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Abstract
Heterogeneity in cell populations originates from two fundamentally different sources: the

uneven distribution of intracellular content during cell division, and the stochastic fluctua-

tions of regulatory molecules existing in small amounts. Discrete stochastic models can

incorporate both sources of cell heterogeneity with sufficient accuracy in the description of

an isogenic cell population; however, they lack efficiency when a systems level analysis is

required, due to substantial computational requirements. In this work, we study the effect of

cell heterogeneity in the behaviour of isogenic cell populations carrying the genetic network

of lac operon, which exhibits solution multiplicity over a wide range of extracellular condi-

tions. For such systems, the strategy of performing solely direct temporal solutions is a pro-

hibitive task, since a large ensemble of initial states needs to be tested in order to drive the

system—through long time simulations—to possible co-existing steady state solutions. We

implement a multiscale computational framework, the so-called “equation-free”methodol-

ogy, which enables the performance of numerical tasks, such as the computation of coarse

steady state solutions and coarse bifurcation analysis. Dynamically stable and unstable

solutions are computed and the effect of intrinsic noise on the range of bistability is effi-

ciently investigated. The results are compared with the homogeneous model, which

neglects all sources of heterogeneity, with the deterministic cell population balance model,

as well as with a stochastic model neglecting the heterogeneity originating from intrinsic

noise effects. We show that when the effect of intrinsic source of heterogeneity is intensi-

fied, the bistability range shifts towards higher extracellular inducer concentration values.

Introduction
The phenotype of a cellular population is not exclusively the result of single-cell level complex
chemical networks; cells interact with each other leading to phenotypic variations amongst the
individual members of isogenic populations, a phenomenon commonly known as cellular
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heterogeneity. The literature reporting cellular heterogeneity is large and here we cite some
representative examples, e.g., the variations of phage burst size [1], the transcriptional states
heterogeneity in sporulating cultures of Bacillus subtilis [2], and the lysogenic states of phage-
infected bacteria [3, 4]. The effect of heterogeneity has been studied in transcriptomics [5, 6],
metabolomics [7], pathogens [8–12], as well as in mitochondrial activity [13–15]. It is also
noteworthy to report that the design of contemporary biomedical therapies and of synthetic
circuits with robust performance incorporates the effects of heterogeneity [16–18].

For an isogenic cell population residing in a uniform extracellular environment, there exist
two fundamentally different sources of heterogeneity [19]: The first one originates from
unequal partitioning of the mother intracellular content to its offsprings during division [20,
21]. The unevenly distributed regulatory molecules lead to different phenotypes, and the phe-
nomenon is repeated due to the operation of the cell cycle. This type of heterogeneity is called
extrinsic [19]. The regulatory molecules, which control the network of intracellular reactions
and determine the cells phenotype exist in small amounts [22–24], and even small fluctuations
can lead to an uncontrolled-uncertain outcome (phenotype). Thus, cells with approximately
the same amount of regulatory molecules can feature utterly different phenotypic behaviour;
this type of heterogeneity is called intrinsic [19].

Several models simulating heterogeneous populations have been developed in order to elu-
cidate the effect of the different sources of heterogeneity. Shah et al. [25] were the first to model
the stochastic behaviour of cell populations by developing a Monte Carlo algorithm for the
dynamics of the cell mass distribution. Hatzis et al. [26] extended this algorithm to describe the
dynamics of a growing population of phagotrophic protozoa. However, these models are com-
putationally expensive due to the exponentially growing number of simulated cells of the popu-
lation. To overcome the extensive requirements in CPU time, Constant-Number Monte Carlo
(CNMC) algorithms are used [27, 28] simulating a constant number of cells that are assumed
to be a representative sample of the studied population. More recent studies include the work
of Shu et al. [29] in which the population balance models incorporate extrinsic heterogeneity
and intracellular stochastic processes through Itô stochastic differential equations; a chemical
master equation for the population level, which models uncertainty of intracellular reactions,
DNA duplication and content partitioning has been presented in [30–32]. Zechner et al. [33]
used low-order moments through the moment closure approach to approximate intrinsic and
extrinsic distributions; Toni and Tidor [17] employed van Kampen’s O-expansion for the
approximation of intrinsic stochastic dynamics and incorporated extrinsic heterogeneity
through variability of kinetic parameters and initial conditions. Finally, we report agent-based
modelling approaches of cell, which have been presented in [34–37].

In this work, we apply a CNMC algorithm developed by Mantzaris [27] modelling the
dynamics of an isogenic population. The algorithm takes into account the random nature of
cell division, and unequal partitioning of intracellular content at cell division modelling extrin-
sic heterogeneity. In this model, interactions between individual cells are not taken into consid-
eration. In addition, a Langevin approximation [19] of the reaction dynamics at the single-cell
level is used to incorporate the effect of intrinsic heterogeneity. In our case study, all cells carry
the lac operon genetic network [38, 39]; it is an artificial genetic network with a positive feed-
back architecture, featuring solution multiplicity within a range of extracellular inducer (IPTG,
TMG or lactose) concentration values at the single-cell level. Bistability is also present at the
population level, however the range of solution multiplicity is significantly altered. This has
been demonstrated in [40, 41] by solving deterministic cell population balance models, which
incorporate the effect of extrinsic heterogeneity. In order to quantify the effect of intrinsic het-
erogeneity, we need to apply stochastic modelling (here the CNMC algorithm), since
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deterministic models disregard the discrete nature of cell populations and cannot incorporate
the intrinsic source of heterogeneity.

The disadvantage of stochastic modelling is its inefficiency to perform a systems level analy-
sis of a population’s long time behaviour for a wide range of parameter values, by executing
exclusively temporal simulations. In a recent publication [21], we demonstrated the application
of a multiscale framework, which enables the application of well-established numerical algo-
rithms utilizing short bursts of dynamic stochastic simulations. This framework is known as
“equation-free”method [42–44]; it wraps around fine scale models interchanging information
between microscopic (single-cell) and macroscopic (population) level, in order to perform
numerical tasks including the computation of steady-state solutions, stability, and bifurcation
analysis. The interchange of information between the different levels of description is feasible
by constructing a discrete time-mapping, the coarse time-stepper, which reports the evolution
of macroscopic quantities of interest at discrete time instances.

Here, we apply the equation-free method and wrap it around the CNMCmodel [27], which
describes the dynamics of an isogenic cell population. When each individual of the population
carries the lac operon genetic network, the existence of a range of extracellular inducer concen-
tration values (IPTG) is expected, within which the population can feature utterly different
phenotypic behaviour, i.e., high or low expression levels of the lacY gene can be both observed
for the same parameter value. We apply bifurcation analysis, by means of the pseudo arc-length
parameter continuation technique [45], in order to accurately determine the limits of the solu-
tion multiplicity region, which is then compared with the results obtained from the determin-
istic cell population balance models. This comparison, which quantifies the effect of intrinsic
heterogeneity on the phenotype of a cell population, reveals some interesting findings. In par-
ticular, when the intrinsic heterogeneity effect is strengthened, the bistability interval is located
at higher extracellular inducer IPTG concentration values. This bistability interval can be even
expunged when we consider high asymmetry in the partitioning mechanism and sharper rates
for the cells division. The accurate determination of the bistability interval is important for the
understanding of possible phenotypic switching when the cell population operates at the prox-
imity of the limits of this interval.

