

Optimizations of Liquid Phase Deposition Processes for Enhanced Photoelectrocatalytic Activities of Tungsten Oxide Thin Films

Watcharapong Nareejun, Chatchai Ponchio,* Minoru Mizuhata, and Hiro Minamimoto*

precursor large stock solution process was achieved to simplify the LPD process for WO₃ thin film preparation. The effect of boric acid in the precursor solutions on the physicochemical properties of the deposited WO₃ thin films was investigated. As a result, we found that the optimized concentration of boric acid realized the

highest photoelectrochemical performance. Through the optimizations of reaction conditions and surface analyses, we concluded that the preparations of a semiconductor film via the LPD technique had the potential to obtain high-performance photoelectrocatalytic applications.

1. INTRODUCTION

The photoelectrocatalytic (PEC) technology has gained considerable interest in energy and environmental applications because of its notable efficiency, affordability, simplicity, and ecologically sustainable characteristics.^{1–3} The development of PEC systems relies heavily on appropriate semiconductor materials, particularly metal oxide semiconductors. Researchers are investigating many metal oxide semiconductors, such as $\text{TiO}_{2^{\prime}}^{4-6}$ BiVO_{4^{\prime}} Fe₂O₃, ^{9,10} Cr₂O₃, ¹¹ CuYO₂, ¹² Mn₂O₃, ¹³ or WO₃, ^{14,15} as photoanodes for water oxidation because of their exceptional performance and durability. Especially, WO₃ would be promising in converting visible-light energy due to its excellent efficiency and stability,¹⁶ as well as its narrow band gap energy ranging between 2.4-2.8 eV.¹⁷ In addition, the valence band (VB) of WO₃ has a more positive potential, which is favorable for promoting high-energy oxidation processes. WO₃ is often employed alone or in combination with other semiconductors like BiVO₄¹⁸ or composites like Pt/ WO₃-C.¹⁹ The approach of depositing the WO₃ film onto the support material substantially impacts and enhances the photoelectrocatalytic oxidation reactions. Various methods of WO₃ thin film fabrication have been employed to improve the PEC efficiency. The spin coating, sputtering, electrodeposition, and liquid phase deposition (LPD) are among the deposition techniques utilized. The structural, morphological, and PEC characteristics of WO₃ films are affected differently by each process. Electrodeposition has the ability to produce films that demonstrate outstanding uniformity and adherence.²⁰ Conversely, sputtering allows for the creation of films that have exceptionally high levels of purity and exact control over their thickness.²¹ The spin coating²² and LPD^{23,24} methods are widely favored for their cost-effectiveness and ease of usage in

achieving crystallographic organization and film formation. Moreover, these two methods provide significant advantages. Therefore, it is essential to develop a method for fabricating the WO₃ film that ensures the operations' simplicity and costeffectiveness and improves the adhesion between the thin film and the substrate.

The LPD is an attractive technique due to its inherent simplicity, the strong adhesion to the substrate, and lack of need for expensive equipment.^{25,26} Until now, we have established various types of LPD processes based on the slow hydrolysis of the fluorine metal complex species, leading to high-quality metal oxide films.^{27–29} Not only for our reports but also for other studies, it is known that the slow hydrolysis of W-fluoro complexes in the presence of boric acid and a fluoride scavenger can achieve WO₃ film preparations.^{30,31} In the LPD reaction solutions, boric acid promotes uniform nucleation and growth of WO₃ crystals on the substrate surface while keeping the crystallinity of deposits. The significance of boric acid in controlling the quality and efficiency of WO₃ thin film fabricated by the LPD technique was highlighted in the previous report.³⁰ However, there are few reports of in-depth studies about the precursor solution preparation method and the effect of boric acid on the quality of WO₃ in the PEC

Received: May 19, 2024 August 14, 2024 **Revised:** Accepted: August 19, 2024 Published: September 4, 2024

© 2024 The Authors. Published by American Chemical Society

Figure 1. Schematic diagram of WO_3 thin film fabrication by the LPD process. (a) WO_3 precursor solution preparation step and (b) LPD deposition step and calcination process.

water-splitting process. These insights would greatly influence the performance of the PEC process.

