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1 | INTRODUCTION

Erno J. Hermans

Abstract

The amygdala is a region critically implicated in affective processes. Down-
regulation of the amygdala is one of the hallmarks of successful emotion regula-
tion. Top-down inhibition of the amygdala is thought to involve activation of the
executive control network. This reciprocal relationship, however, is not exclusive
to explicit emotion regulation. It has been noted that any cognitively demanding
task that activates executive control network may downregulate the amygdala,
including a standard working memory task. Such downregulation is likely
established in a load-dependent fashion with more cognitive demand leading to
stronger deactivation. Using a coordinate-based meta-analysis, we examined
whether a standard working memory task downregulates the amygdala similarly
to cognitive reappraisal. We found that a standard 2-back working memory task
indeed systematically downregulates the amygdala and that deactivated clusters
strongly overlap with those observed during a cognitive reappraisal task. This
finding may have consequences for the interpretation of the underlying mecha-
nism of cognitive reappraisal: amygdala downregulation may be related to the
cognitively demanding nature of reappraisal and not per se by the act of the
reappraisal itself. Moreover, it raises the possibility of applying working memory

tasks in clinical settings as an alternative emotion regulation strategy.
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Carmichael, 1992), it is commonly thought that downregulation may
occur indirectly, for example, via the ventromedial prefrontal cortex

Downregulation of the amygdala, a region critically implicated in
threat detection (LeDoux, 1996; Ohman, 2005), is one of the hall-
marks of successful emotion regulation. Cognitive regulation of emo-
tion is accompanied by activation in the dorsolateral prefrontal cortex
(dIPFC), a region that is part of the executive control network (Seeley
et al., 2007), and by downregulation of the amygdala (Buhle
et al., 2014). Since there are little or no direct connections between
the dIPFC and the amygdala (Amaral, Price, Pitkanen, &

(e.g., Diekhof, Geier, Falkai, & Gruber, 2011; Etkin, Bichel, &
Gross, 2015; Phelps, Delgado, Nearing, & LeDoux, 2004; Schiller &
Delgado, 2010), but see (Buhle et al., 2014).

However, this opposing interplay between the executive control
network and the amygdala is not specific for emotion regulation. It
has recently been noted that any cognitively demanding task that acti-
vates the executive control network may potentially downregulate
the amygdala (de Voogd, Hermans, & Phelps, 2018). Indeed, a
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downregulation of the amygdala has been observed during the execu-
tion of a standard working memory task (de Voogd, Hermans, &
Phelps, 2018; de Voogd et al., 2018), with more cognitive load leading
to a stronger downregulation (Van Dillen, Heslenfeld, & Koole, 2009;
de Voogd, Hermans, & Phelps, 2018).

Cognitively demanding tasks have also been shown to be accom-
panied by a downregulation of defensive responses to threat. When
participants perform a standard n-back working memory paradigm
while simultaneously undergoing a threat conditioning paradigm, con-
ditioned responses have been shown to be reduced (Carter,
Hofstotter, Tsuchiya, & Koch, 2003). Moreover, threat-potentiated
startle responses are decreased when participants perform a working
memory paradigm (King & Schaefer, 2011; Vytal, Cornwell, Arkin, &
2012).

responses are stronger when the cognitive demand is increased (Vytal

Grillon, Reductions in these threat-potentiated startle
et al., 2012). Finally, subjective ratings of negative mood after viewing
aversive images (Van Dillen & Koole, 2007; Van Dillen et al., 2009) or
subjective reports of state anxiety (Balderston et al, 2016; Vytal
et al., 2012) also were shown to decrease with increasing cognitive
load of a working memory task. These findings together suggest that
cognitive demand, beyond mere attention reorientation or distraction,
may play a role in the downregulation of the amygdala that is
observed during emotion regulation.

Lesion studies in humans have indicated that such defensive
responses to threat are (partly) dependent on the amygdala (Bechara
et al., 1995; Klumpers, Morgan, Terburg, Stein, & van Honk, 2015;
LaBar, LeDoux, Spencer, & Phelps, 1995). Therefore, a cognitively
demanding task may offer a noninvasive way to impact defensive
responses to threat via downregulation of the amygdala. Indeed,
threat-induced amygdala responses were shown to be attenuated
during the execution of a cognitively demanding task (McRae, Chopra,
Gabrieli, & Ochsner, 2010; Price, Schneider, &
Siegle, 2013). Even though the general interpretation of such findings

Gross, Paul,
is that an initial amygdala activation, in response to the threat, can be
downregulated by a cognitively demanding task, other findings show
amygdala downregulation can also be observed without the presence
of a threat-induced amygdala response (de Voogd, Hermans, &
Phelps, 2018; de Voogd, Kanen, et al., 2018). Thus, performing a
working memory task alone is sufficient to downregulate the
amygdala.

If a working memory task establishes a downregulation of the
amygdala and defensive response to threat, it raises the question
whether the effects of cognitive reappraisal on the amygdala are
driven by cognitive demand. It has been proposed that through a
reinterpretation of the threatening situation, with the explicit goal
to change the affective impact of the threat, threat-related
responses and amygdala reactivity is reduced (Buhle et al., 2014).
Alternatively, downregulation of the amygdala during cognitive
reappraisal might be due to the cognitively demanding nature of
the task and not per se by the act of the reappraisal itself
(de Voogd, Hermans, & Phelps, 2018). This does not necessarily
mean that if cognitive demand is indeed driving amygdala down-

regulation, it also is driving changes in self-report. It is possible that

changes in self-report, apart from potential demand characteristics,
may occur via other neural pathways also shown to be involved in
regulating emotions (e.g., Etkin et al., 2015). Indeed, not all cogni-
tive reappraisal studies report amygdala downregulation (Ochsner,
Silvers, & Buhle, 2012). It remains unclear, however, whether
downregulation of the amygdala is a consistent finding across stud-
ies on working memory. More importantly, it is unknown whether
there is a systematic difference in amygdala downregulation
between a working memory task and cognitive reappraisal.

