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Abstract

Hyperactive ribosome biogenesis (RiboSis) fuels unrestricted cell proliferation, whereas genomic hallmarks and therapeutic targets of
RiboSis in cancers remain elusive, and efficient approaches to quantify RiboSis activity are still limited. Here, we have established an
in silico approach to conveniently score RiboSis activity based on individual transcriptome data. By employing this novel approach
and RNA-seq data of 14 645 samples from TCGA/GTEx dataset and 917 294 single-cell expression profiles across 13 cancer types, we
observed the elevated activity of RiboSis in malignant cells of various human cancers, and high risk of severe outcomes in patients
with high RiboSis activity. Our mining of pan-cancer multi-omics data characterized numerous molecular alterations of RiboSis, and
unveiled the predominant somatic alteration in RiboSis genes was copy number variation. A total of 128 RiboSis genes, including EXOSC4,
BOP1, RPLP0P6 and UTP23, were identified as potential therapeutic targets. Interestingly, we observed that the activity of RiboSis was
associated with TP53 mutations, and hyperactive RiboSis was associated with poor outcomes in lung cancer patients without TP53
mutations, highlighting the importance of considering TP53 mutations during therapy by impairing RiboSis. Moreover, we predicted
23 compounds, including methotrexate and CX-5461, associated with the expression signature of RiboSis genes. The current study
generates a comprehensive blueprint of molecular alterations in RiboSis genes across cancers, which provides a valuable resource for
RiboSis-based anti-tumor therapy.
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INTRODUCTION
Ribosome biogenesis (RiboSis) is a complex process that generates
ribosomes required for protein synthesis in the growth and
proliferation of cells [1–3]. It is a tightly coordinated process that
involves three RNA polymerases, approximately 80 ribosomal
proteins, and approximately 200 non-ribosomal trans-acting
factors [4, 5]. RiboSis includes rRNA transcription, rRNA cleavage,
rRNA modification, ribosome assembly and export of ribosomal
pre-particles [6]. In malignant cells, the genes involved in each
substep of RiboSis undergo somatic alterations, resulting in ribo-
somopathies and an increased risk of carcinogenesis [7, 8]. The
concept that ‘ribosomes translate cancer’ has gained increasing
recognition [9, 10]. Thus, understanding the contribution of these
alterations to pathogenesis will allow for unveiling novel and
targetable vulnerabilities in cancer. Owing to large-scale and

multi-dimensional open-access data, there are numerous pan-
cancer studies relevant to gene signatures [11–16]. However, a
systematic analysis of genes involved in RiboSis in human cancers
has been lacking.

RiboSis initiates in the nucleolus and terminates in the cyto-
plasm [7]. Nucleolar size and density are highly dynamic and
can be adjusted according to the demands of protein synthesis.
Increasing evidence has underscored hyperactive RiboSis fuels
unrestricted cell growth and proliferation, and it has emerged
as a central player in cancer occurrence and metastasis [7, 17].
Aberrant increases in nucleolar size and number accommodated
by dysregulation of RiboSis are regarded as hallmarks of the
vast majority of cancers [18]. Silver staining of the argyrophilic
nucleolar organizer region (AgNOR), where RiboSis takes place,
is used as an indicator of cellular proliferative activity [19]. In
addition, the expression of nucleolar protein fibrillarin [20, 21]
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and the abundance of RNA polymerase I transcription factor [22]
are commonly used to reflect the activity of RiboSis. Unfortu-
nately, these experimental approaches are not suitable for some
cancer types, particularly melanoma or mesothelioma [23] or
are difficult to perform [24]. Several computational approaches
have been developed to quantify biologically relevant activities
between groups or samples based on gene set or signature scoring
[25, 26]. However, there is still a lack of computational approach
to efficiently and specifically quantify RiboSis activity in cancer.

The dysregulation of RiboSis in the proliferation of cancer
cells provides targetable vulnerabilities for cancer therapy [27].
Several chemotherapeutic or targeted drugs, 5-fluorouracil,
cisplatin, oxaliplatin, actinomycin D and poly-ADP ribose
polymerase (PARP) inhibitors, have been proven to act through
perturbation of RiboSis including inhibition of rRNA synthesis and
rRNA processing [28–32]. Additionally, certain cancer therapies
originally intended to kill cancer cells through inducing DNA
damage actually impair RiboSis via multiple mechanisms [31].
Although a few anti-tumor drugs can inhibit ribosome biogenesis,
these drugs mainly target the early substeps of RiboSis, such as
rRNA transcription and pre-rRNA processing [33]. Among RiboSis-
related genes, only XPO1 and MTOR have been approved as drug
targets in multiple myeloma and breast cancer. Thus, there is still
much room for the development of anti-tumor drugs targeting
RiboSis genes.