The paper is organized as follows: In the next section we present a simplified single-cell
reaction rate expression, which describes the dynamics of the lac operon genetic network. In
order to incorporate intrinsic noise effects, the reaction rate is augmented with a gaussian noise
term (Langevin approach). We then briefly describe the homogeneous model, which neglects
all sources of heterogeneity, the deterministic cell population balance model, which incorpo-
rates extrinsic heterogeneity, and finally the stochastic CNMC algorithm, which takes into
account both extrinsic and intrinsic source of heterogeneity. Upon description of the stochastic
CNMCmodel, we present the multiscale equation-free methodology, which enables the perfor-
mance of coarse steady-state, bifurcation and stability analysis. In the Results section, we pres-
ent steady state solutions of cell populations as a function of the IPTG concentration for
different levels of intrinsic and extrinsic heterogeneity. Finally, we outline the main findings of
this work and propose potent future research directions.

Methods

Single-Cell LacOperon Dynamics
In this work, we study the dynamics of an isogenic population carrying the lac operon genetic
network. It consists of a promoter (lacP), an operator (lacO) and three genes (lacZ, lacY, lacA)
which encode the necessary proteins for the metabolism of lactose. The three lac operon genes
are inhibited by a lacI repressor. The lacI repressor binds to the operator site, lacO, and
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prevents binding of the RNA polymerase inhibiting the transcription of the three genes’DNA
to the corresponding mRNA.

In the presence of lactose or its analogues, TMG or IPTG, the inducer is transported into
the cell, binds to the repressor lacI through a bimolecular reaction and the operator lacO
becomes free of lacI, hence initiating the transcription. Upon expression of lacY, the transport
of the inducer is facilitated resulting in further expression of the three lac operon genes. Thus,
the expression of lacY gene promotes its further expression, and the network functions as an
autocatalytic system or a positive feedback loop [21, 40, 41].

A simplified description of the reaction steps has been described in [2, 40, 46] as follows:

O0 þ RÐ
kr

k�r

O1 ð1aÞ

2I þ RÐ
kr2

k�r2

I2R ð1bÞ

IexÐ
kt

kt
I ð1cÞ

O0�!
kY Y ð1dÞ

Y þ IexÐ
kp

k�p

YIex �!
kft

Y þ I ð1eÞ

Y�!lY � ð1fÞ

I�!lI � : ð1gÞ

O0 and O1 denote the free and occupied operator sites. The repressor R binds to and unbinds
from the occupied and the free operator sites at a rate proportional to kr and k−r, respectively.
The extracellular IPTG inducer, Iex, is transported through the cell membrane at a rate propor-
tional to kt. Binding of the intracellular IPTG, I, to the repressor molecules occurs at rate pro-
portional to kr2, and the rate constant of unbinding is k−r2. We also consider the rate of
expression of the lac operon genes to produce lac permease, Y, to be proportional to the
amount of free operator sites O0; Lac permease facilitates the transport of IPTG, playing the
role of the enzyme and Iex playing the role of the substrate in a scheme following the Michaelis-
Menten kinetics. Finally, we assume that Y and I degrade following first-order kinetics at a rate
constant λY and λI, respectively. Values of the kinetic constants are given in Table 1.

By assuming that the total number of operator sites and repressor molecules remain con-
stant, i.e., OT = O0 + O1, and RT = R + I2 R, one can deduce a deterministic model describing
the single-cell lac operon dynamics:

d½Y �
dt

¼ kY ½O0� þ ðkft þ k�pÞ½YIex� � kp½Y �½Iex� � lY ½Y � ð2aÞ
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d½YIex�
dt

¼ kp½Y �½Iex� � ðkft þ k�pÞ½YIex� ð2bÞ

d½I�
dt

¼ k�r2ðRT � RÞ � kr2½I�2½R� þ kt½Iex� þ kft½YIex� � lI½I� ð2cÞ

d½R�
dt

¼ k�rðOT � O0Þ � kr½O0�½R� � kr2½I�2½R� þ k�r2ðRT � RÞ ð2dÞ

d½O0�
dt

¼ �kYO0 � kr½O0�½R� þ k�rðOT � O0Þ: ð2eÞ

The mathematical description of the lac operon dynamics can be further simplified by
assuming that [2, 40]:

1. binding and unbinding of repressor to operator site O0 + RÐ O1 are in equilibrium, with
equilibrium constant: K1 = [O1]/([R][O0])

2. the repressor inactivation reaction 2I + RÐ I2 R is in equilibrium with equilibrium con-
stant: K2 = ([I2 R]/[I]

2[R]) = (RT − [R])/([I]2[R]).

Based on these assumptions, the lac operon dynamics can be described through the follow-
ing set of ordinary differential equations for Y, and the intracellular IPTG:

d½Y �
dt

¼ kY ½OT �
1þ K1½I�2

1þ K1½I�2 þ K2½RT �
� lY ½Y � ð3aÞ

d½I�
dt

¼ kft½Iex�½Y �
k�p=kp þ ½Iex�

þ kt ½Iex� � ½I�ð Þ � lI½I�: ð3bÞ

Table 1. Parameters of the lac operon reactionmodel.

Symbol Value Description

VE.coli 8 × 10−16 L E. coli volume [47]

OT 2.08 nM Operator Content (1 molecule) [48]

kY 0.5 min−1 lacY transcription rate constant [49]

kr2 3 × 10−7 nM−2min−1 Association rate constant of IPTG repression [48]

k
−r2 3 × 103 min−1 Dissociation rate constant of IPTG repression [48]

kr 960 nM−1min−1 Association rate constant of O0 repression [50]

k
−r 60 min−1 Dissociation rate constant of O0 repression [50]

kp 1.32 nM−1min−1 LacY-IPTG association rate constant [2]

k
−p 6 × 105 min−1 LacY-IPTG dissociation rate constant [2]

kft 6 × 104 min−1 IPTG facilitated transport constant [2]

λY 0.0025 min−1 LacY degradation constant [40]

