there a need to present millions-and billions (as Carl Sagan

would say about the stars in the sky!) of peptides? New molecular cell

biology seems to hold some of the secrets to this question, perhaps to

represent the internal milieu at the cell surface for an appraisal by T

cell and to keep immune reactions against self in check.

3.2 Excursion: Evolution of HLA-I peptidome
diversity

Theenormous capacityofMHCalleles toaccommodate suchhighnum-

bers of peptide ligands is motivated by the ability to cover the pro-

teome diversity of pathogens. It is generally thought that the high

polymorphism in the HLA locus is selected and maintained through a

’molecular arms race‘ [54–56]. In fact, characterization of immunopep-

tidomes of 18 individuals revealed that peptides bound to 27 highly

prevalent HLA-I molecules were derived from 10% of the expressed

genome. This ‘hotspot’ of self-presentation was driven by the HLA-

I genotype of the individual, and increased promiscuity conveyed an

improved coverage of self-protein presentation [57–59].

Further evidence for overall benefit of MHC diversity and anti-

genic coverage are found in the analyses of determinants of positive

immunotherapeutic cancer treatment outcomes: An increased MHC-

associated peptide diversity, and accompanied increased probability of

presentation of neoantigens are a strong determinant of the outcome

of immune checkpoint blockade in cancer [60, 61]. Loss of heterozygos-

ity in the HLA locus, leading to a restricted MHC allele diversity in the
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tumour, are a prevalent tumour escape mechanism and is associated

with poor outcomes in checkpoint blockade therapy [62, 63].

Whilst the expression levels of MHC-I are controlled by transcrip-

tion, translational, and posttranslational mechanisms [64, 65], expres-

sion levels of certain HLA alleles may be inversely correlated with

their ability to present a larger variety of peptide sequences, leading

to higher expression of alleles that are more ’fastidious‘ [66]. Despite

this result being counter intuitive, it emphasizes the importance of

evaluating quantitative aspects of antigen presentation and recogni-

tion. Insights so gained may unveil cause(s) and selection (evolution) of

HLA diversity.

3.3 HLA-I supertypes and peptide binding
supermotifs

Extensive HLA-Ia gene polymorphism is a major impediment to ratio-

nal design of T cell-taergeted vaccines and are barriers to tissue trans-

plantation [67–70]. There are over 9,300 HLA-I allotypes recorded,

and there are numerous variants [71]. Consequently, the antigen-

binding groove of numerous allelic productswill have a unique physico-

chemical architecture [53, 68] and, thereby, dictate the motif required

for an epitope to bind it [72]. Because patterns of T cell epitope pre-

sentation and immune recognition in a given infection are different for

individuals expressing different HLA molecules, development of uni-

versal T cell vaccine is a challenge.

Brilliantly, Sette and colleagues as well as Buus and co-workers

[68–70,73–75] discovered that all the currently known HLA-A and

HLA-B molecules can be grouped into functional ’supertypes‘ predi-

catedonpocketsBandFofmembersof each supertypehaving a shared

physico-chemical architecture [70]. Pockets B and F accommodate the

dominantpeptideanchorsofHLA-I restrictedepitopes: that is, themid-

dle anchor at position 2 and the C-terminal anchor [72]. The discov-

ery of HLA supertypes led to the description of common bindingmotifs

within peptides that bind a supertype and are collectively called ’super-

motifs‘ [68, 70]. Most importantly, peptide ligands predicted based on

algorithms that have taken into account supermotifs have led to the

discovery of numerous virus-derived CD8+ T cell epitopes [76–80]. A

recent in-depth study of naturally processed immunopeptidomes of 95

distinct HLA-A, HLA-B and HLA-C molecules by high-resolution mass

spectrometry has further refined supertypes based on HLA-I binding

submotifs. These 95HLA-I studied are expressed by 95% of the human

population. In doing so, a significant number of HLA-I did not fit into a

supertype or have been removed from previous supertypes [49]. That

notwithstanding, targeting commonly recognised epitopes by T cells

of individuals of the same HLA-I supertype holds promise as a vaccine

design strategy.

4 A NOTE ON METHODS

Given that a single allelic MHC-I can bind millions of peptides, can

each one to the last one in the antigen binding groove be extracted

and identified? The answer is no because of limitations of the best of

detergents to extract proteins from the cell membranes, efficiencies of

downstreamMHC-I purification and peptide elution methods, and the

sensitivities and accuracies of detection, which currently uses state-

of-the art mass spectrometers coupled with genomics and proteomics

(henceforth proteogenomics) approaches. Do we really need to know

the features of the last peptide in the groove? The answer is no, not

unless the biology demands it! And in the case of T cells, it is sufficiently

sensitive that it cangoabout its activities by seeing a single pMHCcom-

plex, or—if this is a bit too exaggerated—10—100 pMHCmolecules per

cell suffices [81–84]!

Three peptide isolation methods are used to define immunopep-

tidomes: (a) peptides isolated directly from immunoprecipitated or

affinity purified pMHC complexes [28, 32, 38, 85]; (b) low molecular

weight peptide fraction from total acid extracts of cells [29–31,86,87];

(c) mild acid extracts of peptides from cell surfaces [88–90]. Each of

these peptide extraction methods has its own advantages and disad-

vantages, but, when used in combination, the approaches are comple-

mentary and yield significant information about the immune self and

non-self [87].

Traditionally, the extracted peptideswere fractionated by reversed-

phase chromatographyandaminoacid sequencedeterminedbyEdman

degradation [28, 32, 34, 35, 85, 91–93]. The Edman approach required

∼5–10 nanomole (∼0.5 mg) amounts of purified pMHC-I complexes

for reliable sequence determination. Hence, several groups developed

ways to generate soluble pMHC-I complexes which are then affinity

purified from cell culture supernatants [92, 94]. Some groups continue

to use this approach for T cell epitope discovery [45, 47, 95, 96].Whilst

soluble pMHC-I complexes provide large, steady supply of pMHC-I, its

utility is limited when, for example, the immunopeptidomes of primary

cells, both normal and cancer, are sought. Furthermore, the truncation

of MHC-I without or with carboxy-terminal sequence modification

has raised questions related to the validity of the immunopeptidomes

that assemble soluble MHC-I in cells. Three lines of evidence suggest

that the quality of the immunopeptidomes is not compromised: (1) At

body temperature, the temperature at which cells secreting pMHC-I

are cultivated, most MHC-I will have avidly bound cargo, because

loosely bound cargo dissociate easily and will not bind conformation-

dependent monoclonal antibody used for affinity purification [97, 98].

(2) Cell-free assembly experiments have shown soluble HLA-B8-β2m
heterodimers load peptides in the presence of purified tapasin-ERp57

conjugates [99]. (3) Epitopes isolated from soluble pMHC complexes

are recognised by human CD8+ T cells or by HLA-I transgenic mouse

CD8+ T cells [45, 100, 101]. A good number of such epitopes are also

protective in lethal challenge experiments in mice [45].

Recent advances in mass spectrometry and bioinformatics do not

require tedious manipulation of cells for immunopeptidomics studies,

and allow the direct interrogation of primary tissue/s obtained from

patients. Importantly, such approaches allow direct comparison of

immune landscapes in healthy versus diseased tissues, that is, in

infectious diseases, autoimmune diseases, and cancer. Such analyses

have rapidly expanded the field of cancer and led the discovery of

numerous cancer-specific HLA-ligands, some of which are immuno-

genic (see Box 1 for a definition) and used as personalised cancer

vaccine [102–109].