To determine genomic hallmarks and therapeutic targets of
RiboSis in cancers, we first established an in silico approach to
quantify the activity of RiboSis based on transcriptomic data for
the first time. By employing this approach, RNA-seq data of 14
645 samples from TCGA/GTEx dataset and 917 294 single-cell
expression profiles across 13 cancer types were analyzed, and
RiboSis activity in human cancers and its clinical relevance were
explored. The molecular alterations of RiboSis genes were further
characterized, and potential therapeutic targets were identified
based on the frequent alterations of RiboSis genes in malignant
tumors.

MATERIALS AND METHODS
Evaluation of RiboSis activity
The gene set related to RiboSis was defined based on the GO term
of the MSigDB and characterization of Nerurkar et al. [6], and the
cancer genetic dependence of RiboSis genes was evaluated based
on the genome-wide RNAi/CRISPR screening data of DepMap
project. Inspired by the single sample gene set enrichment anal-
ysis method in the R package Gene Set Variation Analysis (GSVA)
[25, 26], we developed a computational approach to systematically
evaluate the RiboSis activity of each sample using the RiboSis
gene set constructed above. More details about data collection and
processing, evaluating RiboSis activity, receiver operating charac-
teristics (ROC), and survival are available in the supplementary
methods.

Characterization of RiboSis genomic hallmarks
The R package DESeq2 [34] was used to estimate differentially
expressed RiboSis genes (Padj < 0.05 and |log2 Fold Change| >1).
GISTIC2 [35] was used to evaluate focal somatic copy number
alterations in RiboSis genes (q-value < 0.25 and confidence
level > 99%). Enrichment analysis was performed separately
in each cancer type (P < 0.05). More details about differential
expression analysis, majority vote meta-analysis and characteri-
zation of recurrent copy number alterations are available in the
supplementary methods.

Drug response analysis
The drug development level was defined based on information
from the IDG program of the NIH. The R package oncoPredict
(V0.2) [36] was used to predict drug sensitivity through machine
learning methods. The Wilcoxon rank sum test was used to
perform differential drug response analysis (Padj < 0.05 and |
effect size| > 1). More details about drug development level, drug
response of patients and differential drug response analysis are
available in the supplementary methods.

RESULTS
Systematic evaluation of ribosome biogenesis
activity
To evaluate the demand for ribosomes in the proliferation of can-
cer cells, we developed an in silico approach to quantify RiboSis
activity. First, we defined a RiboSis-related gene set including 331
genes according to GO term of MSigDB and the characterization
of Nerurkar et al. [6] (Figure 1A; Supplementary Table S1, see
available online at http://bib.oxfordjournals.org/). To characterize
the cancer dependency of these RiboSis genes, we then analyzed
the genome-wide screening data of CRISPR/RNAi in cancer cell
lines from the DepMap [37]. A total of 251 (76%) RiboSis genes
were defined as essential genes for tumor growth and survival
(Figure 1B), and essential genes were significantly enriched in
RiboSis genes compared to non-RiboSis genes (Figure 1B). Next,
inspired by the single sample gene set enrichment analysis [26],
we developed a novel in silico approach to calculate RiboSis activ-
ity (Figure 1C). In this method, multiple RiboSis genes, instead
of a single RiboSis gene, were used and the background of non-
RiboSis genes was considered, which ensured the robustness of
the output data. Aberrant increases in the expression of the nucle-
olar fibrillarin are commonly used to reflect the upregulation of
RiboSis [20, 38]. To evaluate the efficiency of our workflow, we
analyzed the mRNA and protein expression data of 105 breast
cancer samples from the TCGA-BRCA and CPTAC datasets. Signif-
icant associations were observed between the identified RiboSis
activity and the expression of four available fibrillarin proteins
including RRP1, FBL, NOP56 and USP36 (Figure 1D and E; Supple-
mentary Figure S1, see supplementary data available online at
http://bib.oxfordjournals.org/). Alterations in ribosome composi-
tion upon 5-fluorouracil treatment have been characterized, and
5-fluorouracil has robust RiboSis-inhibitory activity [27, 28, 39,
40]. To further explore the reliability of our approach, we ana-
lyzed alterations in single-cell RNA expression after 5-fluorouracil
treatment [41]. RiboSis activity quantified by our approach was
decreased following 5-fluorouracil treatment in colorectal cancer
cells (Figure 1F). Together, these data suggest that our developed
computational approach was reliable for evaluating ribosome
biogenesis activity based on transcriptome expression data.