The aim of this study is therefore to investigate, using a meta-
analytic approach, whether working memory tasks downregulate
the amygdala, and whether this downregulation is similar to cogni-
tive reappraisal. As a standard working memory task, we opted for
a “2-back” working memory task, as there are many studies avail-
able that have previously reported an activation (2-back > control)
contrast (Lee & Xue, 2018). To test whether a working memory task
downregulates the amygdala similar to a cognitive reappraisal task,
we conducted an activation likelihood estimation (ALE) coordinate-
based meta-analysis (Eickhoff et al., 2009). We predicted a reduced
blood oxygenation level-dependent (BOLD) signal during a stan-
dard 2-back working memory task that would overlap with the

reduction in BOLD signal during cognitive reappraisal.

2 | MATERIALS AND METHODS
21 | Study and data selection for the ALE meta-
analysis

We performed the ALE meta-analysis according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Moher et al., 2015). For the PRISMA flow diagram, see
Figure 1.
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Articles added
via other review
articles (n = 50)

Articles through
Pubmed (N = 156)

Articles added
via other review
articles (n = 80)

| Duplicates removed (n = 15)

Duplicates removed (n = 16)

Articles screened
and assessed for
eligibility (n = 351)

Excluded (n = 285;
He.g., patients, drugs,
no contrasts)

Articles screened
and assessed for
eligibility (n = 220)

Excluded (n = 161;

He.g., patients, drugs,

no contrasts)

Final included in
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FIGURE 1
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(ALE) meta-analysis
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2.1.1 | Eligibility criteria
Peer-reviewed fMRI articles including healthy adult volunteers which
included a 2-back working memory or a cognitive reappraisal

experiment.

2.1.2 | Information sources

The PubMed database (https://www.ncbi.nim.nih.gov) and other
meta-analyses (Buhle et al., 2014; Kohn et al., 2014; Lee & Xue, 2018;
Ochsner et al., 2012).

213 | Search

(a) ([2-back (Title/Abstract)] AND fmri) NOT review (Publication Type),
and (b) ([cognitive reappraisal (Title/Abstract)] AND fmri) NOT review
(Publication Type). The search was performed on April 1, 2020.

214 | Study selection

Articles were included based on the following criteria: (a) healthy
human adult volunteers (range between 18-45 mean years old). Arti-
cles including patient studies with a separate analysis of the control
group were included, (b) whole-brain analysis, (c) region of interest-
based analysis were excluded, except for the amygdala, (d) reporting
of standardized coordinates for activation foci in Montreal Neurologi-
cal Institute (MNI) or Talairach space, (e) working memory studies
including a 2-back condition: the specific modality is reported (see
Table 1) OR emotion regulation strategy that involved cognitive
reappraisal: the specific technique such as reinterpretation or distanc-
ing is reported (see Table 2) (f) general linear model (GLM) analysis
involving a 2-back < > control analysis: the control condition such as
rest or O-back is reported OR GLM analysis involving a Reappraisal <
> control analysis: the specific instruction such as view, watch, or

attend is reported.

2.1.5 | Data collection process

We performed an analysis on 66 working memory studies and
65 emotion regulation studies (see Tables 1 and 2). All studies
reported an activation contrast (2-back: 954 foci, 80 experiments, and
1,979 participants; cognitive reappraisal: 799 foci, 76 experiments,
and 1,892 participants), but 16 (165 foci, 19 experiments, and 424 par-
ticipants) 2-back working memory studies and 29 (289 foci, 34 experi-
ments, and 906 participants) emotion regulation studies reported a
deactivation contrast. Two 2-back studies included emotional faces as
stimuli (see Table 1 indicated with superscript letter a). Since these
can be considered as potentially threatening stimuli, we reran the

analysis without these two studies to ensure our findings were not

driven by these two studies. The results and conclusions remained the
same and we therefore included those studies in the final analysis.
None of the studies reported a deactivation contrast without an acti-

vation contrast.

2.1.6 | Dataitems

We collected the peak coordinates of the selected contrasts for analy-
sis. The focus of this study are the deactivation contrasts
(control > 2-back and control > reappraise). We also included the acti-
vation contrasts, mainly for comparison purposes to several other
meta-analyses as a validation of our procedure. See Tables 1 and 2,

for the articles included in the ALE meta-analysis.

2.2 | The ALE meta-analysis procedure

We performed the meta-analysis using the ALE algorithm
implemented in the software GingerALE version 3.0.2 (Eickhoff,
Bzdok, Laird, Kurth, & Fox, 2012; Eickhoff et al., 2009; http://www.
brainmap.org/ale; Turkeltaub et al., 2012). ALE is a coordinate-based
method used for performing meta-analyses of human brain imaging
studies. A full-width half-maximum of the Gaussian function is used
to blur the foci. The size of the gaussian is determined by the number
of subjects in each experiment. An ALE image is created based on all
coordinates. Significance is determined via a permutation procedure
which we set to 1,000 permutations. We used a cluster-forming
voxel-level threshold of p < .001 (uncorrected). Alpha was set at .05,
whole-brain family-wise error corrected at the cluster level. Before
the analysis, we converted all coordinates in Talairach space to MNI
space using the GingerALE foci converter tool. The analyses were
done on the MNI coordinates.