Because native pMHC-I are cell membrane bound, they are

extracted with the use of detergents. A careful recent study
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Box 1: Learning ImmunoSpeakwith simple experiments

Antigen, an agonistic substance recognised by lymphocyte receptors—for example, the T cell receptor in the context of this review—but

also the B cell receptor, and antibody/immunoglobulin; as such not all antigens are immunogens.

Determinants, (archaic, ca. 1970s, 80s, 90s!) all peptides that bind to and are presented byMHCmolecules; also called epitopes sensu lato

in the current literature.

Epitope, sensu stricto, that aspect of an antigen that is recognised by a T or a B cell receptor.

Immunogen, an agonistic substance that elicits (induces/provokes) a T or a B cell response in a vertebrate host organism or in an in vitro

culturemodel. As such, all immunogens are antigens, but not all antigens are immunogens.

Protective antigens, a pathogen-derived immunogenwhich elicits a T or a B cell response in a vertebrate host and confers protection to the

pathogen when challenged with a lethal dose of the pathogen fromwhich the immunogen was derived but not to the pathogen that does

not express the immunogen.

Consider the following experiments: In the first, a group of mice were inoculated by the intraperitoneal (i.p.) route with a virus, say,

vaccinia virus (VACV; CaseWestern Reserve strain), the vaccine against smallpox. Seven days later, spleenswere harvested and screened

with a panel of >50 peptides eluted from MHC-I molecules expressed by VACV-infected HeLa cells. VACV-reactive CD8+ T cells

recognised a small subset of the peptides in the panel as evidenced by IFN- γ secretion in an ELISpot assay or by tracking the response

with pMHC tetramers (see ref. [45]). Peptides recognised in such an experiment are called antigens. Such peptide antigens are also T cell

epitopes. The remainder of the peptides in the panel not recognised by the T cell receptor are called determinants and not epitopes as is in

the current literature.

In the second experiment, two VACV-derived proteins, x and y—which contain two antigenic peptides x’ and y’ discovered in the experi-

ment above—were used as immunogens in prime-boost immunization of mice by i.p. route. After 14–72 days post boost, CD8+ T cells so

elicited recognised the peptide x’ derived from the immunizing antigen x but not the other peptide y’, and vice versa (see refs. [45, 347]).

Hence, these two antigens are immunogens; in this example, the two immunogens are antigens as well.

In the third experiment, mice were prime-boost vaccinated 2 weeks apart with proteins x and y. After 14–72 days post boost, mice were

challenged with a lethal dose of VACV via the intranasal route. Whilst both groups of mice elicited an immunogen-specific CD8+ T cell

response, onlymice prime-boost immunisedwith protein x survived the challenge, but the group that receivedprotein y as the immunogen

did not (see refs. [45, 348]). Hence, x is a protective antigen, but y is not, even though both x and y immunogens are derived from VACV.

demonstrated that the choice of detergents used in membrane

extraction impacted the quality and quantity of peptides identified.

The zwitter ionic CHAPS ([3-([3-cholamidopropyl] dimethylammonio)-

1-propanesulfonate]) fared the best in comparison to the ionic sodium

deoxycholate, non-ionic IGEPAL CA-630 and Triton-X100 [110, 111].

So also, different peptide enrichment methods after dissociation from

MHC-I impacted the quality and quantity of peptides identified. In this

case, reversed-phase chromatography using a C18 silica matrix fared

best when compared to the traditional ultrafiltration across a cellulose

membrane. These biases were HLA-I allele dependent as well [90,

110–112]. These critical methodologic observations suggest that a

comprehensive and complete characterization of immunopeptidomes

will require experiments that use multiple extraction and enrichment

methods to cater to the physicochemical demands of each peptide or a

collection of peptides in the test immunopeptidome, and reminds us of

the fact that immunopeptidomics studies to date identify a proportion

of the immune landscapes of cells, and that the full complexity of the

presented peptidome has yet to be understood. Further, these obser-

vations should cause pause when evaluating data, especially contra-

dictory ones! However, the analysis ofMHCpeptidomes in the context

of a fully complex, membrane-bound MHC haplotype with up to six

classical alleles expressed in humans, introduce not only challenges

regarding the peptide sequence variety, but introduces the challenge

of assigning the identified peptide ligands to the originating MHC

molecule. The solution of this challenge has since been approached

rapidly by the field, and Gibbs clustering tools as well as binding pre-

dictions can assist these stratifications. These approaches will benefit

from the recent mass spectrometric profiling of HLA-I associated pep-

tidomes inmono-allelic cells because the databases so created enables

accurate peptide assignments and epitope prediction [45, 49, 113].

5 BRIEF TOPOLOGICAL BIOCHEMISTRY OF
ANTIGEN PROCESSING AND PRESENTATION

5.1 The basics

The process by which MHC-I molecules assemble, traffic, and display

peptides is an excellent example of how a macromolecule utilizes the

cell’s topological biochemistry for antigen processing and presenta-

tion. Being a type I integral membrane glycoprotein, MHC-I molecules

assemble in the endoplasmic reticulum (ER) [114, 115]. Whilst the

heavy and light chains are co-translationally inserted into the ER

owing to their N-terminal signal sequences, the peptide component

of the MHC-I molecule is actively transported into this vesicular

compartment by accessory protein channels [116–120]. Peptides

that assemble with MHC-I molecules are predominantly of cytosolic

origin, but ER, nuclear, mitochondrial and phagosomal/lysosomal
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proteins also contribute to the peptide pool. Regardless of their origin,

MHCI-binding peptides meet in the cytosol prior to entry into the ER.

The assembly of the MHC-I molecule is a complex highly concerted

and controlled process that ensures cell surface display of only those

molecules that are assembled with high affinity peptides (reviewed in

ref. [121]). Display of peptide-associated MHC-I molecule at the cell

surface is essential as this pathway of antigen presentation evolved to

apprise CD8+ T cells of cytosolic events so as to provide a mechanism

to safeguard cells from intracellular invasion by viruses and bacteria,

and from tumorigenic mutations.

5.2 The assembly line

The assembly of the MHC-I molecule is schematised in figure 1.

Assembly begins with the co-translational insertion of the MHC-

I heavy-chain into the ER. This heavy-chain co-translationally com-

plexes with calnexin [122–125]—an ER-resident, lectin chaperone

that assists the folding and assembly of newly synthesised proteins

[126–128]—via a reducingmonoglucosylated glycan. The heavy-chain-

calnexin complex associates with β2m to form a transient, unstable

heterodimer. This heterodimer formation is probably assisted by cal-

nexin [125]. As heavy-chain+β2m heterodimers form, calnexin dis-

sociates to permit calreticulin—another ER-resident, lectin chaper-

one [128]—to bind to this binary complex, again via the terminal

glucose in the glycan. Calreticulin in this ternary structure recruits

the thiol-oxidoreductase/disulphide isomerase ERp57. This heavy-

chain+β2m+calreticulin+ ERp57 quaternary complex recruits tapasin

and TAP (transporter associated with antigen processing, a het-

erodimer of TAP1 and TAP2) to form the peptide loading complex

(PLC). EachPLCconsists of a single heavy-chain+β2mheterodimer, and

each TAP tethers two PLCs as one tapasin molecule binds to each of

the two TAPs in the functional heterodimer. PLCs await translocation

of peptides from the cytosol into the ER lumen by TAP to facilitate the

formation of a functional peptide (p)MHC-Imolecule. Upon binding the

appropriate peptide, the fully assembled pMHC-I dissociates from the

PLC, egresses the ER, negotiates the Golgi apparatus, en route to the

cell surface [121, 129–131].