Hyperactive RiboSis activity in human cancers,
especially in malignant cells
Using the above-developed approach, we analyzed the RNA-seq
data of 14 645 samples from TCGA/GTEx datasets to evaluate
RiboSis activity in 33 cancer types. RiboSis activity varied among
different cancer types (Figure 2A). Lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC) had the highest, while kidney renal
clear cell carcinoma (KIRC) had the lowest levels of RiboSis activity
on average across all cancer types (Figure 2A), indicating the
difference in demand for RiboSis in the proliferation of tumor cells
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Figure 1. Development and validation of the approach to quantify ribosome biogenesis (RiboSis) activity. (A) Schematic of RiboSis in human cells adapted
from [27]. rDNA: ribosomal DNA; rRNA: ribosomal RNA; RNA pol I/II/III: RNA polymerase I/II/III; snoRNA: small nucleolar RNA; RP: ribosome protein;
RPS: ribosomal protein small subunits; RPL: ribosomal protein large subunits; 40S: small 40S ribosomal subunits; 60S: large 60S ribosomal subunits;
80S: mature 80S ribosome. (B) Summary of cancer dependencies of RiboSis genes. Left, the proportion of all 331 RiboSis genes that were essential genes,
non-essential genes and undefined genes; Right, the proportion of RiboSis genes involved in each substep and the number of genes involved is marked
on the right. (C) Workflow for evaluating RiboSis activity. The input includes the gene expression matrix and the RiboSis gene set, and the output is the
RiboSis activity score of each sample. g: a specific gene; N: the total number of genes in the gene expression matrix; S: a specific sample; n: the total
number of samples in the gene expression matrix; ES: enrichment score; G: the RiboSis gene set; r: the rank of a specific gene; NG: the total number
of RiboSis genes. A detailed description of this workflow is available in the supplementary methods. (D) The scatter diagram shows the correlation
between RiboSis activity (calculated by the above workflow) and the protein abundance of RRP1 (obtained from CPTAC) in each patient with breast
invasive carcinoma. (E) Boxplot showing the difference in the protein abundance of FBL between breast invasive carcinoma samples with high and low
RiboSis activity. (F) tSNE representation (Left) and the difference (Right) in colorectal cancer cells’ RiboSis activity after treatment with different doses
of 5-fluorouracil. ∗P < 0.05 and ∗∗∗∗P < 0.0001.
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Figure 2. Hyperactive ribosome biogenesis (RiboSis) in human cancers. (A) Violin and boxplot showing RiboSis activity across 33 human cancer types.
(B) The paired point plot shows the difference in the average activity of RiboSis between tumor and normal samples across 26 cancer types with a
sufficient sample size. ∗∗∗P < 0.001. (C) Heatmap showing RiboSis activity among malignant cells, immune cells and stromal cells across various human
cancer types. (D) tSNE representation of RiboSis activity of different cell types in ESCC single-cell RNA-seq data. (E) Heatmap showing RiboSis activity
among different cell subtypes across various human cancer types.
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across various cancer types. In 25 of 26 cancer types with a suffi-
cient sample size, RiboSis was significantly more active in tumors
than normal tissues (Figure 2B; Supplementary Figure S2, see
supplementary data available online at http://bib.oxfordjournals.
org/), highlighting the importance of hyperactive RiboSis during
tumorigenesis [27]. Furthermore, single-cell RNA-seq profiles of
13 cancer types were collected to evaluate RiboSis activity in
different cell types besides malignant cells. Notably, RiboSis was
more active in malignant cells than immune or stromal cells,
and this phenomenon was irrelevant to the proportion of malig-
nant cells (Figure 2C-E). Collectively, these data demonstrated
that RiboSis was hyperactive in cancer, especially in malignant
cells, providing the rationale for selectively targeting tumors over
normal cells during anti-RiboSis therapy [42, 43].