In addition, we performed a comparison analysis on the deactiva-
tion contrasts (control > 2-back and control > reappraise) including a
conjunction and subtraction analysis. In the conjunction analysis, a
conjunction image was created using the voxel-wise minimum value
of the two contrast (control > 2-back and control > reappraise) ALE
maps. The conjunction output image shows the similarity in clusters
between the two contrast maps. In the subtraction analysis, two con-
trast (control > 2-back and control > reappraise) ALE maps are directly
subtracted from each other. In addition, we performed a “pooled”
analysis following the procedure described above, including the coor-
dinates from both contrasts. The pooled data were subsequently used
for permutation testing where the data were randomly assigned to
one of the two contrasts and repeated 10,000 times, false discovery
rate < 0.05, minimum volume = 0 mm®. The subtraction maps were
tested against this null distribution.

Lastly, as a control analysis, we investigated whether the instruc-
tion to increase one's emotion would, similar to decreasing one's emo-
tion (as described above), affect activation in the executive control
network and amygdala. In total, 10 studies of the 65 cognitive

reappraisal studies also included a condition in which participants
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were required to increase their emotions. We performed the ALE
meta-analysis as described above on two contrasts, namely the
reappraise increase > control (177 foci, 11 experiments, and 209 sub-
jects) and the control > reappraise increase (6 foci, 4 experiments, and
86 subjects).

Anatomical labels provided by the GingerALE software are
derived from the Talairach Daemon atlas (talairach.org). For the amyg-
dala deactivation clusters, we reported the percentage of that cluster

falling in the amygdala based on those labels.

3 | RESULTS

3.1 | ALE meta-analysis activation contrasts

We found 10 clusters for the 2-back > control contrast among which
are located in the left (cluster #1, z = 9.34, p = 4.95E-21, and
mm?® = 23,680) and right (cluster #2, z = 8.44, p = 6.53E-18, and
mm? = 18,840) dIPFC; the left (cluster #3, z = 10.32, p = 2.69E-25,
and mm® = 12,440) and right (cluster #4, z = 9.92, p = 2.36E-19, and
mm?® = 12,296) posterior parietal cortex; the left (cluster #1, z = 9.34,
p = 4.95E-21, and mm? = 23,680) and right (cluster #2, z = 8.44,
p = 6.53E-18, and mm® = 18,840 and cluster #6, z = 12.84,
p = 4.82E-38, and mm® = 5,104) anterior insula; and the left/right
(cluster #5, z = 8.03, p = 5.03E-16, mm® = 9,032) dorsal anterior cin-
gulate cortex (dACC). See Table 3, for a full overview of the clusters
and statistics and Figure 4.

We first verified regions that were systematically activated during a
2-back working memory task or a cognitive reappraisal task compared to
a control task (i.e., 2-back > control and reappraisal > control).

We found nine clusters for the reappraisal > control contrast
among which are the left (cluster #3, z = 6.91, p = 2.46E-12, and
mm® = 7,320) and right (cluster #8, z = 5.61, p = 1.01E-08, and
mm? = 2,712) dIPFC; the left (cluster #2, z = 8.10, p = 2.81E-16, and
mm?® = 9,136) and right (cluster #4, z = 8.44, p = 6.53E-18, and
mm® = 18,840 and cluster #6, z = 7.69, p = 7.60E-15, and
mm? = 6,552) inferior frontal gyrus/anterior insula; and the left/right
(cluster #1, z = 8.80, p = 6.66E-19, and mm® = 10,880) dACC. See
Table 3, for a full overview of the clusters and statistics and Figure 2.

Together these findings are in line with previous meta-analyses' reports
of activation patterns during working memory (Wager & Smith, 2003), a
2-back working memory task (Lee & Xue, 2018), and a cognitive reappraisal
task (Buhle et al., 2014; Kohn et al., 2014; Lee & Xue, 2018).

3.2 | ALE meta-analysis deactivation contrasts
The main aim of this study was to investigate whether the amygdala is
systematically downregulated during working memory in a similar
fashion as it is during emotion regulation.

Indeed, for the control > 2-back working memory contrast, we
saw clusters in the left (cluster #3, z = 5.53, p = 1.56E-08, and
mm?® = 1,952) and right (cluster #4, z = 5.70, p = 6.16E-09, and

mm?® = 1,160) amygdala. These clusters fall for 82.6% within the left
amygdala and 91.5% within the right amygdala. We also observed a
cluster in left/right (cluster #2, z = 6.18, p = 3.27E-10, and
mm?® = 5,480) ventral medial prefrontal cortex (vmPFC) and the left/
right (cluster #1, z = 6.63, p = 1.68E-11, and mm?® = 5,568) posterior
cingulate cortex (see Figure 2 and Table 4).

For the control > reappraisal contrast, we also observed clusters
in the left (cluster #2, z = 9.02, p = 9.55E-20, and mm® = 2,992) and
right (cluster #1, z = 7.45, p = 4.70E-14, and mm® = 3,728) amygdala,
(cluster #3, z = 5.75, p = 4.55E-09, and mm® = 952) which overlap
with the amygdala clusters found during the control > 2-back con-
trast. These clusters fall for 75.8% within the left amygdala and 59.2%
within the right amygdala (see Figure 2 and Table 4).

In sum, there is reduced amygdala activity during cognitive
reappraisal compared to a control task, as has been shown before
(Buhle et al., 2014). Critically, this is also the case during a 2-back
working memory task compared to a control task.

3.3 | Comparison analysis of the deactivation
contrasts

Finally, we performed two comparison analyses between the deactiva-
tion contrasts (control > 2-back and control > reappraise). The first con-
junction analysis, aimed at indicating overlapping regions between
working memory and cognitive reappraisal, revealed that there is an
overlap in deactivation patterns in the amygdala (left: 96.7% falls within
the amygdala, right: 91.1% falls within the amygdala) during cognitive
reappraisal and the 2-back working memory task.

The second subtraction analysis was aimed at indicating regions
that are distinctly downregulated during working memory or cognitive
reappraisal. This analysis revealed that a cluster partly falling within
the amygdala (left: 55% falls within the amygdala, 30% falls in the dor-
sal entorhinal cortex (BA34)) was present stronger for cognitive
reappraisal than the 2-back working memory task, and a cluster partly
falling within the amygdala (left: 5% falls in the amygdala, 90% falls in
the hippocampus) was present for the 2-back working memory task
compared to cognitive reappraisal.