λI 0.0025 min−1 IPTG degradation constant [40]

doi:10.1371/journal.pone.0132946.t001
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By defining the following dimensionless quantities:

t̂ ¼ k=lY ; ð4aÞ

ŷ ¼ kY ½OT �k=lY ; ð4bÞ

Î ¼ ½Iex�
lY þ kt

kft ŷ

k�p=kp þ ½Iex�
þ kt

 !
; ð4cÞ

and setting the dimensionless time: t ¼ t=t̂ , the dimensionless lac permease: x ¼ ½Y �=ŷ , and
the dimensionless intracellular IPTG: v ¼ ½I�=Î , Eqs (3) become:

dx
dt

¼ prþ v2

rþ v2
� kx ð5aÞ

lY

lY þ kt

dv
dt

¼ sðx � 1Þ þ kð1� vÞ; ð5bÞ

with κ a dimensionless degradation parameter and:

p ¼ 1

1þ K2½RT �
; ð6aÞ

r ¼ 1þ K2½RT �
K1Î 2

; ð6bÞ

s ¼ k
kft ŷ

k�p=kp þ ½Iex�

 !
= kt þ

kft ŷ

k�p=kp þ ½Iex�

 !
: ð6cÞ

By substituting with the values reported in Table 1: lY
lYþkt

� 3� 10�3 << 1, which suggests

that the dynamics of the dimensionless IPTG amount, v, are much faster compared to the
dynamics of the dimensionless lacY amount, x. Furthermore, σ� κ, which yields: x� v, and
the lac operon dynamics can be described by the following equation for the dimensionless
amount of lac permease:

dx
dt

� RðxÞ ¼ prþ x2

rþ x2
� kx: ð7Þ

In order to numerically verify the validity of this reduction, we present in Fig 1 a compari-
son between the full deterministic model (Eqs (2)), and the reduced model (Eq (7)) for two dif-
ferent external IPTG concentration values leading to an uninduced (low lac permease amount)
and an induced (high lac permease amount) state. In particular, we present the dynamics of the
lac Y concentration for [Iex] = 10 and 40 μM, showing good agreement between the full and
reduced deterministic models. The lac permease concentration of roughly 400 nM at the fully
induced state is in agreement with experimental data reported in [49].

Langevin approximation of the single-cell reaction rate
The model described by Eq (7) is deterministic and it does not account for intrinsic noise
effects, related with the small amount of regulatory molecules and slow operator fluctuations
[19]. In order to take into account intrinsic noise effects, the reaction rate is re-formulated by
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adopting a Fokker-Planck approximation of the chemical master equation proposed in [19].
The approximation is based on the assumption that the operator fluctuations occur on a faster
time scale compared to the production and degradation rate of the monomer. The monomer
concentration which is denoted by ρi((x), t) satisfies the equation:

Wtρ ¼ LðxÞρþKρ; ð8Þ

where K is the transition matrix containing the reaction rates for transitions between the oper-
ator’s chemical states and L is the diagonal matrix of the form:

Lii ¼ �
Xq

j¼1

Wxj
gjiðxÞ þ

1

2

Xq

j¼1

W2

xj
hjiðxÞ: ð9Þ

g is a matrix the jth column of which contains the net production rates of the qmonomer spe-
cies when the operator is in the jth chemical state. Likewise, h is the matrix the jth column of
which contains the diffusion coefficients of the monomer species in the jth chemical state. Kep-
ler and Elston [46] derived the following Fokker-Planck equation:

Wpðx; tÞ
Wt

¼ � W
Wx

½AðxÞpðx; tÞ� þ 1

2

W2

Wx2
½BðxÞpðx; tÞ�; ð10Þ

Fig 1. Reduction of deterministic model.Comparison between the full deterministic model (solid line) described by Eqs (2) with the reduced model
(dashed line), which is described by Eq (7) for two different external IPTG concentrations leading to (a) an uninduced ([Iex] = 10μM) and (b) an induced state
([Iex] = 40μM). Kinetic constants are obtained from Table 1.

doi:10.1371/journal.pone.0132946.g001
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where p(x, τ) is the probability density function of the random variable, x and:

AðxÞ ¼ k1g0 þ k0g1
k0 þ k1

þ �
1

k0 þ k1

k0g0
W
Wx

k0
g0 � g1

ðk0 þ k1Þ2
 !

� k0g1
W
Wx

k1
g0 � g1

ðk0 þ k1Þ2
 !" # ð11Þ

BðxÞ ¼ 2�
k0k1ðg0 � g1Þ2
ðk0 þ k1Þ3

þ h0k1 þ h1k0
k0 þ k1

: ð12Þ

Substitution of g0(x) = π − κx, g1(x) = 1 − κx, h0(x) = 1 + κx, h1(x) = π + κx, k0 = x2, k1 = ρ and
� ¼ 1

k
, yields the following expressions for the drift and diffusion terms, A(x) and B(x), respec-

tively:

AðxÞ ¼ prþ x2

rþ x2
� kx � 2rxðp� 1Þ½ððp� 2Þ þ kxÞx2 þ rðkx � pÞ�

Kðrþ x2Þ4 ; ð13Þ

BðxÞ ¼ 1

y�
rðpþ kxÞ þ x2ð1þ kxÞ

rþ x2

� �
þ 1

K
rx2ðp� 1Þ2
ðrþ x2Þ3

" #
; ð14Þ

and the Langevin stochastic differential equation (SDE) for the reaction rate is given by:

dx
dt

� RðxÞ ¼ AðxÞ þ
ffiffiffiffiffiffiffiffiffi
BðxÞ

p
xðtÞ; ð15Þ

where ξ(τ) is a Gaussian white noise process.
The parameter K is a measure of the rate of the operator fluctuations and y� is the reference

number of molecules, quantifying the two main sources of intrinsic heterogeneity, i.e., slow
operator fluctuations and small numbers of molecules. The Langevin approximation is compu-
tationally advantageous over Monte Carlo simulations, by avoiding simulations of the full pro-
cess, and sampling paths of the process (generated from Eq (15)) in shorter time [46]. We note
that for very fast operator fluctuations (K!1) and/or large number of molecules (y� !1),
the Langevin Eq (15) reduces to the deterministic expression of the reaction rate, Eq (7). Special
treatment should be provided in cases, where the number of reference molecules is small
enough (y� < 20), and the Langevin approach becomes unreliable to provide the probability of
large deviation from the typical evolution (rare events) [51, 52]. However, in this work the
results presented correspond to sufficiently large amount of regulatorymolecules and suffi-
ciently slow operator fluctuations, which can be accurately modelled by the efficient Langevin
approximation. In Fig 2, we illustrate the accuracy of the Langevin approximation by compar-
ing the dynamics of Eq (15) for y� = 20 and K = 200, with Monte Carlo simulations of the
chemical Master-equation for the reaction system described by Eqs (1), using the direct Gilles-
pie’s algorithm [53, 54]. In particular, we present the average evolution of 100 simulations of
the single-cell lac operon dynamics for [Iex] = 15μM, and [Iex] = 45μM leading to an uninduced
([Y]1 � 15.5nM) and an induced ([Y]1 � 400nM) state, respectively.