From the above backgrounds, this research focuses on the preparation procedure of the precursor solution and the effect of boric acid on the performance of the WO₃ thin film as the photoanode in the PEC cell. As a result, we successfully found the optimized concentration of boric acid in the precursor solution to achieve efficient water oxidation reactions in the PEC process. The outstanding results of the study were that we obtained a well-homogenized precursor solution in a shorter time and were able to significantly increase the efficiency of immobilizing the WO₃ film to the substrate. The impact of boric acid on the distinctive features and PEC capabilities of a WO₃ photoanode can be comprehensively elucidated in the reaction. The findings would have a significant impact on the advancement of the LPD technique as the fabrication process of the highly efficient electrode for PEC applications.

2. EXPERIMENTAL SECTION

2.1. Fabrication of a WO₃ Photoanode by the LPD Process. Figure 1a illustrates the preparation procedure of the parent solution of the W-fluorine species. 1.25 g of tungstic acid (H₂WO₄; SIGMA-Aldrich) powder was added to 15 mL of hydrofluoric acid (HF; SIGMA-Aldrich), and then, the volume was adjusted to 500 mL using distilled water. The homogeneous solution was then stirred and heated at 40 °C. As a comparison, we also heated the solution at 80 °C for 2 h and performed the ultrasonication process for 2 h. The filtrate was used as a precursor solution to obtain W⁶⁺ in the subsequent reactions, and then, the solution was stored overnight prior to use.

Boric acid (H_3BO_3) was added to the W⁶⁺ precursor solutions with concentrations of 0.1, 0.2, 0.3, and 0.4 mol/mL,

as shown in Figure 1b. A fluorine-doped tin oxide (FTO) (Bangkok Solar Co., Ltd., Thailand) electrode substrate with 2 \times 3 cm² dimension was sonicated in a detergent for 10 min, 3 M NaOH for 30 min, ethanol and deionized water for 10 min, subsequently, and dried before the LPD reactions. The FTO substrate was immersed vertically in a 50 mL precursor solution and kept at 40 °C in a water bath for 6 h. After the deposition, the substrates were subsequently rinsed with distilled water and then calcined at 450 °C for 1 h.

2.2. Characterizations and Photoelectrochemical Measurements. X-ray diffraction (XRD; Rigaku, SmartLab) analyses were performed to examine the crystallinity of the fabricated FTO/WO3 electrode. The morphologies and chemical compositions of the sample were investigated using scanning electron microscopy (SEM; JEOL, JSM -5410LV) and energy-dispersive X-ray spectroscopy (EDX; OXFORD, INCA-350). The oxidation states of deposits were evaluated using X-ray photoelectron spectroscopy (XPS, JEOL JPS-9010MC). The optical characters were examined using a UVvis spectrophotometer (JASCO, V-7200). The PEC cell for the investigation of water oxidations consisted of FTO/WO₃, platinum wire (Pt), and Ag/AgCl (sat. KCl) as the working, counter, and reference electrodes, respectively. The efficiency of the WO₃ photoanode for water oxidation was evaluated by applying 1.0 V (vs Ag/AgCl) while subjecting it to 14.4-W light-emitting diode irradiation in a 0.5 M Na₂SO₄ electrolyte solution. The electrochemical characteristics of the WO₃ photoanode were investigated using cyclic voltammetry (CV) with the potential range and scan rate of -0.5 to 1.0 V and 50 $mV s^{-1}$, respectively. Electrochemical impedance spectroscopy (EIS) measurements were utilized to examine the electrochemical resistance, capacitance, and band state of the

Figure 2. SEM images of (a) FTO and (b, c) FTO/WO₃ photoanodes fabricated by the LPD process. The precursor solutions were prepared at (b) 40 $^{\circ}$ C and (c) 80 $^{\circ}$ C, respectively.

Figure 3. SEM images of the FTO and FTO/WO₃ photoanode prepared by the LPD method with concentrations of H_3BO_3 of (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mol/mL.

fabricated WO₃ photoanode using a potentiostat (Princeton Applied Research, Inc., VersaSTAT3).

3. RESULTS AND DISCUSSION

3.1. Preparation Process of the WO₃ Precursor Solution. As shown in Figure 1a, the precursor solution became more homogeneous as the temperature was raised from 40 to 80 °C, indicating the impact of temperature on promoting the higher solubility of the tungstic precursor in the HF acid solvents. It was discovered that heating the precursor solution at 80 °C results in a clear yellow solution that was derived from $[WF_8]^{2-}$ and turns into a colorless $[W(OH)_8]^{2-}$ complex solution after the reaction was completed. At higher temperatures, tungstic acid (H_2WO_4) reacts with hydrofluoric acid to form a tungsten hexafluoride complex (H_2WF_8) with a faster reaction rate, facilitating the formation of the complex, as in eq 1. The tungsten hexafluoride complex $[WF_8]^{2-}$ reacts with H₂O to form a modified complex with hydroxide ligands and influences the kinetics of the reaction, as in eq 2. The modified complex reacts with additional H₂O, resulting in the formation of the $[W(OH)_8]^{2-}$ complex and affects the equilibrium of the reaction (eq 3).