Hyperactive RiboSis in cancer tissues inspired us to examine
whether it could be used as a biomarker to distinguish cancer
from normal tissues. Notably, RiboSis activity showed outstanding
performance in distinguishing cancer tissues from normal tis-
sues in 15 cancer types (Figure 3A; Supplementary Figure S3, see
supplementary data available online at http://bib.oxfordjournals.
org/). Then, we sought to explore whether it was correlated with
patient prognosis in all of the 33 cancer types. We found that
hyperactive RiboSis was a risk factor for poor clinical outcomes
at the pan-cancer level (Figure 3B; Supplementary Figure S4, see
supplementary data available online at http://bib.oxfordjournals.
org/). Specifically, hyperactive RiboSis was associated with a poor
progression-free interval in 15 cancer types including lung squa-
mous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD),
head and neck squamous cell carcinoma (HNSC) and lung adeno-
carcinoma (LUAD) (Figure 3C). Collectively, RiboSis activity could
serve as an effective biomarker for predicting cancer, and the risk
of severe outcomes was increased in cancer patients with higher
RiboSis activity.

RiboSis genes undergo high copy number
amplification
To further determine the hallmarks of genomic alterations related
to RiboSis, we first explored the expression signature of each Ribo-
Sis gene across human cancers and observed that upregulated
RiboSis genes (Padj < 0.05 and |log2 Fold Change| >1) was signifi-
cantly enriched in cancers (Figure 3D), highlighting the essential
role of hyperactive RiboSis during tumorigenesis [27]. Notably,
different types of cancer exhibit cancer-specific RiboSis gene
dysregulation patterns (Figure 3E). Thus, we performed a major-
ity vote meta-analysis of differentially expressed RiboSis genes
across human cancers. Consistent with hyperactive RiboSis in
cancers, 229 RiboSis genes (69%) were consistently upregulated at
the pan-cancer level, while only 15 RiboSis genes (5%) were con-
sistently downregulated (Supplementary Figure S5, see supple-
mentary data available online at http://bib.oxfordjournals.org/),
highlighting that the changes in these RiboSis genes expression
are conserved across human cancers.

To explore the RiboSis-related alterations at the DNA level, we
analyzed the genetic alterations of RiboSis genes across human
cancers. Overall, higher proportions of somatic copy number
variations (CNVs) than single nucleotide variations (SNVs) were
observed in RiboSis genes across human cancers, especially in
pheochromocytoma and paraganglioma (PCPG), testicular germ
cell tumors (TGCT) and uveal melanoma (UVM) (Figure 4A and B).
Numerous RiboSis genes were genetically altered at high levels in
different cancer types (Supplementary Figure S6A-C, see supple-
mentary data available online at http://bib.oxfordjournals.org/).
In particular, amplification of NOP2, EMG1, DDX47, WBP11 and
DDX11 in TGCT (99.3% of samples; Supplementary Figure S6A, see

supplementary data available online at http://bib.oxfordjournals.
org/), deletion of RPS15 in ovarian serous cystadenocarcinoma
(OV) (89.3% of samples; Supplementary Figure S6B, see supple-
mentary data available online at http://bib.oxfordjournals.org/)
and deletion of PTEN in glioblastoma multiforme (GBM) (89.1% of
samples; Supplementary Figure S6B, see supplementary data
available online at http://bib.oxfordjournals.org/) were observed.
These analyses revealed that the predominant somatic genetic
alteration in RiboSis genes was CNV.

To gain more insight into the genomic alterations of RiboSis
genes in human cancers, we then focused on CNVs, including
amplifications and deletions, and assessed them based on signif-
icantly altered peaks identified by GISTIC2 (q < 0.25) at the pan-
cancer level (Figure 4C). Interestingly, high CNV often occurred in
RiboSis genes (Figure 4D) and cholangiocarcinoma (CHOL), KIRC,
adrenocortical carcinoma (ACC) and PRAD showed significant
amplification peak enrichments (Figure 4F). To explore poten-
tial driver events in RiboSis genes, we identified 40 recurrently
amplified RiboSis genes across cancers (G-score > 0.5; Figure 4E),
including XPO1. Together, these results suggest the essential role
of recurrently amplified RiboSis genes across human cancers.