The stochastic single-cell model (Eq (15)) is more realistic compared to the corresponding
deterministic one (Eq (7)), since it can capture the intrinsic noise effects, however we are inter-
ested in studying the behaviour at the cell population level incorporating also the effect of
heterogeneity.
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Deterministic Cell Population Balance Model
The extrinsic source of heterogeneity can be captured using a special class of models, which are
commonly known as cell population balance models [19, 27, 41, 55]. In particular, we study
the dynamics of the number density function n(x, t) corresponding to the number of cells per
biovolume unit, which at time t have intracellular content between x and x + dx [55]:

@nðx; tÞ
@t

þ @

@x
½RðxÞn� þ GðxÞn ¼

2

Z xmax

x

Gðx0ÞPðx; x0Þnðx0; tÞdx0 � n
Z xmax

0

GðxÞdx;
ð16Þ

where R(x) is the single-cell reaction rate (Eq (7)), which quantifies the rate of production or
consumption of the intracellular content, x; Γ(x) is the division rate of each cell with content x.
For the division rate we adopt the following normalized power law [56]:

GðxÞ ¼ x
hxi
� �m

; ð17Þ

wherem regulates the sharpness of the division rate, and hxi is the average content of the popu-
lation. P(x, x0) is a partition probability density function, which describes the mechanism of
the distribution of a mother cell intracellular content among the two daughter cells. A simple
formulation of the partition probability density function is:

Pðx; x0Þ ¼ 1

2f
dðfx0 � xÞ þ 1

2ð1� f Þ dðð1� f Þx0 � xÞ; ð18Þ

where f is the asymmetry parameter, and δ is the Dirac function. According to Eq (18), a

Fig 2. Langevin vs Monte Carlo single-cell lac operon simulations. Comparison between the Langevin approximation (black solid line) described by Eq
(15) with Monte Carlo simulations (grey line with circles), using the Gillespie algorithm for the Master-equation of reactions Eqs (1) for two different external
IPTG concentrations leading to (a) an uninduced ([Iex] = 15μM) and (b) an induced state ([Iex] = 45μM). 100 simulation copies are used to compute the
average evolution.

doi:10.1371/journal.pone.0132946.g002
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mother cell with intracellular content x will provide a fraction fx to one of its offsprings, and
the remaining (1 − f)x to the second one. The asymmetry parameter ranges within the interval
[0,0.5], with lower values corresponding to asymmetric partitioning and f = 0.5 describing a

symmetric partitioning mechanism. R(x), Γ(x), and P(x, x0) describe processes occurring at the
single-cell level and are generally known as intrinsic physiological state functions (IPSF).

A simplification of the cell population balance model is the homogoneous model, which
assumes that all cells behave like the average cell, with content hxih. The homogeneous model
is derived by Eq (16), when the number density function is expressed as n(x, t) = δ(x − hxih) [2,
19, 41]. Then the dynamics of the homogenous population are given by the following differen-
tial equation:

dhxih
dt

¼ RðhxihÞ � hxih¼
Eq:7prþ hxi2h

rþ hxi2h
� khxih � hxih: ð19Þ

The Stochastic CNMCModel
For a more realistic simulation of the dynamics of isogenic populations capturing all sources of
heterogeneity, we implement the CNMC stochastic algorithm developed by Mantzaris [19],
which is described below. We consider isogenic populations with cells carrying the same gene
regulatory network, whose random state, Sτ, at a dimensionless time instance, τ, is:

S t � fX iðtÞ ¼ xi; i ¼ 1; 2; :::;Ng: ð20Þ
Xi(τ) is the intracellular content of cell i and N is the constant number of cells considered for
simulation.

Time intervening two successive division events
The time interval, T, intervening two successive division events is a random variable

depending on Sτ with a cumulative distribution function given by the expression [27]:

FTðzjtÞ ¼ 1� exp �
Z z

0

XN
i¼1

Gðxiðtþ z0ÞÞdz0
" #

; ð21Þ

where z denotes the set of time instances during which the next division event may occur for a
given state, Sτ. A random variable, p1, is generated from a uniform distribution [0, 1] and T is
computed by solving the nonlinear equation:R T

0

PN
i¼1 Gðxiðtþ z0ÞÞdz0
ln½1� p1�

þ 1 ¼ 0: ð22Þ

During the time interval, T, the intracellular content of each cell evolves according to the
expression of R(x, t). Intrinsic noise is modelled using the Langevin SDE, Eq (15). The Gauss-
ian white noise ξ(τ) is treated as a standard Brownian motion or a standard Wiener process
and Eq (15) is solved using the Itô interpretation of the stochastic integral [57, 58]. If the
parameters of intrinsic noise are neglected, then the reaction rate of the intracellular content
becomes deterministic (Eq (7)) and the stochastic algorithm accounts for effects of only extrin-
sic source of heterogeneity.

At the end of time interval, T, the cell undergoing division is selected from the conditional
distribution function [27]:

Prk¼jjStþT
¼ Gðxjðtþ TÞÞPN

i¼1 Gðxiðtþ TÞÞ ; ð23Þ
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where k is the index of the selected cell for division. Upon division of a cell, k, its content is dis-

tributed to its offsprings following a partition probability density function, P(x, x0). In this
work, we select the simple discrete partitioning mechanism formulated by Eq (18), which gen-
erates a daughter cell with content fxk, and a second daughter cell with content (1 − f)xk.
Finally, and in order to maintain the number of simulated cells constant, we randomly pick a
cell which is replaced by the second offspring generated during division. The dimensionless
time is updated, i.e., τ! τ + T, and the algorithm is repeated until a pre-specified time, tstop, is
reached.

As stated above, the long time behaviour of an isogenic population carrying the lac operon
genetic network is expected to feature bistable behaviour within a range of IPTG concentra-
tions (* 1/ρ). Despite the fact that stochastic modelling provides a more realistic description
of the population dynamics, it lacks efficiency when the systematic study of their long time
behaviour is required, and especially in cases where multiple solutions can co-exist for the
same IPTG concentration. In particular, exploring the solution space of (coarsely) time-invari-
ant solutions over a wide range of parameter values, by executing solely temporal stochastic
simulations is computationally demanding and renders the systematic study as a practically
infeasible task. Furthermore, and since bistability regions are sought, when temporal simula-
tions are performed at the vicinity of their intervals (critical turning points), stochastic noise
can drive the population to unpredictable phenotypic switches.

The equation-free methodology
When deterministic descriptions are available, the bistability limits can be tracked by means of
bifurcation analysis applying well-established pseudo arc-length parameter continuation tech-
niques as performed in [19, 41]. However, deterministic models are only simplified approxima-
tions failing into incorporating important information, e.g., originating from intrinsic noise
effects.

More realistic descriptions are provided through stochastic simulations (e.g., the CNMC
model), which however suffer from severe computational limitations; since we are interested in
studying the long-time behaviour of cell populations over a wide range of parameter values, it is
required to perform an extensive number of stochastic simulations, which renders the systematic
study of the problem as a practically infeasible process. Alternatively, one can resort to multiscale
computational techniques, such as the equation-free methodology, which utilises information
originating from fine-scale (microscopic) level simulations, projects it to a coarse-macroscopic
level, and enables the performance of numerical tasks, such as steady-state computations, stability
and bifurcation analysis. The interchange of information between micro- and macro-scopic level
is enabled through a computational structure, the coarse time-stepper [43, 44, 59, 60], which
reports the evolution of macroscopic variables of interest at distinct time instances and is sche-
matically illustrated in Fig 3; a macroscopic variable is a statistical measure of the microscopically
simulated cell population, e.g., the Cumulative Distribution Function (CDF) of the intracellular
content, which is denoted with f(x, t). Through the lifting step, we generate a number, Ncopies, of
random states which are consistent with the studied coarse variable (CDF distribution). Each of
these microscopic states are simulated with the CNMCmodel for a short time period, T, and the
average CDF of the updated microscopic states is computed through the restriction step. In effect,
the steps described above construct a discrete time-mapping:

f ðx; t þ TÞ ¼ GTðf ðx;TÞÞ ð24Þ
where the operatorGT is unknown. Below, we describe in detail the Restriction and Lifting proce-
dures used in this study.
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Restriction. If we denote with xi the content of the i
th cell, then the CDF is computed by

sorting into ascending order the x = {xi}, i = 1, . . ., N vector, and plotting it against the vector p
= {pi = (i − 0.5)/N)}, i = 1, . . ., N. This constitutes a restriction of microscopic data, U, to the
macroscopic variable, f through an operator,M, i.e., f =MU. For noise reduction purposes,
many repetitions of the stochastic simulation are required and then the average restriction is
computed.

