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Functional characterization of every single protein is a major challenge of the post-
genomic era. The large-scale analysis of a cell’s proteins, proteomics, seeks to
provide these proteins with reliable annotations regarding their interaction part-
ners and functions in the cellular machinery. An important step on this way is to
determine the subcellular localization of each protein. Eukaryotic cells are divided
into subcellular compartments, or organelles. Transport across the membrane into
the organelles is a highly regulated and complex cellular process. Predicting the
subcellular localization by computational means has been an area of vivid activ-
ity during recent years. The publicly available prediction methods differ mainly
in four aspects: the underlying biological motivation, the computational method
used, localization coverage, and reliability, which are of importance to the user.
This review provides a short description of the main events in the protein sorting
process and an overview of the most commonly used methods in this field.
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Introduction

Large-scale genomic and proteomic efforts worldwide
have contributed to a massive amount of sequence
data. Annotating these sequences has been a major
driving force in molecular and computational biology
(1 , 2 ). Functional annotation projects seek to eluci-
date the potential roles that the proteins play in a
cellular context, such as metabolic pathways and in-
teraction networks.

Eukaryotic cells can synthesize up to 10,000 differ-
ent kinds of proteins, which all are destined for one or
more pre-determined target organelles. Proteins have
evolved to function optimally in a specific subcellular
localization; hence, the correct transport of a protein
to its final destination is crucial to its function. The
process of directing a newly synthesized protein to
its target organelle is often referred to as protein tar-
geting or protein sorting. Failure in transporting a
protein has proven to be a key event behind several
human diseases, such as cancer and Alzheimer’s dis-
ease (3–5).

Computational methods aiming to assign subcellu-
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lar localization in an automated and high-throughput
fashion provide an appealing complement to experi-
mental techniques. The development of methods for
predicting subcellular location has been an area of
great activity during recent years (6 ) and has long
been seen as the detective work of a bioinformati-
cian (7 ). The enormous complexity of the protein
sorting process, alternative means of transportation
pathways, and lack of complete data for every or-
ganelle, present great challenges to the eager predic-
tion method developers.

In this review, we describe the main events of the
protein sorting process, provide an overview of the
computational contributions made to this field, and
finally give a few guiding words to potential users.

Biological Background

There are at least ten main subcellular localizations in
eukaryotes, several of which can be further subdivided
into intraorganellar compartments. Bacteria, on the
other hand, consist of a single intracellular space and
a plasma membrane. The organelles have distinct,
well-defined, and complementing functions in the cel-
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lular machinery, and are thought to have evolved from
ancestral bacterial endosymbionts of prokaryotic cells
(8 ).

Most proteins in the cell are encoded in the nuclear
DNA, only a small subset is encoded in the chloroplas-
tic and mitochondrial DNA. An elaborate and highly
selective system of sorting and transportation mecha-
nisms provides for the guidance of each protein to its
final destination (9 , 10 ).

The cytoplasm surrounds the nucleus and is the
place where the mRNA is translated into protein.
Proteins in the cytoplasm can enter the secretory
pathway (SP), be directed to other non-secretory
pathway (nSP) organelles, or remain in the cyto-
plasm. The intracellular routing of non-cytoplasmic
proteins was traced in pioneering experimental stud-
ies by George Palade (11 ), who received the Nobel
Prize for his work in 1974.

Proteins of the secretory pathway carry a target-
ing sequence in their precursor protein sequences and
are transported co-translationally across the Endo-
plasmatic Reticulum (ER) membrane. Proteins in
the ER are further transported into the Golgi appara-
tus, plasma membrane, lysosome, vacuole, or the ex-
tracellular space, unless they carry an ER-retention
sequence. Vesicular carriers are often employed for
transporting the proteins and have been shown to
shuttle between ER and the Golgi apparatus (12 , 13 ).