5.3 Trimming to fit the groove

TAP heterodimers transport peptides from the cytosol to the lumen of

the ER to overcome the topologic barrier between the compartments

where cells generate peptides and the sitewhere cells assembleMHC-I

molecules. TAP has a loose ligand specificity: it binds peptides that

contain carboxy-terminal hydrophobic or basic residues. Such carboxy-

termini are known to bind to MHC-I molecules across all species. TAP

transports peptides made up of 14–15 amino acid residues, therefore

much longer than those that bind to MHC-I [116, 118–120, 132, 133].

Long peptides are trimmed to size by ER-associated aminopeptidase/s

associated with antigen processing (human ERAP/mouse ERAAP). In

a structural acrobatic, ERAP1 trims long peptides to the size that fit

them into the antigen-binding groove sometime destroying MHC-I

ligands [134–141].

The importance of peptide trimming in the ER bore out in experi-

ments in which peptides assembled with H-2Kb and Db molecules in

ERAAP-deficient and -sufficient cells were eluted and subjected to

LC-MS/MS analyses. While retaining a good fraction of peptides pre-

sented byMHC-I of wild type ERAAP-sufficient cells, ERAAP-deficient

cells, in addition, ferried ligands bound to mouse MHC-I that had

significantly altered its composition and length. Further, the latter

peptide set was extended at the amino-terminus and not at the other

end. Consistent with these findings, wild type ERAAP-sufficient mice

elicited a strong CD8+ T cell response against ERAAP-deficient spleen

cells indicating that the self immunopeptidomes displayed by MHC-I

in ERAAP-deficient cells were immunogenic [134]. Similar features

were also reflected inmouse cytomegalovirus (CMV)-derived peptides

presented by cells devoid of functional ERAAP. What is more is that

the self and CMV peptides presented by ERAAP-deficient cells elicited

a distinct CD8+ T cell response focused on theN-terminal extension of

the peptide [142].

Certain inflammatory diseases show linked association between

ERAP1 and HLA-I alleles (refs. [143–145] and reviewed in refs.

[146–148]). The gene coding for ERAP1, more than ERAP2, is poly-

morphic (reviewed in refs. [146–148]). Amino acid altering differences

map either directly to ERAP1’s enzymatic site, substate-binding

site, or sites that can impact these activities (refs. [144, 149–153]

and reviewed in refs. [146–148]). Hence, such polymorphisms could

alter immunopeptidomes and form the basis of disease. Consistent

with this notion, ankylosing spondylitis-disposing HLA-B*27 and the

Behçet’s disease-associated HLA-B*51:01 immunopeptidomes are

significantly altered in the absence of functional ERAP1 [154–156].

Moreover, ERAAP deficiency in tumour cells appeared immunogenic,

and abrogated a tumour in a mouse colorectal cancer model [157].

Together, these findings describe the profound effects ERAP/ERAAP

has on the immunopeptidomes of healthy and diseased cells and reveal

new targets to treat human diseases.

Human and mouse MHC consists of several clusters of multi-gene

families that encode proteins that control both the innate and adaptive

immune responses. The MHC-I molecules described thus far are

products of MHC-Ia cluster, which consists of genes that are highly

polymorphic. In contract to these, the MHC-Ib cluster consists of

numerous genes that are highly conserved even across species. Genes

in this cluster were once considered evolutionary vestiges but are

now known to encode molecules that control both T cell and natural

killer cell functions—for example, the human HLA-E and the orthol-

ogous mouse H-2Qa1, which are ligands of activating CD94/NKG2

heterodimeric receptors [158–160]. To begin to understand the

immunopeptidomes ofMHC-Ib and their biology, peptideswere eluted

from the surface of ERAAP-sufficient and -deficient cells, and their

features determined in high-throughput mass spectrometry experi-

ments. Peptidomes associated with MHC-Ia molecules have features

described above. Curiously, the number and immunogenicity of pep-

tidomes presented byMHC-Ib molecules were substantially increased

in ERAAP-deficient cells [161, 162]. Hence, ERAAP trims a substantial

repertoire of peptides to fit into MHC-Ib grooves. These findings

convincingly implicate the ER as a major site for MHC-I associated

immunopeptidome generation, shifting from the conventional notion
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F IGURE 1 A schematic rendition ofMHC-I biosynthesis and assembly with peptide cargoes. The assembly ofMHC-I molecules begins with
the co-translational insertion of the heavy chain into the lumen of the endoplasmic reticulum (ER). Herein the nascent heavy chain binds to the ER
chaperone calnexin to facilitate initial folding and assembly with β2-microglobulin (β2m). This unstable heterodimer is stabilized by binding to a
related ER chaperone calreticulin. This interactionmakes the complex receptive to the peptide loading complex (PLC). This association with the
PLC stabilizes the empty heterodimer such that the antigen-binding groove adopts andmaintains a conformation receptive to peptide loading. The
PLC—consisting of the heavy chain-β2m heterodimer, calreticulin, tapasin, and the ER-resident thiol-oxidoreductase/disulphide isomerase
ERp57—facilitates peptide binding to the heterodimer. Initial peptide-boundMHC-I undergoes architectural editing via tapasin in the PLC to
ensure high-affinity peptide (p)/MHC-I complex formation prior to exiting the ER. TAP-binding protein related (TAPBPR), independent of the PLC,
edits for high-affinity peptide binding toMHC-I in a poorly understoodmechanism. Peptides generated in the cytosol—the sources of which and
their production are explained in the text—aremade available for pMHC-I assembly in the ER lumen by transporter associated with antigen
processing (TAP)-1 and TAP-2.Many of the peptides that are delivered into the ER are longer than the preferred 8–10 residues; these undergo
further trimming by ER aminopeptidases, human ERAP1 (mouse ERAAP) and/or human ERAP2. Finally, high-affinity pMHC-I complexes are
released from the PLC, which then falls apart into constituent parts, available for the next round of pMHC-I assembly. Perhaps tomake the process
efficient, in addition to peptide translocation from the cytosol to the ER lumen, TAP-1 and TAP-2 heterodimer forms a scaffold that tethers two
PLCs into a complex. pMHC-I released from the PLC quickly egresses from the ER, and negotiates the Golgi apparatus en route to the cell surface
for an appraisal by CD8+ T cells
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that most MHC-I associated peptides are generated in the cytoplasm

by the action of the proteasomes—more on this matter is below.

Several studieshave found that componentsof theMHC-I restricted

antigen processing pathway also impact MHC-II antigen presenta-

tion. One such study reported that ERAAP-deficiency altered the

immunogenicity of certain cytosolic peptides presented by H-2Ab

molecules ([163] and references therein). Mass spectrometry analy-

ses of peptidomes found that H-2Ab molecules presented a pool of

peptides derived from the cytosol of ERAAP-deficient cells [164].

Hence, ERAAP has effects on MHC-II associated peptidomes as well;

how this occurs remains and awaits investigation.