In sum, although the deactivation clusters associated with
both tasks do differ somewhat in their topography, both 2-back
working memory and cognitive reappraisal tasks show bilateral
clusters of common deactivations in the amygdala (see Figures 3
and Table 5).

3.4 | ALE meta-analysis of increase and decrease
reappraisal conditions

To investigate whether the instruction to increase one's emotion
using cognitive reappraisal elicits similar activations in the executive
control network but increases amygdala activation (instead of the
deactivation we observed during a decrease condition), we performed

another (control) meta-analysis on 10 studies that also included an
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TABLE 3 Significant clusters from the ALE meta-analysis showing an activation pattern

Cluster # Region Side X (mm) Y (mm) Z (mm) mm? ALE p Peak Z
WM activation (2-back > control)
#1 Anterior insula/dIPFC L -32 22 0 23,680 0.078 4.95E-21 9.34
—42 8 30 0.076 3.56E-20 9.13
—40 -8 40 0.046 6.95E-11 6.42
-28 -2 52 0.043 5.97E-10 6.08
-30 -8 48 0.039 7.72E-09 5.66
-36 38 24 0.034 1.90E-07 5.08
#2 Anterior insula/dIPFC R 30 6 58 18,840 0.069 6.53E-18 8.54
40 28 30 0.062 1.11E-15 7.93
30 -2 48 0.057 6.43E-14 7.41
32 38 22 0.042 1.63E-09 5.92
32 46 20 0.039 1.08E-08 5.60
36 6 32 0.039 1.09E-08 5.60
44 12 26 0.029 2.67E-06 4.55
22 -12 58 0.020 4.90E-04 3.30
#3 Posterior parietal cortex/angular L —42 —44 42 12,440 0.090 2.69E-25 10.33
gyrus
—28 —60 38 0.077 1.38E-20 9.23
-34 —54 46 0.070 2.27E-18 8.66
-20 -70 54 0.021 2.58E-04 3.47
#4 Posterior parietal cortex/angular R 30 —62 44 12,296 0.073 2.36E-19 8.92
gyrus
40 —46 42 0.071 1.07E-18 8.75
#5 Dorsal anterior cingulate cortex L/R -2 8 50 9,032 0.063 5.03E-16 8.03
8 26 32 0.029 3.54E-06 4.49
#6 Anterior insula R 32 22 -2 5,104 0.123 4.82E-38 12.84
#7 Cerebellum 30 —62 -32 3,688 0.036 6.64E-08 5.28
26 —60 -20 0.030 1.49E-06 4.67
40 —62 -18 0.027 9.14E-06 4.28
#8 Fusiform gyrus L —40 —60 —-18 2,240 0.032 7.37E-07 4.81
-32 —64 -30 0.027 1.07E-05 4.25
#9 Caudate/putamen L -16 -2 16 1,464 0.034 1.53E-07 5.12
#10 Middle frontal gyrus L -36 56 14 1,456 0.037 3.24E-08 541
CR activation (reappraisal > control)
#1 Dorsal anterior cingulate cortex L/R -6 14 62 10,880 0.072 6.66E-19 8.80
12 18 62 0.037 2.28E-08 5.47
4 28 40 0.031 7.13E-07 4.82
20 12 60 0.029 2.46E-06 4.57
-6 24 44 0.024 2.70E-05 4.04
-2 36 38 0.024 3.30E-05 3.99
2 20 46 0.022 1.06E-04 3.70
#2 Anterior insula L —46 28 -8 9,136 0.063 2.81E-16 8.10
-52 22 -2 0.045 1.06E-10 6.35
—42 46 -6 0.037 1.92E-08 5.50
#3 dIPFC L —44 6 48 7,320 0.051 2.46E-12 6.91

—40 20 46 0.039 5.25E-09 5.72
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TABLE 3 (Continued)
Cluster # Region Side X (mm)

#4 Anterior insula R 50
48

50

58

40

#5 Middle temporal gyrus/angular L —42

gyrus

-56

-50

—52

—60

—62

#6 Middle temporal gyrus L —-60
#7 Angular gyrus R 60
#8 dIPFC R 40
50

44

#9 Middle cingulate cortex L/R -2

Y (mm) Z (mm) mm® ALE p Peak Z
30 -8 6,552 0.059 7.60E-15 7.69
44 -10 0.035 4.38E-08 5.35
18 —4 0.034 9.59E-08 5.21
24 6 0.028 3.94E-06 4.47
22 -12 0.021 1.59E-04 3.60

—56 22 5,488 0.039 5.08E-09 5.73

-52 44 0.036 4.20E-08 5.36

—64 42 0.034 8.50E-08 5.23

—62 34 0.032 3.04E-07 4.99

-52 20 0.023 7.03E-05 3.81

-50 32 0.023 7.37E-05 3.80

—38 —4 4,768 0.063 5.24E-16 8.02

—-54 38 3,768 0.051 1.90E-12 6.94
22 44 2,712 0.038 1.01E-08 5.61

6 46 0.027 7.55E-06 4.33
12 44 0.024 2.76E-05 4.03
—-22 28 1,008 0.035 5.94E-08 5.30

Note: All coordinates are defined in MNI152 space. All statistics listed are significant at p < .05, whole-brain FWE-corrected using a cluster-forming
threshold of p < .0001 uncorrected, and a permutation test with 1,000 permutations.
Abbreviations: ALE, activation likelihood estimation; dIPFC, dorsolateral prefrontal cortex; FWE, family-wise error.

increase condition. This is a low number of studies and the results
should therefore be considered with caution.