The nSP proteins are synthesized on free cy-
toplasmic ribosomes and are transported from the
cytoplasm post-translationally, if they carry spe-
cific N-terminal targeting sequences for the chloro-
plast (cTP), mitochondria (mTP), or the lysosome
(14 , 15 ). These targeting sequences are usually
cleaved from the mature protein sequence by specific
signal sequence peptidases (16–18), once the protein
has reached its final destination. Additional intrinsic
sequences, such as the hydrophobic stop-transfer se-
quence, present within the mature protein, can initial-
ize membrane insertion of transmembrane proteins.
Secondary targeting sequences occur in chloroplasts
and enable further intraorganellar transport (19 ). All
nuclear proteins have to be imported from the cy-
toplasm. This import is facilitated as the nuclear
pore complex recognizes a nuclear localization sig-
nal (NLS), which is present only in nuclear proteins
(20 , 21 ). The NLS is a short stretch of four to eight
usually positively charged amino acids, and can be en-
coded as one fragment (monopartite) or as split into
two fragments (bipartite). The NLS has been pre-
cisely defined in several nuclear proteins, but there

are also nuclear proteins that appear to have no NLS
at all. Peroxisomal proteins are also imported from
the cytoplasm and carry a short C-terminal signal
sequence that facilitates transport across the perox-
isomal membrane. Furthermore, post-translational
modifications, such as glycosylation (22 ), also play an
important role for further protein transport (23–25).

Common to all signal sequences is that they show
a high specificity and an evolutionary conservation
(26 ). The conservation is not necessarily evident
within the primary amino acid sequence, rather indi-
rectly at the level of the biochemical properties of the
amino acids. Some of the targeting sequences show a
tendency to form some degree of secondary structure
like an amphiphatic alpha helix or beta sheet (27 , 28 ).
The correct cleavage of the TPs is highly dependent
on the primary sequence and a few direct sequence
motifs have been identified.

The organelles present unique biological condi-
tions to the proteins. During the course of the evolu-
tion, the only mutations that have been accepted are
the ones from which the cell benefits. It has been ob-
served that proteins from different organelles differ in
their overall amino acid composition (29 ); hence the
underlying hypothesis that each protein has evolved
over time to function optimally in a certain subcellu-
lar localization can be formed.

Computational Approaches

Computational methods for predicting protein sub-
cellular localization can generally be divided into four
categories: prediction methods based on (i) the over-
all protein amino acid composition, (ii) known target-
ing sequences, (iii) sequence homology and/or motifs,
and (iv) a combination of several sources of informa-
tion from the first three categories (hybrid methods).

(i) The pioneering work in using the overall
amino acid composition for prediction was done by
Nakashima and Nishikawa, who presented a method
for discriminating between intracellular and extracel-
lular proteins (30 ). Using the distance between the
overall amino acid composition vectors, Cedano et al
presented ProtLock for predicting five classes of sub-
cellular localizations (extracellular, intracellular, in-
tegral membrane, anchored membrane, and nuclear;
ref. 31 ).

Reinhardt and Hubbard presented NNPSL, an ap-
proach using artificial neural networks (ANNs) for
predicting four eukaryotic (cytoplasmic, extracellu-
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lar, mitochondrial, and nuclear) and three prokary-
otic (cytoplasmic, extracellular, and periplasmic) sub-
cellular localizations (32 ). Several alternative al-
gorithms have been applied to the data set pre-
sented by Reinhardt and Hubbard, including Koho-
nen’s self-organizing maps (33 ), Support Vector Ma-
chines (SVMs; ref. 34 ), and Markov chain mod-
els (35 ). Further developments in the area of us-
ing the overall amino acid composition have been
made by reflecting sequence order effects. Chou et
al presented an SVM-based method for predicting
twelve different subcellular localizations, taking se-
quence order effects into account (36 , 37 ). A similar
approach was recently presented by Park and Kane-
hisa as they described the PLOC method (38 ). Fuzzy
k-NNs were applied by Huang et al to describe the
dipeptide composition of the whole protein sequence
for eleven different localizations (39 ). The CELLO
method enables prediction of five subcellular local-
izations in Gram-negative bacteria (cytoplasm, inner
membrane, periplasm, outer membrane, and extra-
cellular space), based on the composition of peptides
of varying lengths (n-peptide composition; ref. 40 ).
Andrade et al were the first to incorporate structural
information into the amino acid composition vectors.
The surface composition of eukaryotic proteins with
known structure was used to distinguish between nu-
clear, extracellular, and cytoplasmic proteins (29 ).
The rationale behind this approach is that the inte-
riors of proteins have stayed fairly constant during
evolution, whereas surface residues have adapted to
certain biochemical environments.

(ii) The most comprehensive method based on N-
terminal targeting sequences is TargetP (41 ), which
allows for prediction of chloroplast, mitochondrial,
secretory pathway, and other proteins. TargetP
can be seen as an integration of the SignalP (42 )
and the ChloroP (43 ) methods; all three meth-
ods have been presented by the group of Gun-
nar von Heijne. MitoProt (44 ) and Predotar
(http://www.inra.fr/predotar) are two methods both
specifically discriminate chloroplast from mitochon-
drial proteins. Another method in this category is
iPSORT (45 ), offering prediction of the same lo-
calization categories as TargetP. The iPSORT uses
knowledge-based rules for prediction based on protein
sequence features derived from the AAindex database
(46 ).