5.4 Editing for best fit

Tapasin and its homologue TAP-binding protein related (TAPBPR)

function to facilitate peptide binding to assembling MHC-I molecules

and also as editors, the former in the PLC and the latter independent

of the PLC. Current evidence suggests that tapasin and TAPBPR

quality control the C-terminal end of the peptide. This editing function

ensures that peptides of sufficient affinity are loaded into the antigen-

binding groove to assure stable display of pMHC-I at the cell surface

[165–170]. This editing function of both tapasin and TAPBPR loads sol-

ubleMHC-Imolecules with high affinity peptides, a process capitalised

to generate high affinity pHLA-I tetramers by in vitro catalysis using

TAPBPR [99, 171]. Despite these very close functional similarities,

TAPBPR does not compensate for the function of tapasin in tapasin-

deficient cells perhaps because the former functions independent of

the PLC and the latter within it. Curiously, neither are obligatory chap-

erones in the assembly of MHC-I molecules [172–174]. Hence, HLA-I

(human leukocyte antigen class I)—encoded by the highly polymorphic

human MHC-I genes—allelic variants have varying dependencies on

tapasin for proper assembly with peptides [172–174]. Despite varying

dependencies, HLA-I molecules assemble with high affinity peptides,

even when their dependency on tapasin is low, into stable, functional

molecules and maintain control of CD8+ T cell responses [174].

Consistent with that finding, a very large-scale study of over 90 HLA-I

molecules showed no differences in the composition of immunopep-

tidomes displayed by humanMHC-I molecules which assemble depen-

dent versus independent of tapasin [49]. Evolution’s purpose for the

homologues to behave differently, and for varying tapasin dependency

in HLA-I assembly remains elusive! Studies of immunopeptidomes in

tapasin and TAPBPR doubly deficient cells and mice could illuminate

both the biology and evolution of varying tapasin dependency.

6 NEW MOLECULAR CELL BIOLOGY AND THE
SOURCES OF PEPTIDES

6.1 Cellular roteostasis: Roles for proteasomes,
immunoproteasomes, & thymoproteosomes

It is generally thought that the natural turnover of proteins in the cyto-

plasm contributes a sizable fraction of peptides to the immunopep-

tidome. This assumption, however, is at odds with four features of pep-

tides presented byMHC-Imolecules: First,MHC-I immunopeptidomes

contain peptides derived from long-lived proteins whose half-life aver-

age ∼45 h [175, 176]. Second, presentation of virus-derived peptides

occur even before virus proteins are detectable and assembly begins,

and excess proteins turn over: for example, VSV-N (vesicular stomatitis

virus nucleocapsid), VACV (vaccinia virus), and IAV (influenza A virus)

[177–181]. Third, low copy number proteins—those that form a minor

fraction of a given cell’s proteome—are peptide sources and compete

favourably against highly represented cellular proteins, which includes

supra-stoichiometrically generated proteins that eithermisfold or can-

not find partners in multimeric proteins [182–184]. Fourth, although

controversial, peptides are derived from genome hotspots [57, 58],

which is not observed in tumour cell lines [49, 164] suggestive of tran-

scriptional dysregulation in cancers. Here we begin with the contribu-

tions of the proteasomes in sculpting the immunopeptidome in relation

to other cellular mechanisms.

6.1.1 Proteolysis

Proteasomes are multicatalytic endoproteinase complexes composed

of four rings in which each ring is made of seven related subunits.

The two outer rings, composed of α subunits, sandwich the two inner

catalytic rings of β subunits. This quartet of heptameric rings, form-

ing the core 20S proteasome, assembles in such a way that they form

an interior chamber. The N-terminal residues of the α rings gate the

catalytic rings, the opening of which is controlled by the regulatory

cap made up of the 11S proteasome activators (PA) and/or the AAA+

ATPase-containing 19S unit. The N-terminus of β1, β2 and β5 subunits

is exposed to the interior chamber and contains the proteolytic active

sites (reviewed in [185–187]).

IFN-γ enhances MHC-restricted antigen presentation by inducing

the expression of multiple structural and regulatory genes, including

HLA-I, β1i/LMP (Low Molecular mass Polypeptide)-2, β2i/MECL-

1 (Multicatalytic Endopeptidase Complex-Like-1), β5i/LMP7, the

regulatory cap PA28 and ERAP, amongst others, especially within

immune cells in healthy individuals. The induced proteasomal com-

ponents occupy the place of the homologous component within

the constitutive, standard proteasome, creating the immunoprotea-

some. Immunoproteasome formation is a highly ordered process:

β2i requires β1i for efficient incorporation into preproteasomes, and

preproteasomes containing β1i and β2i require pre-β5i for efficient
maturation and, thereby, ensures the assembly of homogeneous

immunoproteasomes for efficient generation of peptides presented by

class I molecules [185, 188–190].

Virus infection and tumour microenvironments induce type I IFN,

IFN-γ, and tumour necrosis factor α (TNF-α) production, which in

turn promotes the induction of immunoproteasomes and components

of the PLC. Consistent with this finding, mass spectrometry-assisted

proteomics experiments showed subtle to substantial shifts in the

self immunopeptidomes after microbial infection, for example, HIV-

1 (human immunodeficiency virus), IAV, measles virus, VACV, and
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Toxoplasma gondii or within cancer cells [47, 96, 164,191–196]. Whilst

the immunologic consequences of the immunopeptidome shift in

response to virus infection remain to be determined, IFN-γ did not

influence the immunopeptidomes in another study [49]. In strik-

ing contrast, a high-throughput immunopeptidome analysis of non-

transfected primary cells—thymocytes and professional antigen pre-

senting DCs—of wild type and mouse β2i/MEKL- and β5i/LMP7-

deficient mice showed a significant contribution of immunoprotea-

some in sculpting the immunopeptidome. This study showed that the

immunoproteasome has proclivities for cleavage site, not amino acid

residue, and unstructured regions in the substrate proteins [197].

Similar changes to cancer immunopeptidomes as a consequence of

IFN-γ and TNF-α action were observed in other studies and, as a

consequence, impacted tumour immunity or cancer immunotherapy

[194–196]. Furthermore, there are reports that show that the immuno-

proteasomes canmake or break epitopes with significant immunologic

consequences [194, 198–202]. So then, why the differences between

these findings? One cause may be the use of different cell sources,

tumour lines versus primary cells; two, use of IFN-γ-induced cell

lines versus immunoproteasome-deficient primary cells; three, study

of immunopeptidomes associated with soluble versus membrane-

anchoredMHC-Imolecules; and four, primary cells arebut tumour cells

transfected with monoallelic HLA-I transgene are not under the con-

trol of IFN-γ [47, 49, 96, 164, 191–193, 197, 203]. Alternatively, it is
possible that the generation of the large majority of peptides in the

immunopeptidome may not require the constitutive or IFN-γ-induced
proteasomes. This notion is consistent with the finding that cells con-

tinue to present peptides even when proteasome functions are inhib-

ited by lactacystin, epoxomicin, or bortezomib (velcade) [204–210]. A

resolution to the different outcomes may be reached by a compara-

tive immunopeptidome study of uninduced and type I IFN- or IFN-γ-
induced primary DCs, which—with some limitations associated with in

vitro cultivated bone marrow-derived DCs—may closely reflect that

whichmight occur in vivo.

6.1.2 Peptide dicing and splicing adds to antigen
diversity

An effort to identify the peptide epitope recognised by a HLA-A3-

restricted renal cell carcinoma-specific CD8+ T cell clone led to a

serendipitous finding that the epitope was generated by the splicing

of the protein antigen FGF-5 (fibroblast growth factor-5) [211].