Characterization of RiboSis gene-based
therapeutic targets
The dependence of tumor cells on RiboSis provides therapeutic
vulnerability for cancer cells [27]. To understand the current
situation of drug development of RiboSis genes, we first conducted
data mining using TCRD according to the target development
levels (TDLs) of RiboSis genes. Among these RiboSis genes, only
two RiboSis genes (XPO1 and mTOR) currently serve as therapeutic
targets of FDA-approved drugs in certain cancer types (Tclin:
1%; Figure 5A), and a small portion of RiboSis genes (20/331) are
targets with small molecules satisfying the activity thresholds
(Tchem: 6%; Figure 5A). The majority of RiboSis genes (309, 93%)
still lack corresponding compounds to manipulate their func-
tions (77% Tbio and 16% Tdark; Figure 5A). Notably, 240 of these
RiboSis genes with low target development levels (Tbio or Tdark)
are essential for cancer cell growth and survival (Figure 5A). To
explore whether RiboSis genes had been characterized in the
previous study, we performed a publication search through Pub-
Tator. Most of the RiboSis genes (280, 85%) had not been well
characterized (PubTator score < 150) and 213 of these understud-
ied RiboSis genes are essential for cancer growth and survival
(Figure 5A). Overall, a large number of insufficiently investigated
RiboSis genes, which are crucial to cancer growth but lack appro-
priate drug interventions, provide large opportunities for further
drug development.

In addition to XPO1 and mTOR with approved targeting drugs,
which RiboSis genes could be potential therapeutic targets?
In malignant tumors, frequent alterations in genes constitute
vulnerabilities for cancer treatment [44, 45], and recurrently
altered genes are more likely to be potential therapeutic targets.
Based on the above RiboSis-related genomic hallmarks, a total
of 128 RiboSis genes were identified as potential candidates
for therapeutic targets (Figure 5B). Notably, several RiboSis
genes were considered potential therapeutic targets in over
half of the cancer types (>16), including three RiboSis genes
with recurrent amplifications, DCAF13, EXOSC4 and UTP23.
All of these three genes were more frequently amplified than
XPO1 (Figure 4E), an approved inhibitor for the treatment
of relapsed or refractory multiple myeloma [46]. TP53 was
the most frequently mutated SNV hotspot at the pan-cancer
level (Figure 5B; Supplementary Figure S6C, see supplementary
data available online at http://bib.oxfordjournals.org/). The
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Figure 3. Upregulated ribosome biogenesis (RiboSis) genes in human cancers. (A) ROC curve showing the performance of RiboSis activity in distinguishing
primary cancer samples from normal samples in READ, LUSC, COAD and LUAD. ROC: receiver operating characteristic; AUC: area under the ROC curve.
(B) Progression-free interval (PFI) between primary cancer patients with high and low RiboSis activity. The number of patients is enclosed in brackets.
(C) Hazard ratio between patients with high and low RiboSis activity across different cancer types. A Cox proportional hazards model was used to
calculate the hazard ratio. The number of patients and 95% confidence interval (CI) of the hazard ratio are enclosed in brackets. (D) Bar diagram
showing the proportion of genome-wide differentially expressed genes (up) and differentially expressed RiboSis genes (down) across 26 cancer types.
(E) Heatmap of differentially expressed RiboSis genes across 26 cancer types. Each column represents a different RiboSis gene and each row represents
a different cancer type. The shade of color represents the degree to which the expression has changed.

activity of RiboSis was significantly increased in the TP53
missense mutation group (Figure 5C; Supplementary Figure
S7, see supplementary data available online at http://bib.
oxfordjournals.org/), and hyperactive RiboSis was associated
with poor outcomes in LUSC patients without TP53 mutations
(Figure 5D).

By integrating transcriptome and genome data, the combined
score for each of the 331 RiboSis genes was obtained using a
ranking approach. Integrative analysis of the top 10 ranked genes
within each cancer type revealed several hotspot genes, including

BMS1 and XRCC5, across multiple cancer types (Figure 5E). Col-
lectively, our data expand the reservoir of potential RiboSis gene-
based anti-tumor targets.