$$H_2WO_4 + 8HF \rightarrow H_2WF_8 + 4H_2O \tag{1}$$

$$[WF_8]^{2-} + nH_2O \rightarrow [WF_{8-n}(OH)_n]^{2-} + nHF$$
 (2)

$$[WF_{8-n}(OH)_n]^{2-} + nH_2O + (8-n)H_2O$$

$$\leftrightarrow [W(OH)_8]^{2-} + (8-n)HF$$
(3)

The surface of the FTO substrate turned blue after the LPD process using a precursor solution containing a mixture of W^{6+} and H_3BO_3 . The blue color on FTO glass is a result of a reduction in the oxidation state of tungsten from W^{6+} to W^{5+} by the H_3BO_3 at the FTO surface.^{24,30-32} The LPD reaction process can be described as the following equations.

$$H_3BO_3 + 4HF \leftrightarrow BF^{4-} + H_3O^{+} + 2H_2O \tag{4}$$

$$[W(OH_8)]^{2-} + 2H^+ \to WO_3 + 5H_2O$$
(5)

After the reaction, the thin WO₃ film with a yellow color was obtained by a calcination process in air at 450 °C for 1 h. The material's color changes from blue (W^{5+}) to yellow (W^{6+}) during the high-temperature treatment. To compare the effects of the precursor solution preparation temperatures, the characteristics of the WO₃ thin film obtained from the LPD process in both conditions were investigated, as shown in Figure 2. Figure 2b displays the FTO/WO₃ surfaces prepared by the precursor solution at 40 °C. Compared to Figure 2a (bare FTO), the depositions of WO₃ were confirmed in both cases. However, it was found that the precursor solution kept at 40 °C led to inhomogeneous depositions (having cracks) and lower adhesions, which can be easily peeled off. The insufficient adhesion of H₂WO₃ and HF (eq 1) at a lower

Figure 4. XPS spectra of (A) a wide scan of the WO₃ electrode compared with a narrow scan of (B) W_{4f} and (C) O 1s elements on the FTO/WO₃ electrode fabricated by the LPD method with concentrations of H_3BO_3 of (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mol/mL.

temperature. From this, the complete hydroxylation of the tungsten hexafluoride complex (H_2WF_8) would lead to the incomplete conversion to $[W(OH)_8]^{2-}$ complex solution, as described in eqs 2 and 3. On the contrary, the FTO/WO₃ electrodes fabricated from the precursor solution prepared at 80 °C demonstrated a uniform, yellow, and smooth WO₃ film with the entire coverage of WO₃ (Figure 2c). The SEM image reveals a highly porous and rough surface. It can be expected that these morphologies would facilitate the photoanode activity due to the increased surface area, capacitance, and number of pathways for electron transfer. From this figure, since WO₃ covers the entire FTO glass surface, the electrode surface would be appropriate for photoelectrochemical measurements.

3.2. Effect of H_3BO_3 in the LPD Process for FTO/WO₃ Photoanode Fabrication. *3.2.1. Chemical Composition, Morphology, and Crystallinity.* The present study also evaluated the effect of the H_3BO_3 concentration in the precursor solution on the fabrication of WO₃ films. Figure 3 displays the top-view SEM images of FTO and FTO/WO₃ photoanodes prepared by the LPD method with varying concentrations of H_3BO_3 . Figure 3a shows the FTO/WO₃ electrode surface prepared with a lower concentration of H_3BO_3 (0.1 mol/mL). From this result, it was found that a lower concentration of H_3BO_3 in the LPD process leads to fewer nucleation sites, resulting in insufficient WO₃ deposition. The lowest % weight of W was also obtained from the EDX data (Table S1 in the Supporting Information). Notably, the H₃BO₃ concentration in the precursor solution significantly affected the morphology of the WO₃ thin film at the electrode surface, as shown in Figure 3b-d. Especially under 0.2 mol/ mL H₃BO₃ concentration conditions, small WO₃ nanoparticles are deposited uniformly on the surface, exhibiting high surface roughness and porosity. The obtained results demonstrate the function of H₃BO₃ in the production of WO₃ films in the LPD method, encompassing the influence on the crystal structure, morphology, and adhesion efficacy of the film to the electrode surface. Especially, Figure 3b exhibits the highest coverage of the WO₃ film under the H_3BO_3 concentration of 0.2 mol/mL. Thus, this finding, consistent with the highest weight % of W in EDX data (Table S1), indicates that the most suitable condition to control WO3 adhesion by the LPD process is determined as the H₃BO₃ concentration of 0.2 mol/mL. This implies that the LPD technique is most effective for establishing a strong bond between WO₃ and a 0.2 mol/mL concentration. The strong adherence is due to enhanced chemical adhesion by the formation of boron-oxygen bonds at the boundary between the WO₃ film and the electrode. H₃BO₃ concentrations of 0.3 and 0.4 mol/mL diminish the adhesion effectiveness and coverage. This is because the abundant boron ions may occupy the reactive sites, reducing the quantity of WO3 deposited and decreasing the film's homogeneity and adhesion. Conversely, the formation and deposition of WO₃ are not effectively supported when the concentration of boron ions is minimal, specifically, at 0.1 mol/mL. Consequently, there is a lack of adhesion and insufficient coverage. Therefore,