Whilst the evidence pointed to the cytosol as the site of protein

splicing, shortly thereafter, the proteasome was shown to splice

peptide epitopes together after proteolytic cleavage within its cat-

alytic chamber. This notion was firmed by incubation of purified

20S proteasomes with the precursor peptide RTKAWNRQLYPEW

derived from gp100/MEL melanocyte antigen and identification of

one of the spliced products RTK—QLYPEW by mass spectrometry

and T cell assay [212]. Additional spliced virus- and tumor-derived

antigenic epitopes are known [213, 214]. Such diced and spliced

epitopes derived also from a minor histocompatibility (H) antigen,

that which mediate graft-versus-host response in HLA-identical

bone marrow transplant recipients. In the case of the minor H anti-

gen SP110, cleavage between the threonine-alanine peptidyl-bond

(underlined) within the STPKRRHKKKSLPRGTASSR (bold indicate

the two parts of the spliced epitope) fragment yielded the necessary

energy for re-ligation of two resulting fragments in reverse order to

create the HLA-A*03:01-restricted, SP110-derived minor H epitope

SLPRGT—STPK [215]. Spliced peptides are not peculiar to virus-,

alloantigen- or cancer-derived epitopes but are derived from bacterial

proteins as well, for example, Listeria monocytogenes—a bacterium

with an obligatory cytosolic lifestyle [216, 217]. Thus, a novel antigen

processing mechanism involving cleavage and re-ligation of peptide

fragments within the proteasome was revealed. It is noteworthy that

up until these discoveries, protein splicing was known only in plants

(e.g., concanvalin A) and in unicellular organisms, including eukaryotes.

Hence, peptide splicing in the proteasome for antigen presentation

unveils a newmolecular cell biology of metazoans.

As several such examples followed (reviewed in [218, 219]), three

questions became apparent: one, does splicing occur only in cis—

between peptides generated from the same protein as in the three

examples above—or can it occur in trans—between peptides gener-

ated from two different proteins; two, what fraction of the pep-

tides in a immunopeptidome owes to peptide splicing; and three,

can cytokines influence peptide splicing in the proteasomes consider-

ing that IFN-γ induces immunoproteasomes? Answers to these ques-

tions have come from deep sequencing of the immunopeptidomes

eluted from HLA-I molecules. Current evidence suggests that both

cis- and trans-splicing generate HLA-I associated immunopeptidomes.

And that, albeit controversial [49, 220, 221], peptide splicing may con-

tribute between 1—30%of peptideswithin the immunopeptidome [49,

213, 220, 222–226].

The large range in the contribution of spliced peptides to the

immunopeptidome reported from different works can be rationalised

by understanding the methodology applied to their discovery [227].

LC-MS peptide identifications are generally made by assigning the

most probable amino-acid sequence from a sequence database to a

given spectrum, and the accuracy of this assignment is dependent on

many factors including the spectral quality and the size and design of

the sequence database. While the accuracy of such peptide-spectrum

to sequence assignments may be controlled through parallel interro-

gation of randomised sequence databases for estimation of the false

discovery rate, the designation of a specific amino acid sequence to be

a product of proteasomal splicing needs careful biological validation

[213, 226, 228]. Sincevalidationof splicedpeptideassignments canand

has to date only been performed for subsets of peptide annotations,

the true extend of spliced peptide sequences in the immunopeptidome

remains as yet undetermined [227].

β5i/LMP7-containing immunoproteasome enhance the production

of a novel gp100/MEL epitope by peptide splicing: RTKAWNRQ-

LYPEW substrate reverse spliced to QLYPEW—RTKAWNR and diced

to QLYPEW—RTK product epitope [229]. Similarly, immunoprotea-

some was shown to enhance the production of the SP110-derived

minor H epitopes as well [215, 218]. Curiously however, in large-scale



10 of 27

studies, IFN-γ had little influence if any on the nature of the peptides in
the immunopeptidomes investigatedeven though the cytokine induced

components of the immunoproteasomes and accessory protein in the

PLC [49].

Then there are thymoproteasomes, those made with the β5t sub-
unit, which assembles in cortical thymic epithelial cells in association

with β1i and β2i. β5t assumes the place of β5 and β5i in these cells

[230]. β5t-containing thymoproteasomes, are thought to promote

positive selection of CD8+ T cells, but the underlying mechanism

remains unknown [230–234]. The chymotrypsin-like proteolytic

activity of thymoproteasomes is low and, consequently, produce a

distinct immunopeptidome [231, 232]. Or alternatively, as β5t, β5 and

β5i are paralogues begotten from gene duplication (β5t and β5) and
two rounds of whole genome duplications (β5 and β5i) [235, 236],
and because β5i enhances splicing of certain peptide epitopes [215,

218,229], an intriguing possibility is that the thymoproteasomes may

have increased peptide splicing activity. These predictions, however,

require further investigation.

7 DEFECTIVE RIBOSOMAL PRODUCTS

The immunodominant CD8+ T cell epitope from VSV-N is gener-

ated within the first 45 min post infection of cells [177]. A similar

observation was reported for the HIV-1 Gag protein, which is an

incredibly stable protein [237]. Hence, the presentation of these

epitopes occurs much sooner than the turnover of the two source

proteins begins. As well, over 30% of new synthesised proteins are

turned over by the proteasomes [237]. This rapid protein turnover is

consistent with the finding that themajor substrates for TAP transport

are generated from newly translated proteins [238]. These astute

observations led Yewdell to postulate the DRiP hypothesis over 20

some years ago [239]. A kinetic study of antigen presentation by

DC-like DC2.4 cell line provided compelling evidence for the DRiP

hypothesis: Focused on eight of the 49 epitopes recognised by VACV

immune CD8+ T cells, these peptides were quantified over a 12.5-h

infection period in a highly sensitive MRM (multiple reaction mon-

itoring) mass spectrometry experiment. These eight epitopes were

chosen because, (a) their source ORFs were previously shown to

be immediate early, early and late genes; and (b) study of multiple

epitopes in a single experiment provides a better picture of peptide

processing and presentation than a single epitope at a time. Alongside

epitope quantification, the expression of source ORFs were quantified

over time. Such an in-depth analysis of multiple epitopes was possible

because of the high sensitivity and accuracy of the mass spectrom-

eter used in this study. The kinetic analysis of the two parameters

demonstrated that epitope presentation begins even before source

protein levels plateau in DC2.4 cells. Furthermore, epitope abun-

dance was not correlated with source protein abundance neither was

immunodominance [179].

Estimates are that DRiPs contribute to >30% of the peptides in

the immunopeptidomes [239]. It is noted that the DRiP hypothesis

does not in any way refute the contribution of peptides emerging from

the natural turnover of stable cellular proteins—proteins that retire

from their function/s—to the immunopeptidome [240]. In the light of

evolution, it makes perfect sense to generate and present microbial

antigens at early stages of infection as discovered in the kinetic study

above so as to achieve effective immune surveillance and to stymie an

impending disease.

So, what are the sources of DRiPs? This search for DRiPs turned

up some exciting newmolecular cell biology! DRiPs are largely formed

from unstable polypeptides because they are (a) translation prod-

ucts of stalled ribosomes; (b) misfolded proteins; (c) those that did

not find their partner/s in heteromeric complexes; or (d) products of

mutant genes, many of which arise to set off tumorigenesis. Finally,

SLIPs—short lived proteins—are another source of peptides for the

immunopeptidome. SLIPs are a category of proteins that retired even

before they were fully formed to execute their function/s.

7.1 Unconventional translation: Where shall I
begin?

Few groups had reported MHC-I restricted presentation of cryptic

peptides—peptides that arise from polypeptides templated from the

5’ and 3’ untranslated region (UTRs,) and alternative reading frames

(ARFs) that are generally thought not to be translated. Such cryptic

peptides form targets for virus- and tumor-specific T cell-mediated

immunosurveillance ([241–243] and reviewed in ref. [244]). It is esti-

mated that the cancer immunopeptidomes are constituted by 2%–20%

cryptic peptides [242, 245].