Lifting. For the lifting step, we choose to work with the inverse CDF (ICDF), x(p), which
produces the intracellular content xi = x(pi) of a given cell, i. Assuming, that the ICDF is
smooth enough, and given that it has a finite support, p 2 [0, 1], it can be approximated using a
low-dimensional description, e.g., the first few of an appropriate sequence of orthogonal poly-
nomials [60]. These polynomials are approximated by a series of j—degree orthogonal polyno-
mials, ϕj(p), which are monotone, non-decreasing functions and lie within the interval [0, 1]:

xðpÞ �
Xq

j¼0

aj�jðpÞ: ð25Þ

The ϕj polynomials are represented by their values on the point set p and the first four basis
functions (q = 3) are sufficient for the description of the corresponding fine scale state. In cases
where the ICDF is not smooth enough, a larger number of basis functions are required. The

Fig 3. The coarse time-stepper. A schematic of the coarse time-stepper for the model of an isogenic cell population simulated by the CNMC algorithm.

doi:10.1371/journal.pone.0132946.g003

Intrinsic Noise Effects on Heterogeneous Cell Populations

PLOS ONE | DOI:10.1371/journal.pone.0132946 July 17, 2015 12 / 27



analytical expressions of the basis functions up to 3rd order degree are given below [21]:

�0 ¼ 1

�1 ¼ 4:5953~p � 2:2977

�2 ¼ 19:3299~p2 � 19:3299~p þ 3:9171

�3 ¼ 79:4133~p3 � 119:1200~p2 þ 51:3112~p � 5:8023;

ð26Þ

where ~p ¼ 0:5� arcsinð1� 2pÞ=p. Each of the polynomial basis functions is computed on the
point set p constructing a (q + 1) × Nmatrix, F. The coefficients α = αi are computed from:

a ¼ Fx; ð27Þ

and the microscopic state x can be approximated from:

x � FTa: ð28Þ

Thus, the intracellular content of each cell of the population can be constructed by a small
set of α values. The lifting procedure described above constructs a microscopic description U
from a macroscopic variable f through an operator, μ, i.e., U = μf. It should be noted here that
the choice of lifting and restriction operators needs to guarantee that lifting from coarse level
to fine scale and then restricting to coarse level again has no effect, i.e., μM� I.

Healing Time. The naturally arisen question is whether the level of description using 4
basis functions is sufficient enough, and higher order approximation is required. To test this,
we perform the following computational experiment: A CNMC simulation is interrupted at
time τ = τinter and the microscopic state xoriginal(τinter) is obtained. Then, we perform the lifting
step using 4 basis functions and construct a lifted microscopic state xlifted(τinter). The next step
is to perform two different CNMC simulations for a time horizon Thor using as initial micro-
scopic states: (a) xoriginal(τinter) and (b) the lifted xlift(τinter). Finally, we compute the evolution
of the α values computed using 5 = 4+1 basis functions for the two different simulations at dis-
tinct reporting time instances, and compare their relative error, (αlift − αoriginal)/αoriginal.

In Fig 4(a) we show an example of this test computation, where a CNMC simulation is
interrupted at dimensionless time τ = 10 to obtain the xoriginal(10) and the lifted distribution
xlifted(10) using four α coefficients (q = 3). Then the original and lifted distributions are simu-
lated over a time interval τ 2 [10, 11], and at distinct time instances with an interval of Δτ =
0.1, we compute the five first α coefficients using a 4th order approximation. As expected, the
5th α coefficient of the lifted distribution is significantly different from the respective α coeffi-
cient of the original distribution; however, it takes only a small time interval of Δτ = 0.1 to see
that the 5th α coefficient of both the original and lifted distributions have no difference (their

relative difference drops below the stochastic noise computed from 2saj
=aoriginalj , where σαj

is the

standard deviation of the noise of coefficients calculated using a number (here 50) of direct
CNMC copies [61]). The time required for higher order coefficients of lifted distributions to
converge to the ones obtained from original distributions is referred to as healing time [42, 43],
and it is a preparation time interval for the coarse-time stepper during which the dynamics of
fast variables (higher order coefficients or moments of the distribution) equilibrate quickly and
get slaved by the evolution of the lower order coefficients. The first four coefficients show no
difference within the entire time interval τ 2 [10, 11].

We also illustrate that using a low order approximation does not affect the shape of the dis-
tribution of cells as a function of their intracellular content. In particular, in Fig 4(b) we show
the original and the lifted with up to 3rd order polynomial approximation ICDF distributions.
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Clearly, lifting using a 3rd order approximation (or 4 orthogonal basis functions) is accurate
enough for a coarse-level description of the cell population.

Coarse steady state computations and parametric analysis. As reported above, the lifting
and restriction steps constitute the coarse time-stepper, which maps the dynamics of the coarse
variable f at discrete time instances according to the general expression of Eq (24), or if we
study the coarse variable α according to the general expression:

aðt þ TÞ ¼ GTðaðtÞÞ ð29Þ
with the operator Gτ being unknown. This black-box simulator can be utilised for the perfor-
mance of numerical tasks, such as steady state computations with the Newton-Raphson
method. A steady-state solution, α� satisfies:

a� � GTða�Þ ¼ 0: ð30Þ
If we are interested in applying the Newton-Raphson method for the computation of the coarse
steady-state solution α�, it is required to solve the following set of non-linear equations:

R � a� � GTða�Þ ¼ 0: ð31Þ

In order to solve the non-linear system of equations with α� being the unknowns we apply the
Newton-Raphson method, which requires during each iteration the solution of the linearised
system:

WR
Wa

da ¼ I� WGT

Wa

� �
¼ �R ð32Þ

Since the explicit expression of GT is not available, its approximation is performed numerically

Fig 4. Computation of healing time. (a) Relative error between five “original” coefficients and coefficients computed after lifting. The solid lines correspond
to relative errors, while dashed lines correspond to stochastic noise quantified by 2saj

=aoriginalj ; σαj
is the standard deviation of the noise of coefficients αj

computed using 50 direct CNMC copies. (b) The original (solid line) and the lifted (dashed line) ICDF distributions using 4 orthogonal basis functions at
dimensionless time τ = 10.5.

doi:10.1371/journal.pone.0132946.g004
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using a simple forward finite difference scheme:

WGT

Wa

� �
i;j

� ðGTðaj þ �ÞÞi � ðGTðajÞÞi
�

; ð33Þ

where � is a small perturbation number.
In Fig 5, we compare the number density function, n([Y] as a function of the intracellular

content, [Y] as computed from (a) a direct temporal simulation of the full CNMC model per-
formed until time, t� 60 hrs, and (b) the equation-free based, Newton-Raphson computation
described above. In particular, we compare the steady-state distributions for two cases of cell
populations featuring low and high level lac permease concentration levels, showing very good
agreement in both cases. It is evidently clear that the equation-free approach, even though uses
a low-level description, it produces number cell density functions which compare remarkable
well with the time consuming, full simulations of the CNMCmodel.