We found two clusters for the reappraisal increase > control con-
trast that are located in the dACC (cluster #1, z = 4.64, p = 1.727E-6,
and mm® =1,184; cluster #2, z = 594, p = 1.436E-9, and
mm® = 1,072). The deactivation contrast (control > reappraisal
increase) did not reveal any significant clusters (see Figure 5 and
Table 6).

Thus, we did not observe consistent activation in the executive
control network including the dIPFC nor did we observe a modulation
of the amygdala in either direction when participants are instructed to

increase their emotions using cognitive reappraisal.

4 | DISCUSSION

Using a meta-analytic approach, we investigated whether a standard
working memory task would downregulate the amygdala similar to a
cognitive reappraisal task. Reduced amygdala activation is widely con-
sidered as a key neural correlate of cognitive regulation of emotion. It
has been documented previously in a meta-analysis of cognitive
reappraisal studies (Buhle et al., 2014). We indeed replicate these
findings but critically reveal that a working memory task also robustly
triggers deactivation in bilateral clusters in the amygdala. This finding
also shows that amygdala inhibition can occur without initial amygdala
activation in response to acute threat and without an explicit emotion

regulation instruction. Together, our findings suggest that amygdala

inhibition is likely driven by cognitive demand rather than the content
of the cognition.

Downregulation of the amygdala during cognitive reappraisal has
typically been interpreted as a top-down inhibition by prefrontal
regions (e.g., Etkin, Egner, & Kalisch, 2011). The amygdala is a region
critically implicated in threat detection, as has been detailed in animal
models (LeDoux, 1996). Indeed, functional MRI studies in humans
have revealed activation of the amygdala related to processing of
threatening or salient stimuli (Hariri, Tessitore, Mattay, Fera, &
Weinberger, 2002; Morris, Friston, & Dolan, 1997; Vuilleumier,
Armony, Driver, & Dolan, 2001). Via reinterpretation of the threaten-
ing situation, with the explicit goal to change the affective impact of
the threat, such amygdala reactivity is thought to be reduced. Amyg-
dala downregulation during cognitive reappraisal was furthermore
shown to be enhanced by real-time fMRI neurofeedback based on
dIPFC responsivity (Sarkheil et al., 2015). Since there are little or no
direct connections between the dIPFC and the amygdala (Amaral
et al., 1992), downregulation is thought to occur indirectly via the
ventromedial prefrontal cortex (e.g., Diekhof et al, 2011; Etkin
et al.,, 2015; Phelps et al., 2004; Schiller & Delgado, 2010), a region
involved in implicit forms of emotion regulation such as extinction
learning (Hartley & Phelps, 2010). Thus, the commonly held view is
that the act of cognitive reappraisal, through neural pathways that are
shared with other emotion regulation strategies, leads to a down-
regulation of the amygdala reactivity to threat.

However, our findings demonstrate that a standard working

memory task is also accompanied by a downregulation of the
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amygdala. This suggests that the content of the cognitive task may
not be relevant. While at odds with theories of cognitive reappraisal,
this notion is in line with theories postulating a reciprocal relation-
ship between large-scale neural systems encompassing dIPFC (the
executive control network) and amygdala (Drevets & Raichle, 1998;
Hermans, Henckens, Joéls, & Fernandez, 2014). For instance, acute
threat is known to trigger activation of the salience network, and this
is accompanied by a loss of executive control network function

ALE meta-analysis: deactivation

2-back
working memory

cognitive
reappraisal

overlap

amygdala

(Hermans et al., 2014). Most evidence for this comes from studies
that have investigated the impact of acute threat and arousal on
executive functioning. For example, behavioral studies have shown
that during high states of arousal, working memory performance is
impaired (Elzinga & Roelofs, 2005; Lupien, Gillin, & Hauger, 1999).
This trade-off also occurs at the network level, namely when partici-
pants perform a working memory task while under threat, BOLD sig-
nal in the executive control network is reduced compared to a

FIGURE 2 Display of the
significant clusters for the
activation likelihood estimation
(ALE) meta-analysis on the
activation contrasts

2-back > control (red) and
cognitive reappraisal > control
(green) and the overlap (yellow).
PCC, posterior cingulate cortex;
vmPFC, ventral medial prefrontal
cortex
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TABLE 4 Significant clusters from the ALE meta-analysis showing a deactivation pattern
Cluster # Region Side X (mm) Y (mm) Z (mm) mm? ALE p Peak Z
WM deactivation (control > 2-back)
#1 Posterior cingulate cortex/ L/R —4 -50 30 5,568 0.031 1.68E-11 6.63
precuneus
-4 -52 12 0.019 6.18E-07 4.85
4 -50 18 0.013 5.53E-05 3.87
-6 —60 16 0.011 2.55E-04 3.48
16 -56 30 0.011 3.67E-04 3.38
8 -58 20 0.010 6.24E-04 3.23
#2 Ventromedial prefrontal cortex L/R -6 58 10 5,480 0.028 3.27E-10 6.18
(vmPFC)
-6 46 -4 0.020 3.88E-07 4.94
4 62 14 0.016 4.97E-06 4.42
-2 52 -16 0.010 6.57E-04 3.21
#3 Amygdala/hippocampus L —24 -8 —-22 1,952 0.023 1.56E-08 5.53
#4 Amygdala R 24 -6 -20 1,160 0.024 6.16E-09 5.70
#5 Angular gyrus L —48 —64 28 1,120 0.022 3.73E-08 5.38
#6 Middle/superior temporal gyrus R 54 4 -16 872 0.016 1.03E-05 4.26
58 4 -12 0.015 1.88E-05 4.12
CR deactivation (control > reappraisal)
#1 Amygdala/dorsal entorhinal R 26 -4 -20 3,960 0.045 6.57E-15 7.70
cortex (BA34)
18 -8 -16 0.028 9.83E-09 5.62
#2 Amygdala/dorsal entorhinal L —24 -6 —18 3,000 0.058 1.78E-20 9.20
cortex (BA34)
#3 Thalamus/parahippocampal L —-22 —28 —4 688 0.026 3.77E-08 5.38
gyrus

Note: All coordinates are defined in MNI152 space. All statistics listed are significant at p < .05, whole-brain FWE-corrected using a cluster-forming
threshold of p < .0001 uncorrected, and a permutation test with 1,000 permutations.