In studies designed to understand how cryptic epitopes arise, Shas-

tri and colleagues discovered the surprising use of CUG in contrast

to the conventional use of AUG as the initiator codon [246–250].

What is more is that translation initiation at CUG used the elongator

leucinyl-tRNA anti-codon Watson-Crick base paired with the leucine

codon. That is, the methionyl-initiator tRNA (tRNAi
Met) is not used

as the initiator tRNA in a wobbled base pairing with the CUG codon.

Initiation at CUG required eIF2A (eukaryotic initiation factor-2A) to

form the ternary complex [249]. This form of unconventional trans-

lation is enhanced by proinflammatory signals including virus infec-

tion [180, 251] and appears to guide tumorigenesis, which upends con-

ventional translation by the phosphorylation of eIF2α [252]. New evi-

dence indicates that RPS28 (40S ribosomal protein S28) tunes peptide

generation via unconventional translation [253]. These findings alert

to immunoribosomes, those potentially dedicated to creating self and

non-self immunopeptidome.More on this matter is below.

Under homeostatic conditions, conventional translation requires

the recruitment of the ternary complex—composedof eIF2 (madeupof

α, β, and γ heterotrimer)-GTP and tRNAi
Met—into a complex consisting

of the small ribosome subunit and multiple eIFs (eIF1, -1A, -2, -3, and

-5) to form the 43S preinitiation complex (PIC). This PIC becomes

receptive to the translation-primed mRNA, which is composed of

5’GpppA cap-bound eIF4E, eIF4G, eIF4A, and eIF4B, and when bound

together forms the 48S PIC (see [254]). Whilst protein synthesis starts

predominantly at the initiator AUG codon flanked by the consensus
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Kozak sequence [. . . (-3)A/G-NN-AUG-G(+4). . . ], some translation

occurs at the upstream AUG codons within 5’-UTRs (untranslated

region containing an upstream open reading frame or uORF) as

well. In general, uORF-encoded polypeptides are short, composed

of ∼10 amino acid residues. This form of unconventional translation

is enhanced by cellular stress caused by tumorigenesis, infection or

nutrient starvation via phosphorylation of eIF2α and formation of an

alternative ternary complex composed of eIF2A-GTP, which replaces

eIF2-GTP. The alternative ternary complex utilised non-AUG codons,

such as CUG>GUG>AUG>>UUG for translation [252]. Together then,

unconventional translation reduces conventional protein synthesis but

biases the process toward cancer specific gene expression. Coupled

with alternative initiator codon usage, the immune system has found

a way for immunosurveillance so that tumours and infected cells have

nowhere to hide.

Hence, translation from 5’- and 3’-UTRs (see refs. in the preceding

paragraph), ARFs [243, 255, 256] including the negative strand (e.g.,

influenza virus) and translation initiation from a non-AUG but specif-

ically CUG codon are all known to contribute to immunopeptidomes

(reviewed in refs. [239, 246, 257]).

An estimated 1% of the proteome mis incorporates methionine

residues with the use of Met-misacylated onto non-methionyl-tRNAs.

Methionine misincorporation into the proteome not only protects

proteins from oxidation, but also expands the functional, expressed

genome.As viruses, deadand live, enhanceMet-misacylation via innate

signalling mechanism and reactive oxygen production, such Met-

misacyalted proteomes can contribute peptides with non-templated

methionine/s to immunopeptidomes [258]. This notion awaits formal

evidence.

7.2 W-bumps stall ribosomes to frameshift
translation

One mechanism of tumour immune evasion involves the induction of

indolamine-2,3-dioxigenase-1 (IDO-1) by IFN-γ (reviewed in ref. [259]).
Nonetheless, inhibition of IDO-1 in conjunction with PD-1 blockade in

clinical trials did not enhance the efficacy of checkpoint blockade alone

(reviewed in ref. [260]). A mechanistic study of this unanticipated clin-

ical outcome revealed yet another new molecular biology of the gene

and a potential mechanism of immune surveillance against cancers:

Under chronic conditions of IFN-γ stimulated IDO-1 activity, the tested

melanoma cells deplete tryptophan via the kynureninemetabolic path-

way. Consequently, ribosomes in these cancer cells accumulate after

the tryptophan codon, causing what the authors call a ‘W-bump’. W-

bumps result in translational frameshifts and the generation of altered

polypeptides which contribute to HLA-I associated tumour-specific

immunopeptidomes.What is more is that some of the altered peptides

elicit CD8+ T cell response [261]. Hence, IFN-γ-induced IDO-1 produc-

tionmay play a significant role in immune surveillance against tumours.

Inhibition of IDO-1 then prevents the generation of neoepitopes and,

thereby, obviates antitumor immunity.

7.3 Nuclear translation: Translating introns and
across intron-exon boundaries

Translation of introns and intron-exon junctions provide a source

of DRiPs [244, 262–266]. Two studies provide compelling evidence

that antigenic peptides are generated via pioneer translation in the

nucleus. In the first of these, inhibitors of RNA polymerase II (pol II)

that prevented nuclear export of transcribed mRNA blocked cyto-

plasmic translation of a recombinant IAV neuraminidase (rNA) gene.

This recombinant protein generated an antigenic peptide engineered

into rNA stalk region despite undetectable cytoplasmic translation

[267]. The second study used a model in which mRNA is super rapidly

exported from the nucleus in a HIV-1 Rev-dependent CRM1-mediated

pathway. Super rapid mRNA export decreased the presentation of

an antigenic peptide whose gene was engineered into the intron of

the β-globin gene consistent with the nuclear translation of antigenic

epitopes. Further, in situ localization mapped the pioneer translation

product to peri-nuclear area in association with RPS6 and RPL7 [264].

So then, are there immunoribosomes?

7.4 Immunoribosomes—Gained in translation

DRiP hypothesis had postulated the presence of immunoribosomes as

ameans to channelize protein synthesis to peptide generation and TAP

transport [268] (reviewed in refs. [269–271]). Initial evidence for the

engagement of a distinct ribosome subset in translating DRiPs came

from studies that inserted a pretermination codon downstream of a

segment that encodes an antigenic peptide from within the β-globin
gene. This premature stop codon initiates the RNA quality control

mechanism termed non-sense mediated decay (NMD; see ref. [254]).

NMD prevented mature β-globin production yet produced the anti-

genic peptide via pioneer round of translation. The generation of the

antigenic peptide required eIF4Gbut not eIF4E [265]—the cap-binding

protein essential for mRNA to bind to other eIF4s and, thereby, to the

43S PIC to form the 48S PIC (see ref. [254]).