(iii) Marcotte et al presented a method that as-
signs the subcellular localization by constructing phy-
logenetic profiles of the proteins (47 ). Mott et al used

SMART (48 ) domains for predicting cytoplasmic, se-
creted, and nuclear proteins (49 ). The method Pre-
dictNLS is a method specialized on recognizing nu-
clear proteins, based on a collection of nuclear local-
ization sequences (NLSs; ref. 50 ). A nearest neigh-
bour approach using the composition of functional
domains has also been presented and tested on the
Reinhardt and Hubbard data set (51 ). Proteome An-
alyst, presented by Lu et al, is based on SWISS-PROT
keywords and the annotation of homologous proteins
(52 ). This method is similar to the LOCkey (53 ) and
LOChom (54 ) methods described by Nair and Rost in
2002. PSLT is a recently presented method that uses
Bayesian networks and InterPro motifs for predicting
ten subcellular localizations (55 ).

(iv) PSORT, presented in 1992, was one of the
first methods developed for predicting the subcellular
localization (56 ). PSORT uses the overall amino acid
composition, N-terminal targeting sequence informa-
tion, and motifs, hence considered a hybrid approach.
This method uses a set of knowledge-based “if-then”
rules and predicts 14 animal and 17 plant subcellular
localizations. Extensions of the PSORT method in-
clude: PSORT II (a modified decision algorithm; ref.
57 ) and PSORT-B (with focus on bacterial proteins;
ref. 58 ). ESLpred was developed using the Reinhardt
and Hubbard data set and is an SVM-based method,
which combines the dipeptide composition and PSI-
BLAST scores (59 ). Drawid and Gerstein presented a
method that incorporates information about sequence
motifs, overall sequence properties (e.g. isoelectric
points and surface composition), and mRNA expres-
sion levels (60 ). Their method is based on a Bayesian
prediction model and was tested on the yeast genome.
MITOPRED is a method specialized for predicting
mitochondrial proteins, which is based on Pfam do-
mains (61 ) and amino acid composition (62 ).

Several of the described methods are available as
online prediction servers. A compiled list of methods,
associated URLs, and references can be seen in Ta-
ble 1. Since the methods have different localization
coverage and different means to assess their accuracy,
it is impossible to compare all methods against each
other. Accuracy issues of prediction are considered in
the Discussion section below.

Discussion

Currently available prediction methods differ in three
main aspects critical to the user: the underlying bio-
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Table 1 Prediction Methods Available Online

Method Url Ref.

Cello http://cello.life.nctu.edu.tw/ 40

ChloroP http://www.cbs.dtu.dk/services/ChloroP/ 43

ESLpred http://www.imtech.res.in/raghava/eslpred/ 59

iPSORT http://hc.ims.u-tokyo.ac.jp/iPSORT/ 45

MITOPRED http://mitopred.sdsc.edu/ 62

MitoProt http://ihg.gsf.de/ihg/mitoprot.html 44

NNPSL http://www.doe-mbi.ucla.edu/%7Eastrid/astrid.html 32

PLOC http://www.genome.jp/SIT/ploc.html 38

predictNLS http://cubic.bioc.columbia.edu/predictNLS/ 50

Predotar http://genoplante-info.infobiogen.fr/predotar/

Proteome Analyst http://www.cs.ualberta.ca/%7Ebioinfo/PA/Sub/index.html 52

PSORT http://psort.ims.u-tokyo.ac.jp/form.html 56

PSORT II http://psort.ims.u-tokyo.ac.jp/form2.html 57

PSORT-B http://www.psort.org/psortb/ 58

SignalP http://www.cbs.dtu.dk/services/SignalP/ 42

SubLoc http://www.bioinfo.tsinghua.edu.cn/SubLoc/ 34

TargetP http://www.cbs.dtu.dk/services/TargetP/ 41

logical model, the localization coverage, and predic-
tion accuracy. The biological model can be fairly sim-
ple as is the case for predictions based on the over-
all amino acid composition, or more complex as the
model underlying the knowledge-based PSORT pre-
diction system. The localization coverage differs im-
mensely and ranges from methods predicting just a
few localizations, to all possible localizations.