Using the same idea, one can perform bifurcation analysis by means of pseudo arc-length
parameter continuation enabling the computation of the entire solution space, including stable
and unstable steady state solutions. As a by-product of this process, the bistability range is
accurately computed. Below, we present the results of this analysis quantifying the effect of
intrinsic noise effect on heterogenous cell populations, by choosing as continuation parameter
the external IPTG concentration, [Iex].

Fig 5. Comparison of full long temporal simulations with coarse steady state computations. Solid lines with open triangles correspond to number
density functions, n([Y]), obtained from long temporal simulations, who have practically reached a steady state. Dashed lines with open rectangles
correspond to number density functions obtained from Newton-Rapshon coarse steady state computations. Good agreement is observed for both (a) low
level and (b) high level lacY expression levels. Parameter values: K = 500, y* = 50, π = 0.03,m = 2, f = 0.5,N = 10,000 cells. We use 50 copies of CNMC
simulations for stochastic noise reduction purposes.

doi:10.1371/journal.pone.0132946.g005
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Results

Effect of intrinsic noise
In order to decompose the effect of the different sources of heterogeneity, we perform the fol-
lowing steps. First, we solve the steady state solution of the homogeneous model (Eq (19)),
which neglects all sources of heterogeneity and considers populations, where each individual
cell carries the same intracellular amount. The extrinsic source of heterogeneity is then incor-
porated by solving the DCPB model (Eq (16)); for details of the numerical solution of the
DCPB model, we refer the reader to Kavousanakis et al [41]. Finally, we employ the equation-
free method to perform coarse bifurcation analysis of the stochastic model (CNMC) for differ-
ent values of parameters K and y�, which quantify the effect of intrinsic noise.

In Fig 6(a), we present a bifurcation diagram showing the dependence of the average lacY
expression of a population carrying the lac operon genetic network on the extracellular inducer
concentration, [Iex] for four different cases: (a) the homogeneous model, (b) the DCPB model
solved with the finite element method [41], (c) the CNMCmodel neglecting intrinsic noise
effects (K, y� !1), and (d) the CNMCmodel incorporating the intrinsic source of heteroge-
neity. The single-cell reaction rate is given from Eq (7), with π = 0.03 and κ = 0.05. The parti-
tioning mechanism is discrete (see Eq (18)) and symmetric (f = 0.5); the division rate is given
from Eq (17) withm = 2. Finally, CNMC models simulate populations consisting of N = 10,000
cells; we use 50 copies of CNMC simulations for each parameter value for stochastic noise
reduction purposes.

In all cases, one can observe an S-shaped bifurcation diagram with two stable steady state
solution branches (solid lines) and a branch of unstable solutions (dashed lines). In Fig 6(b),
we depict the average number density distribution of 50 copies of CNMC simulations n([Y]),

Fig 6. Effect of intrinsic heterogeneity. (a) Steady state average expression level, h[Y]i, as a function of the external IPTG concentration, [Iex]. The black
lines (solid and dashed) correspond to the homogeneous model, the lines with open circles to the DCPBmodel; the lines with open squares correspond to the
CNMCmodel neglecting the intrinsic source of heterogeneity and the lines with open triangles to the CNMCmodel incorporating intrinsic noise effects. (b)
Steady state solutions of the number density function, n([Y]), corresponding to the upper stable solution branches of CNMC simulations for [Iex]� 27μM,
when intrinsic noise is incorporated (K = 500, y* = 50) and when neglected (K, y*!1).

doi:10.1371/journal.pone.0132946.g006
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for [Iex]� 27μM corresponding to the upper stable solution branch. The dashed line with open
rectangles corresponds to the steady state distribution of cells as obtained from CNMC simula-
tions, which neglect the effect of intrinsic noise (K, y� !1) and the solid line with open trian-
gles corresponds to CNMC simulations with K = 500 and y� = 50, i.e., incorporating the effect
of intrinsic noise. The average phenotype, h[Y]i, is lower when the intrinsic source of heteroge-
neity is taken into account.

When the population resides in an environment, which is rich in the inducer IPTG, then
the average expression level of lacY is high. By decreasing the external IPTG concentration,
there exists a critical value (left turning point) which signals the abrupt transition towards low
expression level of lacY. In a reverse experiment, where we start with low IPTG concentration
values, the average expression of lacY is low, and by increasing IPTG there exists a critical
value (right turning point) beyond which the average expression will jump towards higher val-
ues. The two turning points are distinct suggesting that transitions between populations featur-
ing high and low lacY expression levels, through modification of the IPTG concentration are
hysteretic.

The homogeneous model results show that the bistability region spans over a wide range of
[Iex] values: [Iex] 2 [17.1,26.9]μM. Extrinsic heterogeneity shifts the bistability range towards
higher [Iex] values (DCPB and CNMC with K, y� !1). Here, the results obtained from DCPB
and CNMC show very good agreement, since the size of the cell population simulated by the
CNMCmodel is large (10,000). The range of solution multiplicity is shifted further towards
higher [Iex] values, by taking into account the effect of intrinsic noise (CNMCmodel with finite
K and y� values). In particular, we report that the lower limit of the bistability region as com-
puted from the CNMCmodel for K = 500 and y� = 50 is located at [Iex] = 24.1μM compared to
the value of [Iex] = 22.5μM, which is computed when neglecting the intrinsic source of hetero-
geneity. In addition, the upper [Iex] limit of the bistability region is shifted towards higher val-
ues for the CNMCmodel with intrinsic noise ([Iex] = 35.7μM) compared to [Iex] = 29.6μM, for
the CNMCmodel with K, y� !1. Thus, the combined effect of extrinsic and intrinsic hetero-
geneity shifts the bistability region towards higher IPTG concentration values. It should be
noted here that similar findings have been presented in the experimental work of Maeda and
Sano [62] reporting hysteric transitions within IPTG concentration values of 2.5 − 50μM (for
certain wild type promoters), as well as in Matsumoto et al. [63] reporting bistability in the
range of 5–15μM.

In order to characterise a steady state solution as stable or unstable, we perform coarse sta-

bility analysis by determining the eigenvalues of the WGtða�Þ
Wa matrix (see Eq (32)). We present an

indicative case for steady state solutions obtained from the model incorporating intrinsic het-
erogeneity (lines with open triangles in Fig 6(a)), and in particular for parameter value [Iex] =
28.8μM. The spectra of eigenvalues presented in Fig 7(a)-7(c) correspond to the upper, inter-
mediate, and lower branch, respectively. In Fig 7(a) and 7(c), the eigenvalues of the matrix,
WGtða�Þ

Wa , lie within the limits of the complex plane unit circle, and the two solutions are dynami-

cally stable. On the contrary, in Fig 7(b), one eigenvalue crosses the complex plane unit circle,
and the corresponding steady state solution is characterised as dynamically unstable.