Direct evidence for a role for immunoribosomes in generating

immunopeptidomes emerged from painstaking CRISPR/Cas9 screen

of cells targeting each of the 80 ribosomal protein genes, one-at-a-

time [253]. The presentation of the ovalbumin peptide from influenza

A virus gene expression detectable by SIINFEKL/H-2Kb complex-

reactive monoclonal antibody binding was the readout. This screen

discovered that 67 of the 80 RPs were essential for cell viability. Of

the remaining 13 RPs (ribosomal proteins), one 60S protein RPL6

deficiency decreased SIINFEKL peptide generation, while RPL28 defi-

ciency increased it. Deficiencies in the two RPLs had no effect on the

transcripomes. Mechanistically, RPL6 controls ubiquitin-dependent

proteasomal destruction of DRiPs which explains the increase in SIIN-

FEKL peptide generation in RPL6 deficient cells. RPL28 on the other

hand controls ribosomal RNAmethylation, andwith translation factors

channel translation products to the ER translocon and/or TAP. Hence,

the two 60S large subunit proteins inversely control DRiPs [253].
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Deficiency in a third RP, RPS28, increased HLA-A2 levels at the

cell surface; one plausible explanation for this increased expression

could be increased peptide supply. Ribosomal profiling (Ribo-Seq)

experiment showed increased unconventional translation of uORFs

from 5’ and 3’ UTRs from non-AUG initiator codon. Of immunologic

consequence, the increased peptide supply gained from RPS28 defi-

ciency engineered into a melanoma cell line made the tumour line

much more sensitive to NY-ESO derived pHLA-A2-specific CD8+ T

cell-mediated killing [253]. These data together, for the first time, sug-

gest the existence of immunoribosomes, which may play an important

role in cancer immunosurveillance. Hence, the authors conclude that

mutations in RP genes, which are common in cancers [272], may result

in cancer immunoevasion.

In sum, unconventional translation, ‘W-bumps’ and translational

stall and frameshift, translation of intron and intron-exon boundaries,

and translation with immunoribosomes expand the sources of DRiPs

and, consequently diversify the self and non-self immunopeptidomes.

Such DRiPs can be easily missed in experiments that use the cur-

rent proteogenomicsmethods. Toovercome this limitation, proteomics

approaches need to incorporate Ribo-Seq technologies [252, 273, 274]

to characterize a homeostatic and cancer translatome so as to better

define what immune self and non-self mean to T cells. New studies are

beginning to address this need in the cancer immunopeptidome space

[242, 275, 276].

8 TAKING ANTIGEN PRESENTATION TO THE
BAZAAR

This subtitle paraphrases the title of Professor Jan Klein’s Plenary

Talk at the 6th International Congress of Immunology held in Toronto,

Canada, June 1986. Whilst, in 1986, it seemed to Professor Klein such

optimism too early, therapies based on harnessing antigen presenta-

tionbymeansof vaccination, aswell as T cell expansion and cell therapy

are 20th century advances reduced to clinical practice in the advancing

21st century.

8.1 Microbial epitope discovery

The different approaches to discover T cell epitopes have been

reviewed recently [277, 278] and, hence, not belaboured here. The

most popular of these is algorithm-based epitope prediction coupled

with biochemical and immunologic validation. Over 40 such algorithms

exist, which have been recently compared and reviewed by others

[279]. Further, algorithms trained on naturally processed immunopep-

tidomes in addition to the traditional affinity-based tools have better

predictive power as has the recent study of 95 HLA-I immunopep-

tidomes consisting of over 185 thousand peptides [49]. Two other

methods gaining interest in T cell epitopediscovery include, one, amas-

sive, high-density peptide array technology that allows identification of

all possible peptides that have thepotential to bind to andbepresented

by MHC molecules in the absence of a functional PLC [280, 281]. And

two, phage display of pMHC complexes and epitope identification with

yeast display of TCRs [282].

Algorithm based epitope discovery could lead to the discovery of

mimotopes because it focusesmainly onMHCbinding and antigen pro-

cessing and presentation but does not account for the features for

antigen-receptor interactions [283]. Accounting for this interaction is

critical as the TCR is very sensitive: that is, the receptor can recog-

nize and respond to one-to-ten molecules of an antigen [84, 284]. As

well, it can discriminate between twopeptides differing by amethylene

group or a methyl and a hydroxyl group in an accessory anchor—for

example, H4 minor histocompatibility alloantigens [86, 285, 286]. This

sensitivity coupled with a rather loose ’recognition logic‘ andmicro-to-

milli-molar binding affinity with which the TCR interfaces its cognate

antigen—the p/MHC—is thought to make the TCR highly cross reac-

tive [286-290]. A case in point is the recognition of∼100 different pep-

tides by an H4b-reactive CD8+ T cell line [291]—yet the 100 mimo-

topes so identified did not contain the actual epitope [86, 285]. This

was not a peculiarity of an alloreactive TCR because the simian virus

40-derived epitope-4 specific and herpes simplex virus 1 glycoprotein

B-reactive T cell clones also recognised over 50mimotopes. A common

feature within the three mimotope sets was the presence of a TCR-

specific recognition motif consisting of one or two conserved putative

solvent exposed residues with a potential to interact with the TCR.

At the other extreme, a single autoimmune TCR was recently shown

to recognize over a million different peptides within a broad cross-

reactivity profile [292]. Such cross reactivity is not peculiar to MHCI-

restricted TCRs as severalMHCII-restricted TCRswere shown to cross

react in a similar manner (see refs. [282, 293] and references therein).

The cross-reactive feature of the TCR further underscores the critical

need for comprehensive immunologic validation of an identified epi-

tope. Furthermore, inclusion of structural features of pMHC as well

as TCR-pMHC binding interactions (e.g., refs. [287–289,294] and ref-

erences therein) into newer iterations of algorithms can enhance their

predictive power [282]. These learnt adaptations to epitope prediction

algorithms has significantly enhanced T cell epitope discovery [283,

295–298].

Epitope prediction is high-throughput and effective for microbes

with small proteomes such as those of viruses, the largest of which

express ∼250—300 open reading frames (ORFs). Experiments using

the power and rapidity of predictive algorithms coupled with T cell-

based validation have resulted in the discovery of numerous putative

and actual immune epitopes that are deposited in the IEDB (immune

epitope database) [299]. In contrast, discovery of T cell epitopes from

larger microbes such as M tuberculosis and Plasmodium spp. by using

prediction algorithms would be challenging because the expressed

genome of these microbes can encode ∼4000—6000 proteins. In

addition to the scale (about a million potential determinants) of

epitope screening problem, these microbes might use their own

proteasomes to destroy beneficial epitopes discovered by predictive

methods even before they are available for presentation by MHC-I.

Consistent with this notion, only a few epitopes were presented

by HLA-A2.1 molecules expressed by M. tuberculosis strain H37Ra-

infected U937-A2 cells (3 nested/overlapping, HLA-A*02:01-resticted
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epitopes) [300] or M. bovis-derived strain BCG-infect THP-1 cells (12

A*02:01-resticted peptides) [301]. The large differences in the range

of epitopes presented perhaps lie in the fact that viruses translate their

ORFs and some of their ARFs on host ribosomes, DRiPs generated

from which are substantial sources of antigenic peptides [255, 257].

By contrast, mycobacteria translate their genomes on their own ribo-

somes, wherein DRiPs may be lost to rapid degradation by microbial

proteasomes [302, 303] and, hence, unavailable for presentation.

In striking contrast to the relatively small number of HLA-

A*02:01-resticted mycobacterial peptides identified, a tedious and

thorough study identified a large number of T. gondii—the agency

of toxoplasmosis—encoded peptides (195) presented by A*02:01 on

infected cells [47]. These peptides had several uncommon features:

such peptides (a) were largely derived from the parasite’s cytosol per-

haps through direct delivery of the ligands from the parasitophorous

vacuole to the host ER; (b)were longer than the conventional 8–10mer

peptides typically presented by MHC-I molecules; (c) maintained the

N-terminal core bindingmotif as observed in canonical A*02:01-bound

ligands; and (d) were extended at the C-terminus by 1–30 amino acid

residues as gleaned from the pHLA-I crystallographic structure [47]. If

indeed the T. gondii-encoded cytosolic peptideswere delivered directly

via a conduit between the parasitophorous vacuole and the ER, such

peptides should be TAP-independent—a notion that is easily tested.