Abbreviations: ALE, activation likelihood estimation; FWE, family-wise error.

nonthreatening context (Van Ast et al., 2016). Furthermore, the
dynamics between the salience network and the central executive
control network was shown to change during acute threat (Young
et al., 2017).

Our findings suggest that such a trade-off between the salience
network and the executive control network may also occur the other
way around. This idea is in line with previous studies indicating that
defensive responses, which have shown to be (partly) dependent on
the amygdala (Bechara et al., 1995; Klumpers et al., 2015; LaBar
et al., 1995), are reduced during cognitively demanding tasks. For
instance, during working memory maintenance, threat conditioning is
impaired (Carter et al., 2003), and threat-potentiated startle responses
are decreased (Vytal et al., 2012). Other types of cognitively demand-
ing tasks, apart from the 2-back working memory task we investigated
here, also downregulate the amygdala. Examples are playing a game
of Tetris (Price et al., 2013) or making goal-directed eye movements
(de Voogd, Kanen, et al., 2018; Jamadar, Fielding, & Egan, 2013). Cog-
nitive demand may indeed lead to a competition between the execu-

tive control network and the salience network, where resources are

allocated to the executive control network at the expense of the
salience network (de Voogd, Hermans, & Phelps, 2018). Thus, the
reduced BOLD signal found in the amygdala during cognitive
reappraisal and working memory tasks is in line with a vast body of lit-
erature showing reciprocal relationships between large-scale neural
systems.

If the executive control network and the salience network are
reciprocally activated with respect to one another in both directions,
an important question that remains to be answered is how this com-
petitive allocation of resources is established. A first possibility is that
resource allocation is established via active suppression. This may
occur during a working memory task in a similar fashion as has been
proposed for cognitive reappraisal. Namely, downregulation of the
amygdala may occur indirectly via the vmPFC (e.g., Diekhof
et al., 2011; Etkin et al, 2015; Phelps et al., 2004; Schiller &
Delgado, 2010). This mechanism is similar to the proposed working
mechanism of implicit emotion regulation such as extinction learning
(Hartley & Phelps, 2010), since during extinction, it has been shown
the amygdala is inhibited by the vmPFC, leading to a reduction in the
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ALE meta-analysis conjunction and subtraction: deactivation

2-back working memory > cognitive reappraisal (subtraction)

cognitive reappraisal > 2-back working memory (subtraction)

expression of threat responses (Milad & Quirk, 2012). Indeed, it has
been proposed that the vmPFC may serve as a common mechanism
for reducing learned defensive responses to threat (Schiller &
Delgado, 2010). This pathway may be activated via several pathways
including those involved in high-order cognition such as the dIPFC,
and our findings suggest that the specific content of the cognitive

process may not be a critical factor.

FIGURE 3 Display of the
significant clusters for the
activation likelihood estimation
(ALE) meta-analysis on the
deactivation contrasts

control > 2-back (red) and
control > cognitive reappraisal
(green) and the overlap (yellow).
PCC, posterior cingulate cortex;
vmPFC, ventral medial prefrontal
cortex

conjunction

o

amygdala

It is worthwhile to also consider other potential explanations for
the reciprocal relationship between dIPFC and amygdala as observed
using functional MRI. One alternative possibility is that when one
large-scale network activates, an increase in blood flow to those
regions may deplete other neural systems from oxygenated blood,
resulting in decreased BOLD-fMRI signal. Recent findings indicate
that BOLD signal in specific functional brain networks may indeed be
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TABLE 5 Significant clusters from the ALE meta-analysis comparing the deactivation patterns
Cluster # Region Side X (mm) Y (mm) Z (mm) mm? ALE p Peak Z
Conjunction
#1 Amygdala —24 -8 -22 1,232 0.023 NA NA
#2 Amygdala R 24 -6 -20 1,064 0.024 NA NA
2-back > reappraisal
#1 Posterior cingulate cortex/precuneus L/R -1 -51 29 5,048 NA <0.001 3.89
-6 —49 16 NA 1.00E-04 3.72
-4 -56 18 NA 8.00E-04 3.16
14 -56 28 NA 0.001 3.09
#2 Ventromedial prefrontal cortex (vmPFC) L/R -2 59 8 5,008 NA <0.001 3.89
#3 Angular gyrus L —49 —66 30 1,120 NA 1.00E-04 3.72
—49 —62 23 NA 0.001 3.04
#4 Middle temporal gyrus R 53 3 -18 872 NA 1.00E-04 3.72
58 7 -14 NA 3.00E-04 3.43
#5 Amygdala/hippocampus -30 -12 —24 560 NA 0.006 2.51
#6 Precuneus R 8 —58 22 32 NA 0.019 2.07
Reappraisal > 2-back
#1 Amygdala/dorsal entorhinal cortex (BA34) L -24 0 -14 616 NA 0.004 2.64
#2 Dorsal entorhinal cortex (BA34) R 14 -6 -20 40 NA 0.035 1.81

Note: All coordinates are defined in MNI152 space. All statistics listed are significant at p < .05.