the structure and bonding of the WO_3 thin films are significantly influenced by the concentration of H_3BO_3 . A 0.2 mol/mL concentration is optimal for attaining strong adhesion, high surface roughness, and homogeneous deposition, which leads to improved photoelectrochemical performance.

Figure 4A illustrates the wide-scan XPS spectra of the FTO/ WO₃ electrode. The nanoparticles are composed of tungsten (W), oxygen (O), and carbon (C), as indicated by these spectra. The presence of these elements suggests that WO₃ has been effectively deposited onto the FTO substrate. The narrow scan XPS spectra of the W_{4f} region are depicted in Figure 4B. The W^{6+} oxidation state of WO_3 corresponds with the binding energies of the $W_{4f5/2}$ and $W_{4f7/2}$ peaks. The oxidation state of tungsten is unaffected by the varying concentrations of boric acid, as evidenced by the reason that these peaks remain consistent across all concentrations of H₃BO₃ used in the LPD process. $^{33-35}$ We employed deconvolutions to assess the oxidation states in the XPS spectra thoroughly. In the WO₃ composition, the analyzed spectra of W_{4f} verify the presence of W^{6+} . XPS spectra of the O_{1s} region are illustrated in Figure 4C, which offer insights into the oxidation state of oxygen in the crystalline WO₃.³⁶ Further validating the crystalline structure of the deposited WO_3 , the deconvoluted O_{1s} spectra exhibit peaks associated with lattice oxygen and hydroxyl groups. In the article, the deconvoluted spectra and the observed binding energies agree with the previously reported values for WO₃. The chemical composition and oxidation state in the WO₃ electrode are carefully evaluated by analyzing high-resolution XPS spectra and including a wide-scan XPS spectrum.

In addition to SEM and XPS analyses, we performed XRD measurements of each substrate as shown in Figure 5. The

Figure 5. XRD patterns of FTO/WO₃ electrode fabrication using the LPD process at various H_3BO_3 concentrations of H_3BO_3 of (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mol/mL.

tetragonal crystalline structure of SnO₂ derived from the FTO substrate was assigned to the peak at 2θ of 26.9, 34.1, and $38.8^{\circ}.^{37}$ From XRD patterns of the WO₃ film prepared with different H₃BO₃ concentrations, it was found that the variations in the concentration of H₃BO₃ affect the crystal structure of WO₃ at the surface of the electrodes (Figure 3a–d). Monoclinic WO₃ crystalline characteristics were observed as distinct XRD patterns at 23.1, 23.6, 24.4, and $34.1^{\circ},^{38-40}$ while the boric acid concentration of 0.1 mol/mL exhibits distinct peaks at 2θ of 23.1 and 34.1° . The single broad peak at 23.1° would indicate the reduced crystallite's size and the crystallographic orientations under lower concentration

conditions. When the concentration of H_3BO_3 increased from 0.2 to 0.4 mol/mL, clear XRD signals, corresponding to the high crystallinity of monoclinic WO₃, were obtained. This trend could be understood from eqs 4 and 5. The changes in H_3BO_3 amounts would lead to different amounts of proton source which accelerates eq 5. In other words, the inappropriate ratio of H_3BO_3 would induce the reverse reaction in eqs 4 and 5, providing low crystallinity or a small deposition of monoclinic WO₃. These findings suggest that an appropriate concentration of H_3BO_3 can enhance the growth of specific crystallographic phases or orientations, resulting in an enhanced crystalline quality of WO₃ on the FTO substrate.