Effect of operator fluctuations and reference number of molecules
We now investigate the effect of the intrinsic heterogeneity “intensity”, which is quantified by
the K and y� values. In particular, the effect of intrinsic noise is strengthened by lowering the
operator fluctuations (K) and the reference number of regulatory molecules (y�). We demon-
strate this effect in Fig 8, where the dependence of the steady state expression level of the aver-
age intracellular content, h[Y]i, on the extracellular IPTG concentration, [Iex], is presented for
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different K and y� values. In Fig 8(a), we illustrate this effect by lowering the parameter K and
keeping the parameter y� constant. By lowering the K value, the intrinsic noise effect is intensi-
fied and the bistability region is shifted towards higher, [Iex], values.

In particular, the bistability range for K = 1000 lies within the inerval [Iex] 2 [23.3,33.1]μM,
whereas the corresponding interval for K = 250 starts from [Iex] = 24.8μM and ranges up to
unrealistically high (tending to infinity) values (the dimensionless ρ tends to 0). A similar trend
is observed by lowering the y� parameter value with K fixed (see Fig 8(b)), however the degree
of change is not as significant as in the variable, K, case. In this case, the bistability range for y�

= 500 spans over the interval [Iex] 2 [23.3,33.7]μM, and lies within the interval [Iex] 2
[24.7,35.7]μM for y� = 25.

Fig 7. Coarse stability analysis. Eigenvalues of the WGtða�Þ
Wa matrix corresponding to (a) the upper branch stable steady state, (b) the intermediate branch

unstable steady state, and (c) the lower branch stable steady state solution, for [Iex] = 28.8μM (ρ = 0.09). The loss of stability in (b) is marked by the
eigenvalue crossing the unit circle (dashed line) in the complex plane. Parameter set values: f = 0.5,m = 2, π = 0.03, κ = 0.05, K = 500, y = 50, andN = 10,000
cells.

doi:10.1371/journal.pone.0132946.g007
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In the cases presented above, one of the two intrinsic noise parameters is kept constant and
the intrinsic heterogeneity effect is strengthened by lowering the value of the other parameter.
The two parameters of intrinsic source of heterogeneity act in a collaborative manner and
strengthen further the effect of intrinsic noise by decreasing both K and y� values. In Fig 9, we
compare the results obtained from the DCPB model with the CNMCmodel for: (a) K = 1000,
y� = 500, (b) K = 500, y� = 50 and (c) K = 250, y� = 25. The CNMCmodel with the largest K
and y� values resembles best the behaviour of the DCPB model, whereas low K and y� values
shift the bistability limits towards higher [Iex] values. Interestingly enough, when the effect of
intrinsic noise is sufficiently intensified, the right turning point reaches infinity (ρ! 0) and
does not correspond to IPTG values with physical meaning suggesting that transitions between
the high and low level expression states are non reversible: i.e., a high to low lacY expression
level transition is feasible by decreasing the IPTG concentration; however the reverse transition
becomes infeasible considering K = 250 and y� = 25, since the upper end of the bistability
region is located at [Iex]!1 values.

Effect of cell division sharpness and asymmetric partitioning
In addition to intrinsic noise parameters, we also examine the effect of cell division sharpness,
quantified by parameter,m, and asymmetric partitioning, which is quantified by parameter, f.
The effect of asymmetric partitioning is illustrated in Fig 10(a) for a population of N = 10,000
cells, showing the dependence of the average lacY content on the external IPTG concentration
values for different f values. By increasing the asymmetry factor (i.e., lowering f), the bistability
interval shrinks and shifts towards higher [Iex] values. In particular, the bistability region for

Fig 8. Effect of operator fluctuations, K, and reference number of molecules, y*. Effect of different sources of intrinsic heterogeneity on the average
expression, h[Y]i, as a function of the external IPTG concentration, [Iex]: (a) Effect of parameter K: lines with open circles correspond to K = 1000, lines with
open squares correspond to K = 500 and lines with open triangles correspond to K = 250. (b) Effect of parameter y*: lines with open circles correspond to y*
= 500, lines with open squares correspond to y* = 50 and lines with open triangles correspond to y* = 25. In both figures, solid and dashed lines denote
stable and unstable steady state solutions, respectively. Parameter set values: f = 0.5,m = 2, π = 0.03 and κ = 0.05.

doi:10.1371/journal.pone.0132946.g008
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symmetric partitioning (f = 0.5) lies within the interval [Iex] 2 [13.5,20]μM, whereas for f = 0.3
in the interval [Iex] 2 [16.2,21.5]μM.

The impact of asymmetric partitioning becomes more significant when combined with
intrinsic heterogeneity as shown in Fig 10(b) for f = 0.3. In particular, the CNMCmodel
neglecting intrinsic noise effects (K, y� !1) agrees well with the corresponding DCPB model,
whereas the CNMCmodel with K = 500 and y� = 50 predicts a shifted towards higher [Iex] val-
ues bistability interval.

Furthermore, the effect of division rate sharpness for a population of N = 10,000 is pre-
sented in Fig 11(a). Higher single-cell division rates (largerm values) shift its upper end
towards higher [Iex] values. In particular, whenm = 3 the upper end tends to infinity suggesting
that transitions between high and low lacY expression levels are irreversible.

Fig 9. Effect of intrinsic noise intensity. Steady state average expression level, h[Y]i, as a function of the external IPTG concentration, [Iex], for different K
and y* values. The lines with full circles correspond to K = 1000 and y* = 500, the lines with full squares to K = 500 and y* = 50 and the lines with full triangles
to K = 250 and y* = 25; the black lines correspond to the DCPBmodel. Stochastic simulations are performed with N = 10,000 cells (average of 50 copies for
noise reduction). Parameter set values: f = 0.5,m = 2, π = 0.03 and κ = 0.05.

doi:10.1371/journal.pone.0132946.g009
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Fig 10. Effect of partitioning asymmetry parameter. Effect of the partitioning asymmetry parameter, f, in the average expression of lacY gene steady state
(h[Y]i), as a function of the inverse IPTG concentration ([Iex]). (a) Lines with full circles correspond to symmetric partitioning (f = 0.5); lines with full squares
correspond to f = 0.4 and lines with full triangles to f = 0.3. (b) Comparison between the CNMCmodel neglecting intrinsic source of heterogeneity with f = 0.3
(lines with open circles), the DCPBmodel (black lines (solid and dashed)) and the CNMC incorporating intrinsic noise effects (lines with full triangles).
Parameter set values:m = 2, π = 0.03 and κ = 0.05. CNMC simulations are performed withN = 10,000 cells.

doi:10.1371/journal.pone.0132946.g010

Fig 11. Effect of the sharpness division parameter. Effect of the sharpness division parameter,m, on the average expression of lacY gene steady state.
(a) CNMC simulations of 10,000 cells with K = 500 and y* = 50. Lines with full squares correspond tom = 1, lines with full circles tom = 2 and lines with full
triangles to the largest division rate,m = 3. (b) Comparison between the CNMCmodel withm = 3 (lines with full triangles) with the DCPBmodel (black lines
(solid and dashed)) and the CNMCmodel neglecting intrinsic noise effects (lines with open circles). Parameter set values: f = 0.5, π = 0.03 and κ = 0.05.