Putative drugs against ribosome biogenesis in
cancers
Considering the long cycle of new drug development, we screened
clinically approved/experimental drugs or tool compounds that
may treat cancers by inhibiting RiboSis. To understand the impact
of these compounds on RiboSis, we first used machine learning to
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Figure 4. Characterization of somatic genetic alterations in ribosome biogenesis (RiboSis) genes. (A) The proportion of patients with genetic alterations
in RiboSis genes across 33 cancer types. (B) Boxplot showing the ratio of patients with genetic alterations in RiboSis genes among SNVs, deletions and
amplifications. (C) Area diagram showing somatic amplification and deletion on 22 autosomes at the pan-cancer level. The shade of color represents the
number of cancer types, and the sites prone to alteration in more cancers are darker. The top 10 (5) RiboSis genes more likely to be amplified (deleted)
are labeled. (D) Density plot showing the G-score of significantly altered peaks in RiboSis genes. Boxplot showing the difference in the number of RiboSis
genes with high level (G-score > 1.0) genetic alterations between amplification and deletion. (E) Bubble diagram showing the RiboSis genes with the
G-score of the top 40 across various cancer types. (F) Histogram showing the enrichment ratio of RiboSis genes that reside in the amplification peaks
(identified by GISTIC2, q < 0.25). The enrichment ratio: fractions of RiboSis genes compared to non-RiboSis genes that reside in the amplification peaks.
Significant amplification enrichments are detected with P < 0.05 (Fisher’s exact test). ∗∗∗∗P < 0.0001.

predict the drug response of 367 compounds in 9173 patients from
The Cancer Genome Atlas (TCGA) cohort (Figure 6A). Combined
with the expression data from TCGA, highly correlated pairs of
RiboSis genes and drugs (|r| > 0.8, P < 0.05) were identified. Inter-
estingly, RiboSis gene expression was mainly negatively related
to the patient drug response, especially in DLBC and thymoma

(THYM) (Figure 6B), namely, high expression of RiboSis genes was
related to the increased drug sensitivity of patients. Then, we
focused on the RiboSis genes whose expression exhibited a neg-
ative association with drug response for functional enrichment
analysis and observed that each substep of ribosome biogenesis
had an extensive correlation with target pathways of clinically
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Figure 5. Characterization of ribosome biogenesis (RiboSis) gene-based therapeutic targets. (A) Sankey diagram showing cancer genetic dependencies
of RiboSis genes based on target development level and Pubtator score. The width of the bar is proportional to the number of RiboSis genes at each
corresponding level. (B) Bar diagram showing the number of RiboSis genes defined as potential targets in 7–11, 12–16 or > 16 cancer types at upregulated,
downregulated, amplification, deletion or SNV levels. RiboSis genes defined as potential targets in more than 16 cancer types are labeled. (C) Boxplot
showing the difference in RiboSis activity between samples with and without TP53 mutation at the pan-cancer level. MUT: with TP53 mutation (n = 3248);
WT: without TP53 mutation (n = 5212). ∗∗∗∗P < 0.0001. (D) Progression-free interval (PFI) among patients with high and low RiboSis activity and with and
without TP53 mutation. (E) Network diagram showing the top 10 ranked RiboSis genes within each cancer type. The size of the node is scaled according
to the degree of its connection.

approved/experimental drugs or tool compounds across different
cancer types (Figure 6C).

Using the expression data from CCLE and the drug sensitivity
data from GDSC, we then performed an association analysis
between RiboSis activity and the half-maximal response of each
drug. Cancer cells with higher RiboSis activity were more sensitive
to 65 drugs (Figure 6D). We also performed differential drug
response analysis on the activity of five substeps of RiboSis. Can-
cer cells with heightened activity in any of the substeps of RiboSis
tended to be more sensitive to numerous drugs (Supplementary
Figure S8, see supplementary data available online at http://bib.
oxfordjournals.org/), and 23 drugs exhibited significant differ-
ences in drug sensitivity in all differential analyses (Figure 6E).

Notably, these drugs included methotrexate, 5-fluorouracil and
CX-5461, which were drugs that have been reported to possess
inhibitory effects on RiboSis [28, 47], and CX-5461 shows promise
in phase I trials for various malignancies [47, 48]. Thus, these
data provide a valuable resource for repurposing clinically
approved compounds to kill malignant cells by inhibiting
RiboSis.

DISCUSSION
Despite the remarkable progress made, cancer is still a growing
global health concern [49]. Various risk factors including smoking
[50], chronic infection or inflammation [51–56] have been reported