Abbreviation: ALE, activation likelihood estimation.

partly driven by vascular regulation (Bright, Whittaker, Driver, &
Murphy, 2020). The fact that alterations in amygdala-dependent func-
tions are seen during cognitively demanding tasks that elicit reduced
BOLD in the amygdala (Carter et al., 2003; de Voogd, Hermans, &
Phelps, 2018; de Voogd, Kanen, et al., 2018; Fox, Zhang, Snyder, &
Raichle, 2009; Hermans et al., 2014) appears to speak against the
notion that this BOLD signal decrease is a purely vascular effect.
However, it is also possible that depletion of oxygenated blood may
itself affect neuronal activity. There is indeed evidence that vascular
changes can influence neuronal activity (Croal et al., 2015; Hall
et al., 2011). Future studies should therefore determine whether
amygdala downregulation during cognitively demanding tasks is also
observed using electrophysiological methods, which more directly
measure neuronal activity.

The topography of the deactivated regions during the 2-back
working memory task and cognitive reappraisal differed slightly.
Namely, during the 2-back working memory task, in addition to the
amygdala, we also observed deactivation patterns within the hippo-
campus and vmPFC. These regions are typically considered part of the
default-mode network (Raichle et al., 2001). It is possible that a
2-back working memory task and cognitive reappraisal induce qualita-
tively different deactivation patterns. However, our interpretation is
that these differences are more likely due to a difference in cognitive
demand between the tasks. Indeed, the magnitude of the deactivation
patterns is found to increase with increasing cognitive demand
(de Voogd, Hermans, & Phelps, 2018). It is important to note that the

overlap in the amygdala does not per definition mean the overlap in
amygdala deactivation patterns is due to the same underlying mecha-
nism. Therefore, to establish whether cognitive reappraisal can induce
load-dependent deactivation, future studies should incorporate such a
load manipulation within the experimental design. Nevertheless, our
findings taken together with previous evidence suggest that cognitive
demand, beyond mere attention reorientation or distraction, may play
a role in the downregulation of the amygdala that is observed during
emotion regulation.

As a control analysis, we have also performed a meta-analysis on
the cognitive reappraisal condition in which participants are instructed
to increase their emotions. This analysis was performed on 10 studies
only and the results should therefore be considered with caution. Indi-
vidual studies have indicated that such an “increase” condition acti-
vates the executive control network similar to a “decrease” condition
(e.g., Domes et al., 2010; Ochsner et al., 2004), while in contrast with
“decrease” conditions, amygdala activation is increased (e.g., Ochsner
et al., 2004). If this would indeed be the case, it would contradict our
theoretical account that the effects of cognitive reappraisal on the
amygdala may be driven by cognitive demand rather than the content
of the reappraisal. However, not all studies reporting “increase” condi-
tions have found executive control network or dIPFC activation
(e.g., Korb, Frihholz, & Grandjean, 2014; Leiberg et al., 2012). In
agreement, we did not find evidence for this effect in our meta-analy-
sis. We also did not find meta-analytic evidence for consistent activa-

tion of the amygdala in “increase” conditions. This outcome appears
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FIGURE 4 Display of the significant clusters for the activation
likelihood estimation (ALE) meta-analysis. The map from the
conjunction analysis showing the similarity in clusters between the
“control > 2-back” and “control > cognitive reappraisal” contrast
maps is shown in yellow. In red and green, the result of the
subtraction analysis in which the “control > 2-back” (red) and
“control > cognitive reappraisal” (green) contrast maps are directly
subtracted from each other is shown, thereby showing distinct
regions involved in either of the two tasks

to be in line with behavioral data showing that increasing one's emo-
tion is not as subjectively effortful as decreasing one's emotion
(Ochsner et al., 2004). It is possible that increasing one's emotion
increases attention and vigilance toward the emotional information
rather than cognitively controlling the emotional response. For exam-
ple, emotional images that were accompanied by the instruction to
increase one's emotions are better recalled a week later than when
they are accompanied by the instruction to decrease one's emotions
(Ahn et al., 2015). Moreover, van Reekum et al. (2007) showed that
during the increase condition participants fixate on the emotional
parts of emotional images while they tend to look away during the
decrease condition. Together, these data indicate that increasing one's
emotions may not be similar to decreasing such responses with regard
to the cognitively demanding nature of the task. In line with the out-
come of the meta-analysis, it is therefore not expected that they
involve similar neural pathways.

If a cognitively demanding task can reduce threat-related pro-
cesses (Carter et al., 2003; Vytal et al., 2012) via downregulation of
the amygdala, this may have clinical implications. Indeed, laboratory

ALE meta-analysis: activation cognitive reappraisal

increase decrease

overlap

FIGURE 5 Display of the significant clusters for the activation
likelihood estimation (ALE) meta-analysis on the activation contrasts
increase reappraisal > control (red) and decrease reappraisal > control
(blue) and the overlap (purple)

studies have shown that making cognitively demanding eye move-
ments (de Voogd, Kanen, et al., 2018) or a working memory task
(de Voogd & Phelps, 2020; Loos et al., 2020) embedded during extinc-
tion learning reduces defensive responses to threat in healthy
(de Voogd, Kanen, et al., 2018; de Voogd & Phelps, 2020) and phobic
(Loos et al., 2020) participants. These cognitively demanding tasks
during extinction learning were accompanied by downregulation of
the amygdala (de Voogd, Kanen, et al., 2018; Loos et al., 2020). It
could therefore be the case that an additional inhibition of the amyg-
dala during extinction can strengthen safety learning.

If indeed cognitive demand is the mechanism underlying cognitive
reappraisal, then any task that is cognitively demanding may poten-
tially be a suitable intervention to reduce defensive responses to
threat and potentially have added value in a clinical setting. An ideal
intervention, however, should allow for the cognitive demand to be
systematically increased to accommodate individual differences in
cognitive capacity. The cognitive demand of a working memory task
can be systematically increased and has a greater impact on the
reduction of BOLD signal in the amygdala (de Voogd, Hermans, &
Phelps, 2018). In comparison with cognitive reappraisal, which is one
of the most common cognitive emotion regulation strategies trans-
lated to the clinic (Kredlow, de Voogd, & Phelps, 2022), compliance
with task instructions and task performance in working memory tasks
are easier to assess. Since our findings indicate that they operate via
similar neural pathways, working memory tasks may have benefits
over cognitive reappraisal as a treatment intervention.