doi:10.1371/journal.pone.0132946.g011
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In Fig 11(b), we compare the CNMCmodel form = 3 and K = 500, y� = 50 with the corre-
sponding DCPB model and the stochastic CNMCmodel, which neglects intrinsic noise effects
(K, y� !1). By incorporating the intrinsic source of heterogeneity, the effect of asymmetric
partitioning becomes more intense leading to large discrepancies, compared to the ones
between the DCPB model and the CNMCmodel, which neglects the intrinsic source of hetero-
geneity. In particular, the bistability regions for the CNMC with K, y� !1, and the DCPB
model are [Iex] 2 [27.3,37.8]μM and [Iex] 2 [27.1,37.8]μM, respectively; the bistability interval
for the CNMCmodel with K = 500 and y� = 50 spans over [Iex] 2 [30.6,1]μM.

As reported above, noise can induce rapid changes of the average phenotype of large cell
populations, when the extracellular conditions are at the vicinity of critical turning point val-
ues. In Fig 12, we present a single copy simulation of a population at [Iex] = 30.8μM, which

Fig 12. Noise induced phenotypic switching. A single stochastic simulation starting from a coarse steady state at [Iex] = 30.8μMwith h[Y]i = 157.2nM
(upper branch). After the elapse of a long time interval (t� 220hrs), stochastic noise induces a phenotypic switching towards an average value of h[Y]i =
7.9nM (lower branch). The inner figure shows the corresponding bifurcation diagram of the steady state average expression level of lacY as a function of [Iex],
with the open circles representing the two different co-existing steady state solutions at [Iex] = 30.8μM. Parameter set values:m = 3, f = 0.5 π = 0.03, κ = 0.05,
K = 500 and y* = 50. CNMC simulations are performed with N = 10,000 cells.

doi:10.1371/journal.pone.0132946.g012
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initially fluctuates around an average phenotype of h[Y]i = 157.2nM (upper stable solution
branch), for a long time period (t� 220hrs) and then switches towards a lower expression level
of lacY (h[Y]i = 7.9nM, lower stable branch).

In all cases presented above, the bistability region is shifted towards higher [Iex] values by
intensifying the effect of intrinsic noise. If we consider slower dynamics for the single cell divi-
sion rate, then we observe a reverse effect. In Fig 13, we present the results obtained from the
comparison of the CNMCmodel with K = 500, y� = 50, the CNMC neglecting intrinsic noise
effects, and the DCPB model for the case of asymmetric partitioning, f = 0.3 and division rate
m = 1. The DCPB and the CNMCmodel neglecting intrinsic heterogeneity show good agree-
ment. When intrinsic noise effects are incorporated in the CNMCmodel, then the bistability
region practically vanishes ([Iex] 2 [20.45,20.5]μM), with the upper turning point located at
lower IPTG values (leftward shifting). When the single-cell division rate is relatively slow

Fig 13. Effect of intrinsic noise for low single cell division rates. Steady state of average expression level, h[Y]i, as a function of the external IPTG
concentration for the case of f = 0.3 andm = 1. The lines with full circles correspond to the CNMCmodel with K = 500 and y* = 50; the lines with open circles
correspond to the CNMCmodel neglecting intrinsic noise effects, and the black lines to the DCPBmodel. Parameter set values: π = 0.03 and κ = 0.05. CNMC
simulations are carried out withN = 10,000 cells.

doi:10.1371/journal.pone.0132946.g013
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(m = 1) a low to high lacY expression level transition is expected to occur at a lower IPTG con-
centration value, when intrinsic noise effects are taken into consideration, whereas for higher
cell-division rates intrinsic noise has always an opposite effect (low to high transitions occur at
larger IPTG concentration values).

Discussion
We present a multiscale computational methodology, which enables the systems-level study of
cell populations simulated by means of stochastic models. In particular, a CNMCmodel is
employed to simulate the dynamics of heterogeneous cell populations which carry the lac
operon genetic network, featuring solution multiplicity over a range of extracellular inducer
concentration values. In this work, we decompose the effect of different sources of heterogene-
ity (extrinsic and intrinsic) and study their effect on the bistability range of IPTG values. The
extrinsic source of heterogeneity has been shown to have a significant effect on the phenotype
of cell populations when performing deterministic cell population balance model computations
[41]. However, the effect of intrinsic heterogeneity cannot be described by deterministic model-
ling since it involves the computation of Langevin stochastic differential equations for the
intracellular reaction network. On the other hand, stochastic simulations which incorporate
intrinsic noise effects cannot be used for a systems-level study of the problem; the number of
stochastic simulations, which are required to compute accurately the range of bistability can be
massive, rendering this approach as a computationally infeasible one.

To bypass this impediment, we employ the equation-free methodology, which utilises fine-
scale information and projects it to a coarse—macroscopic level, for which well established
numerical algorithms can be applied. Here, we perform bifurcation analysis, using pseudo arc-
length continuation techniques in order to explore the dependence of the solution space on the
extracellular inducer (IPTG) concentration, and accurately determine the range of bistability.
Our stochastic CNMC-based computations are validated against deterministic descriptions,
using large populations of cells (N = 10,000) and by neglecting the intrinsic noise effects (K, y�

!1). Then, we explore the effect of intrinsic source of heterogeneity and demonstrate that
when strengthened the range of bistability shrinks and shifts towards higher IPTG concentra-
tion values for sufficiently high single-cell division rates. When the effect of intrinsic noise is
sufficiently strengthened, the turning point signalling the transition from low to high lacY
expression levels tends to infinity, suggesting that the transition between high and low expres-
sion levels is irreversible, through modification of IPTG concentration values. A similar trend
is also observed for populations dividing in a more asymmetric fashion. In addition, we show
that the existence of intrinsic heterogeneity can lead to non-trivial dynamical behaviours such
as phenotypic switching between co-existing stable steady states. We present such a transition
at the neighbourhood of the bistability upper limit, when a sharp division rate is applied.
Finally, we demonstrate the disappearance of the bistability interval for populations with low
single-cell division rates and asymmetric partitioning mechanism, when intrinsic heterogeneity
is also incorporated. In this case, the transition from low to high lacY expression levels occurs
at a lower IPTG value compared to the case, where the intrinsic source of heterogeneity is
neglected.

We also report that the equation-free framework is quite flexible to adopt for the perfor-
mance of coarse-grained analysis of cell populations with genetic networks of increased com-
plexity and different architectures. Indicatively, we report the cases of the lac operon genetic
network with a promoter containing three repressor binding sites with cooperative interaction
among them [64] and the genetic toggle switch [65]. The study of these networks requires new
formulations for the single-cell reaction rate, the division rate and the partitioning mechanism;
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however, the application of the multiscale equation-free methodology does not require any
modification and can be readily applied for the performance of their efficient systems level
study.
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