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae023#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 6. Putative drugs against ribosome biogenesis (RiboSis). (A) The workflow for identifying significant RiboSis gene-drug pairs. The drug sensitivity
of patients is predicted by machine learning (oncoPredict). Combined the expression of RiboSis genes with the predicted drug sensitivity of each patient
to identify significant RiboSis gene-drug pairs (|r| > 0.8, P < 0.05). (B) Point diagram showing the number of significant RiboSis gene-drug pairs across
different cancer types. (C) Sankey diagram showing the enrichment result of significantly negatively correlated RiboSis genes-drug pairs. The width of
the bar is proportional to the number of significantly negatively correlated RiboSis gene-drug pairs. Left: RiboSis gene enriched substeps of ribosome
biogenesis; Right: drug target pathway. (D) Volcano plot showing the results of differential drug response analysis between cell lines with high and low
RiboSis activity. Each point represents a drug. Drugs reported to be able to inhibit RiboSis are labeled. (E) Venn diagram showing drugs with differential
drug responses in RiboSis and its five substeps. Twenty-three drugs that were identified as significantly differential drugs in all differential drug response
analyses are labeled.
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to be involved in the occurrence of cancer. At the molecular
level, hyperactive RiboSis can prompt unrestricted growth and
proliferation of cancer cells [9, 10, 57]. Unfortunately, a compu-
tational approach is still lacked to systematically evaluate the
activity of RiboSis, and the hallmarks of genomic variation and
therapeutic targets of RiboSis genes in human cancers are still
unclear, reflecting opportunities for the development of RiboSis-
based biomarkers and therapeutic strategies in oncology.

Previous studies measured the RiboSis activity using experi-
mental approaches, such as evaluating the nucleolar size [20],
silver staining of AgNOR [19], and evaluating the protein abun-
dance [58] or rRNA abundance [22] of RNA polymerase I tran-
scription factor. However, some of the methods are not suit-
able for specific cancer types [23] or are difficult to perform
[24]. Here, we first defined a RiboSis gene set, and observed
76% of RiboSis genes are essential for cancer cell growth, but
the majority of them are understudied (Figure 1B; Figure 5A).
Next, inspired by single sample gene set enrichment analysis
[26], we developed an in silico approach to calculate RiboSis
activity based on the expression of the defined RiboSis gene
set. In our approach, multiple RiboSis genes, instead of a single
gene, were used, and the background of non-RiboSis genes of the
individual transcriptome was considered to calculate the RiboSis
score, which ensured the robustness of the output data. Without
normalizing all samples as background, our approach and other
sample-wise enrichment methods [25, 59] could directly obtain
the score accurately regardless of the sample size, and char-
acterize the heterogeneity across different cancer types. Since
ribosome biogenesis is a complex biological process with other
variables besides the transcript expression, it would be even better
if the statistical model was used and residuals could be estimated.
Although our method does not consider random variability, vali-
dation using protein expression of fibrillarin in a breast cancer
cohort (Figure 1D and E, Supplementary Figure S1, see supple-
mentary data available online at http://bib.oxfordjournals.org/)
and single-cell RNA expression alteration after 5-fluorouracil
treatment in colorectal cancer cells (Figure 1F) demonstrated that
our developed computational approach was reliable for evaluat-
ing RiboSis activity based on transcriptome expression data. Thus,
we provided a valuable resource and a reliable tool for evaluating
the demand for ribosomes in the proliferation of cancer cells.

Owing to large-scale open-access data, numerous pan-cancer
researches relevant to gene signatures have emerged [11–16].
However, a global blueprint of molecular alterations in all substep
of RiboSis in different tumors has been lacking. Using the devel-
oped approach, we found that RiboSis was hyperactive in tumor
tissues, which is consistent with experimental results in previous
reports [60]. Molecular mechanism research also indicates that
hyperactive RiboSis plays a central role in the development of pan-
creatic cancer [61], ovarian cancer [62] and colorectal cancer [63].
Interestingly, RiboSis is more active in some cancer types, such
as TGCT, DLBC and rectum adenocarcinoma (READ) (Figure 2A),
which may be resulted from tissue-specific ribosomal hetero-
geneity [64, 65]. For example, germ-cell-specific ribosome was
reported to control male fertility in the testis [66]. And ribosomal
heterogeneity may be related to different ribosomal modification
pattern [67]. Furthermore, using single cell mRNA expression data,
we revealed that the RiboSis activity of malignant cells was more
active than that of other cell types in the tumor microenviron-
ment. Thus, our results clarified that the hyperactive RiboSis in
the tumor tissues was mainly due to the hyperactive RiboSis in
malignant cells, providing the rationale for selectively targeting
tumors over normal cells during anti-RiboSis therapy [42, 43].