Whether features observed in T. gondii-encoded ligands are unique

to this pathogen or is common to microbes and parasites contained

within parasitophorous vacuoles awaits further study. In this context,

the features of HLA-I restricted T. gondii-derived peptides and other

epitopes described earlier [304–306] bring perspective two orphan

studies reported over 25 years ago describing the association of pep-

tides longer than the conventional 8–10 mer to a mouse and a human

MHC-I molecule [307–309].

Naturally processed epitopes presented by several HLA-Imolecules

have been characterised with the aid of proteomics approaches

[45–47,96,100,101,164,179,191–193,301]. A theme that emerged

from one of these studies is that VACV-infected cells generate many,

many more epitopes than are antigenic—those recognised by CD8+ T

cells that are elicited by virus infection . These antigenic epitopes were

also immunogenic—that is, they elicited a CD8+ T cell response in the

appropriate mouse strain. Whether the non-antigenic virus-derived

peptides were immunogenic (for a definition of antigen and immuno-

gen, see BOX 1) was not determined. Another study of VACV-derived

epitopes by mass spectrometry revealed that the mouse MHC-I

presents peptides derived from almost all 200 or so virus ORFs. Fur-

ther a large majority of these peptides were immunogenic, suggesting

that themouse has a large T cell repertoire directed against VACVpep-

tides. Whether all of these peptides are antigenic was not determined

[46]. It is less likely that all of the naturally processed VACV peptides

identified by mass spectrometry are antigenic because previous

reports by this group showed that 49 VACV peptides accounted for

all of the antigenic epitopes. Further, CD8+ T cell responses to five

peptides accounted for up to 40% and to all 49 peptides accounted for

up to∼95% of the total response to VACV inmice [310, 311].

At first pass, it might seem that the infected cell wastes immense

resources to generate and present so many different epitopes. But

consider the following: if all of the readers of this manuscript are

HLA-B*07:02 positive, but express different HLA-I molecules from the

remainder five loci, our T cell repertoire would be as distinct and

diverse as the number of individuals in the reader population. Hence,

each repertoirewill recognize a distinct, and potentially an overlapping

set of epitopes. This is exactly what was observed in multiple studies

[45, 312, 313], which we called variegated T cell antigen recognition

[45, 314]. This variegated recognition coupled with heterotypic immu-

nity perchance explains the success of vaccination with VACV against

smallpox with the eventual eradication of the disease from the globe

[101, 310].

8.2 Proteogenomics for cancer antigen discovery

Preceding the advent of the proteogenomic approach, tumour-specific

antigens were discovered with mass spectrometry of T cell active

fractions [36–38]. When coupled with the idea that tumorigenesis

involves tumour-specific signalling events guided by phosphorylation-

dephosphorylation cascades, that approach led to the discovery of

phosphopeptide epitopes uniquely expressed by cancer cells [39,

41–43]. This discovery has led to phosphoepitope-based immunother-

apy against cancers [40, 44]. More recently, several groups concur-

rently reported a proteogenomic approach that allows T cell epitope

discovery from species with large proteomes such as ours and mice.

This approach has led to the discovery of several cancer-specific aswell

as minor histocompatibility alloantigen-derived CD8+ T cell epitopes

[57, 102–105].

Proteogenomic approaches generally entail the refinement of the

protein database used to interrogate obtained MS fragment spec-

tra, which can be achieved by integrating whole genome, exome, or

RNA sequencing information; the latter can be further refined by

ibo-seq approaches. Definition of non-synonymous single nucleotide

polymorphisms (nsSNP) is most frequently defined in relationship to

the same individual’s non-cancerous genome (whole exome sequenc-

ing data) or (less frequently) transcriptome (RNA sequencing data).

Novel de novo assembly tools further allow the reconstruction of

the transcriptomic landscapes of cells from RNA sequencing or ribo-

some sequence profiling data, including transcripts from unconven-

tional sources, in order to assist their discovery in the immunopep-

tidome: that is, retained intronic sequences, lncRNAs, antisense tran-

scripts, human endogenous retroviral-derived reterotransposable ele-

ments, and unannotated gene products [242, 243, 275, 276, 315–318].

There are two strategies to integrate these data with immunopep-

tidomic analyses. Firstly, the translated mutant proteome is subjected

to T cell epitope prediction using HLA-binding predictors: for example,

NetMHCpan4.1 [319]. This information then allows the specific tar-

geted acquisition of the predicted variant peptide sequence within the

material eluted from a given MHC-I molecule using MRM experiment.

From the resulting naturally processed tumor epitopes, immunogenic-

ity was predicted in silico with both immunogenicity and protection

validated in vivo [102, 103, 105]. Alternatively, the genomics informa-

tion can be included in the protein databases used for interrogation of

the LC-MS spectra from purified MHC-associated peptidomes. Here,
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dependent on the quality and extent of the genomically refined protein

sequence data, this approach allows for the discovery of non-canonical

antigens in the context of disease as exemplified above.

Thepotential variationwithin eachpeptide that is causedby snSNPs

is ascertained from the genomes or transcriptomes of allogeneic or

cancer cells and validated in immunologic assays [57, 104], and immune

reactivity has been confirmed for endogenous retroviral and lncRNA

peptide sequences. Using high-resolutionmass spectrometry, such epi-

topes relevant to several cancers have been discovered making possi-

ble therapies based on harnessing antigen presentation by means of

vaccination, as well as T cell expansion and cell therapy [320–327].

Some of the neoepitopes were generated from oncogenic driver muta-

tions, not only lending to highly personalised anti-cancer vaccination

but to ‘off the shelf’ vaccines for individuals expressing HLA alleles of a

supertype [327–330]. Neoepitopes are not only generated by snSNPs,

but can emerge from frameshiftmutations via dysregulated alternative

splicing and exitron splicing events, and microsatellite instability, all of

whicharehallmarksof tumorigenesis [331–334].Weare just beginning

to understand how a single amino acid alteration in a neoepitope beats

immune tolerance to elicit an anti-cancer response [335]. Until well-

learnt,weare at themercyof combinatorial therapy suchas checkpoint

blockade, chemotherapy, or radiotherapy but at the cost of collateral

damage (reviewed in refs. [331, 336]). In this regard, such therapies can

benefit from oncolytic virus infections that cause immunopeptidome

shifts as alluded to above, [45–47,96,100,101,164,179,191–193,301].

This finding raises the intriguing possibility that oncolytic viruses, such

as adenovirus or vaccinia virus [164], recombinant viruses that ferry

innate immune adjuvants [337] or chemical agents that target specific

cellular processes [338, 339], can aid to coax the expression and gener-

ation of neoepitopes to promote tumor immunity.

Finally, current insights into the nature, and the depth and breadth

of immune self and non-self [50, 51] screams silently how T cells

view our health and disease states, tissue by tissue. An astute reader

will have noted that nothing was said about MHC-II immunopep-

tidomes. Reports of cancer MHC-II restricted targetable neoepitopes

and spliced autoantigens [42, 203, 340–346] have broken ground

to lead to a finer definition of MHC-II immunopeptidome. A deeper

understanding of immune self and non-self shall set us free from mal-

adies of T cell malfunction (tumor immunosurveillance) and overac-

tivity (autoimmunity and alloreactivity). Toward this end, the current

stateof the field foretells theexcitement thenewmolecular cell biology

and advances in translatome technologies will have on precisely defin-

ing immunologic self and non-self.
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