Prediction accuracy can be seen either as the over-
all accuracy for a method, or as the individual accu-
racy for each predicted localization. It is often the
case that some localizations can be predicted with
fairly high accuracy, whereas others not. Further-
more, most methods have been trained using different
data sets or training procedures, which makes a fair
benchmark comparison a daunting task.

Methods based on targeting sequences, such as
TargetP and iPSORT, generally predict only four
plant and three non-plant localizations (low coverage)
but have relatively high prediction accuracy. How-
ever, it should be pointed out that two of the pre-
dicted categories, SP and others, are not subcellular
localizations. The SP category contains proteins from
at least six different subcellular localizations, and the
category of others from at least three. Only if the
prediction is chloroplast or mitochondrial, a specific
localization can be assigned to the query protein. In
these cases it might even be a good choice to use a
more specialized method, such as MITOPRED, that

predicts mitochondrial proteins with high accuracy.
Predictions based on targeting sequences alone are
complicated by the fact that it is hard to determine
the presence of a targeting sequence (63 ).

Methods based on the overall amino acid compo-
sition have great variations in their coverage. The
underlying biological model is fairly simple, which
probably is one of the main reasons for trigger-
ing the avalanche of different computational algo-
rithms applied to the data set by Reinhardt and Hub-
bard, where four localizations are represented (32–35,
51 , 59 ). This data set has a high level of sequence
homology (up to 90%) and essentially all methods
perform equally, with only minor deviations. Some
of the algorithms used are more prone to overfitting
than others, since different types of cross-validation
schemes have been used. Other methods in this cate-
gory with higher localization coverage have compara-
ble overall accuracies and are a better choice if very
little is known about the protein at hand.

Methods based on direct sequence homology are
in some cases very accurate. These methods rely on
finding a highly similar protein with a known sub-
cellular localization annotation. Predictions neglect
protein specific features that can be learned from a
training data set, hence also the events in the sort-
ing process. The drawback is if there is no homol-
ogous protein with annotated localization available,
the result is left to chance. Parallels can be drawn to
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protein structure prediction, which can be fairly re-
liable if a homologous protein with known structure
is known. High sequence homology is often an indi-
cation that the proteins are similar in both structure
and function, but not necessarily that they share the
same localization.

Hybrid methods usually offer prediction of a wider
range of subcellular localizations and are the methods
of choice, when very little is known about the pro-
tein of interest. Methods providing a verbose output
of the prediction results can be recommended, since
these may give detailed information about potentially
detected motifs and targeting sequences.

A sophisticated prediction method should strive
towards mimicking the biological process of protein
sorting, an important step on the way to simulate
a small component of the systems biology of the cell.
Machine learning plays an important role in the devel-
opment and implementation of the complex underly-
ing biological models, which can also be seen from the
frequent application within this filed. As the accuracy
of the methods continue to increase, it will become
more interesting to take a closer look at the relatively
small proportion of misclassified proteins. It is likely
that these proteins are key players at the interfaces
of the organelles and they may provide clues to alter-
native protein sorting routes. There is a need to con-
stantly update methods and to extract new data sets
for training the prediction models. An example is the
data set used by Reinhardt and Hubbard extracted
from SWISS-PROT release 33.0 (52,205 sequence and
15,775 subcellular localization annotations; ref. 32 ),
which is still being used to develop new methods. The
current release SWISS-PROT 44.1 contains 122,750
protein entries with a total of 80,562 subcellular lo-
calization annotations. Hence, the advice to the in-
terested users is to choose a method based on an up-
to-date data set. To a general biologist, it is hard to
assess the choice of algorithm and whether the accu-
racy estimation is done in a sound way. The pitfalls
here are typically too homologous sequences within
the training data and cross-validation schemas to es-
timate the overall performance of the method.

In conclusion, understanding and predicting pro-
tein subcellular localization is a field of research where
a lot has happened recently both experimentally and
computationally. It is clear that several challenges lie
ahead, especially when translating known facts from
experimental biology into reasonable computational
models and simultaneously to avoid simplifications. A
further challenge is the prediction of proteins known

to shuttle between compartments, which in princi-
ple can be ascribed to two subcellular localizations
(64 , 65 ). There is no doubt that numerous new ap-
proaches, both in terms of algorithms and biological
motivations, will be presented in this field in the near
future. Prediction of subcellular localization is very
likely to be one building block in systems biology ap-
proaches, aiming to understand the broader aspects
of molecular biology.
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