It has been argued that distraction during exposure may be coun-
terproductive as it leads to avoidance. It may therefore be the case
that performing a cognitively demanding task during treatment may
induce distraction and thereby avoidance. However, empirical evi-

dence suggests that in some cases, distraction may be more beneficial
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TABLE 6
Cluster # Region Side X (mm)
Reappraisal increase > control
#1 Dorsal anterior cingulate cortex L/R -2
#2 Dorsal anterior cingulate cortex L/R -2

Abbreviation: ALE, activation likelihood estimation.

than focused exposure (see, for a review, Podina, Koster, Philippot,
Dethier, & David, 2013). Moreover, goal-directed eye movements as
used in EMDR could also be seen as distraction but have been shown
to have beneficial effects on threat-related symptoms compared to
exposure or extinction alone (de Voogd, Kanen, et al., 2018; de
Voogd & Phelps, 2020; Lee & Cuijpers, 2013).

There are a few limitations that are worth mentioning. We
observed that only a subset of the articles included in our meta-
analysis reported a deactivation contrast. This was the case for the
2-back working memory studies (i.e., 16 of the 66 studies) and the
cognitive reappraisal studies (i.e., 29 of the 65 studies). It is possible
that underreporting of deactivation contrasts has consequences for
the conclusion of our findings. We cannot rule out that a systematic
bias has led to the decision to report or not to report deactivation pat-
terns. It may be that studies that have reported deactivation patterns
may have done so because the results were in line with the expecta-
tion. This may be specifically true for cognitive reappraisal studies, as
amygdala downregulation forms an important part of the mechanistic
explanation of how reappraisal is established. Moreover, we observed
that from the studies that contributed to the amygdala deactivation
during cognitive reappraisal, 12 of the 16 reported amygdala deactiva-
tions based on small volume correction (SVC), while only one of the
six studies that contributed to the amygdala deactivation during work-
ing memory reported amygdala deactivation based on SVC. It is there-
fore possible that this bias has led to an overrepresentation of
amygdala deactivation for cognitive reappraisal and underrepresenta-
tion for working memory. As only 16 of the 29 studies contributed to
the amygdala deactivation, it raises the question why some studies
report or find amygdala deactivation and others not. This question
would be important to address in future research. Nevertheless, the
cognitive reappraisal clusters we found overlap with those identified
by a large study, and not influenced by a reporting bias, of the Human
Connectome study in which 486 participants completed a 2-back
working memory task (The WU-Minn
Project, 2016; Van Essen et al., 2013). We propose that patterns of

downregulation are meaningful and that it is therefore important to

Human Connectome

report BOLD deactivation patterns as well. This will ultimately con-
tribute to a broader understanding of the role of network dynamics in
the brain and its relation to function.

In addition, if cognitive demand is indeed driving amygdala down-
regulation it does not mean that it also is driving changes in self-
report. It is possible that changes in self-report may occur via other
neural pathways also shown to be involved in regulating emotions
(e.g., Etkin et al., 2015), apart from potential demand characteristics.

This could be a potential explanation why amygdala downregulation

Significant clusters from the ALE meta-analysis showing activation patterns during the Reappraisal increase condition

Y (mm) Z (mm) mm? ALE p Peak Z
6 62 1,184 0.018 1.7E-06 4.64
18 40 1,072 0.026 1.4E-09 5.94

and changes in self-report do not always co-occur. Future studies
could focus on a potential causal relationship between the amygdala
and changes in self-report during cognitive reappraisal, for example,
using novel neuromodulatory techniques such as transcranial focused
ultrasound stimulation that are currently emerging (e.g., Folloni
etal., 2019; Kim et al., 2021).

Although we observed a striking overlap in amygdala deactivation
between working memory and cognitive reappraisal, we also observed
that the overlap was not absolute. We observed two deactivation
clusters in the left amygdala that were unique for either cognitive
reappraisal or working memory. For cognitive reappraisal, this deacti-
vation was located dorsally with respect to the conjunction deactiva-
tion, within the amygdala and Brodmann area 34. For working
memory, the location of the deactivation was more ventral, within the
amygdala and hippocampus. This can be interpreted in a few ways.
First, it is possible that the deactivation across the two tasks is not
identical and both lead to a deactivation pattern that is unique to the
task that is being conducted. Second, the difference in topology could
be a methodological consequence (e.g., spatial smoothing). Third, an
alternative explanation could be that the difference is due to a bias in
reporting. Since the amygdala deactivation during cognitive
reappraisal is largely based on an SVC, it is possible that this influ-
ences the location of the reported peak voxel (i.e., this would always
lie within the amygdala). Several studies have shown that deactivation
patterns during a working memory task are present in both amygdala
and hippocampus (Cousijn et al., 2010; de Voogd, Kanen, et al., 2018;
Qin, Hermans, van Marle, Luo, & Fernandez, 2009). It is therefore pos-
sible that with an SVC, the reporting of the peak value is more biased
toward the hippocampus in working memory studies. To resolve this,
a study directly comparing working memory and cognitive reappraisal
would be necessary to investigate whether the deactivation patterns
are similar or meaningfully distinct.

In conclusion, using meta-analytic evidence, we demonstrate that
both cognitive reappraisal tasks and working memory tasks deactivate
the amygdala, thus suggesting that the amygdala deactivation is
driven by cognitive demand rather than the actual reinterpretation of
a threatening stimulus. Our findings are in line with accounts of brain
function in terms of reciprocal activation or competition between

large-scale neural networks.
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