It should be mentioned that the expression pattern of RiboSis
was slightly different among cancers, 11 RiboSis genes, includ-
ing TP53, were consistently up-regulated in more than half of
26 cancer types (Supplementary Figure S5, see supplementary
data available online at http://bib.oxfordjournals.org/). In addi-
tion, DDX17, NSUN5P1 and PTRF were consistently down-regulated
in about half of 26 cancer types (Supplementary Figure S5, see
supplementary data available online at http://bib.oxfordjournals.
org/), suggesting they may have other conserved functions beyond
taking part in generating ribosomes. For example, DDX17 was
reported to serve as inflammasome sensor for SINE RNAs [68], and
consistently down-regulated DDX17 may contribute to immune
escape. Regarding the hallmarks of genomic alterations related
to RiboSis, our multi-omic data revealed that the main genetic
variation of RiboSis genes was CNV, suggesting that high-level
amplification of RiboSis genes in tumors may be one of the main
driving factors for hyperactive RiboSis [69, 70]. Concerted copy
number variation balances are important for ribosomal DNA [71,
72]. High-level amplification of RiboSis genes might also disrupt
the original genome balance [73, 74], cause conflicts [75–77], and
lead to neofunctionalization [78, 79].

The demand for RiboSis in the proliferation of cancer cells
provides targetable vulnerabilities for cancer therapy [27]. By
integrating the pan-cancer multi-omic characteristics, we iden-
tified 128 potential therapeutic targets in RiboSis genes, includ-
ing EXOSC4 and TP53. EXOSC4 is reported as a potential onco-
gene that is necessary for tumor cell survival [80]. TP53 was
regarded as the most frequently mutated gene at the pan-cancer
level in our analysis and previous studies [81, 82], while drugs
used to treat patients with or without mutations residing in
the famous tumor suppressor are still on the road [83]. Inter-
estingly, in our study, we observed that the activity of Ribo-
Sis was significantly increased in the TP53 missense mutation
group (Figure 5C; Supplementary Figure S7, see available online
at http://bib.oxfordjournals.org/), and hyperactive RiboSis was
associated with poor outcomes in lung squamous cell carcinoma
(LUSC) patients without TP53 mutations (Figure 5D). It has been
demonstrated that impairment of RiboSis triggers redirection of
the impaired ribosome biogenesis checkpoint (IRBC) complex to
the binding and inhibition of MDM2, leading to p53 activation
[22, 33, 45, 84]. It constituted a fascinating therapeutic strat-
egy to activate the tumor suppressor function of p53 in these
wild-type p53-carrying LUSC patients through blocking RiboSis,
although more evidence is needed in the future studies. Addition-
ally, we conducted a clinical correlation analysis of the RiboSis
activity with clinically approved/experimental drugs, and identi-
fied 23 drugs that had inhibited RiboSis and its substeps. These
drugs included known compounds inhibiting RiboSis, such as
methotrexate, 5-fluorouracil and CX-5461 [28, 47]. 5-Fluorouracil
can inhibit late processing of rRNA by incorporation of rRNA, CX-
5461 and methotrexate are reported to inhibit rRNA transcription,
and CX-5461 is showing promise in phase I trials for various malig-
nancies [47, 48]. Although more experimental or clinical evidence
for these potential targets are needed in future studies, our data
expand the reservoir of potential RiboSis gene-based anti-tumor
targets and provide more drugs that are likely to kill malignant
cells by inhibiting RiboSis, shedding new light on RiboSis-based
anti-tumor therapy.

In summary, our study presents a computational approach to
systematically evaluate ribosome biogenesis activity for the first
time, generates a comprehensive blueprint of molecular alter-
ations in RiboSis genes across cancers, and provides a valuable
resource for RiboSis-based anti-tumor therapy.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae023#supplementary-data
http://bib.oxfordjournals.org/
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Key Points

• Ribosome biogenesis (RiboSis) has emerged as a new
therapeutic avenue for the treatment of cancer, but a
comprehensive portrait of RiboSis has been lacking to
unravel novel therapeutic targets and drug candidates.

• We developed an in silico approach to quantify the activ-
ity of RiboSis and systematically characterized RiboSis
activity and molecular alterations in 331 RiboSis-related
genes in 33 cancer types.

• RiboSis activity was elevated in malignant cells, with
high copy number amplification being the predominant
mutation type.

• Patients with high RiboSis activity showed increased risk
of severe outcomes in 15 cancer types including lung
cancer.

• By integrating data from CCLE and GDSC, higher RiboSis
activity correlated with increased sensitivity to 65 com-
pounds, and 23 compounds ranked in high-confidence
RiboSis-based anti-tumor drugs.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjourn
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