3.2.2. Optical Properties Effect. The effect of H_3BO_3 concentration on the optical properties of the prepared films was evaluated, as shown in Figure 6. The highest visible light

Figure 6. Absorption spectra of the FTO substrate and FTO/WO₃ photoanode fabricated by the LPD process with various concentrations of H_3BO_3 in precursor solution as (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mol/mL.

absorption properties of the FTO/WO3 electrode were obtained when fabricated at an H₃BO₃ concentration of 0.2 mol/mL, as indicated by the highest WO₃ content and in good relation to the darkest yellow color of the WO3 semiconductor, 41-43 as shown in the insets of Figure 6. When the concentration of H₃BO₃ in the LPD process was increased to 0.3 and 0.4 mol/mL, the prepared WO₃ electrode exhibited decreased visible light absorption and a light-yellow color. The high concentration of H₃BO₃ could cause a decrease in the amount of WO3 on the electrode surface. This would be attributed to the saturation of active sites by the presence of boron ions, leading to inadequate adhesion and the changes in the electronic state. In the opposite direction, under the lowest H₃BO₃ concentration of 0.1 mol/mL, the WO₃ film is colorless and lacks visible light absorption properties, indicating a very low WO₃ level at the electrode surface. This effect occurs because the lowest concentration of H₃BO₃ is insufficient to promote the formation of the WO₃ film through the LPD process. The band gap energy (E_g) was determined using Tauc's eq (eq 6), which was calculated using the following equation

$$\alpha h\nu = A(h\nu - E_{\rm g})^{1/2} \tag{6}$$

Figure 7. Cyclic voltammograms of the FTO/WO₃ electrode fabricated by the LPD method with varying H_3BO_3 concentrations of (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mol/mL under (A) dark and (B) visible light irradiation conditions. The potential scan rate and supporting electrolyte were 50 mV s⁻¹ and 0.5 M Na₂SO₄.

Figure 8. (A) Photocurrent from water oxidation and (B) Nyquist plots of the FTO/WO_3 photoanode fabricated by the LPD process with concentrations of H_3BO_3 of (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mol/mL at the static potential of 1.0 V vs Ag/AgCl under visible light illuminations. The electrolyte was a 0.5 M Na₂SO₄ aqueous solution. The inset in (B) is the charge transfer rate (R_{ct}) values for each electrode.

where α , $h\nu$, A, and E_{g} are the absorption coefficient, photon energy, a constant, and the calculated bad gap energy, respectively. Figure 6 shows the spectra of $(\alpha h \nu)^{1/2}$ against the photon energy. From this figure, it was found that the band gap energy for the prepared film ranged between 2.1 and 2.8 eV. Particularly, the optimal condition for WO₃ photoanode fabrication demonstrates the narrowest band gap energy at 2.1 eV due to an appropriate H₃BO₃ concentration that can facilitate nucleation and well-adhesion on the substrate. This corresponds with the highest weight percent of W in the EDX data of FTO/WO₃ electrodes, which causes the electrodes to display the darkest yellow color, resulting in the highest visible light absorption properties. The different band gap energies would be derived from the different oxygen contents or the defect sites, which provide the additional energy states. Thus, it was found that the concentration of H3BO3 affected not only the surface morphology and deposited amounts but also the electronic structure of WO₃ through the changes in the boron species amounts. To summarize, the concentration of H₃BO₃ has a significant impact on the properties of a WO₃ thin film, including how it starts, grows, shapes, crystallizes, has flaws, and looks. These variables collectively influence band gap energy changes. An optimal concentration of H₃BO₃ improves

these characteristics, leading to the highest photoelectrochemical efficiency and band gap energy.

3.2.3. Photoelectrocatalytic Activities. For the investigations of photoelectrochemical properties of prepared WO3 films, the CV measurements were conducted in an aqueous solution under various applied electrochemical potentials and visible light illuminations ($\lambda_{ex} = 420-680$ nm). Figure 7 shows the oxidation and reduction currents obtained with the potential range between -0.5 and 1.0 V under dark or light illumination conditions. The current values exhibited a linear relationship with the amount of WO₃ deposited on the FTO substrate in both light and dark conditions, related to the effect of H₃BO₃ concentration during the FTO/WO₃ electrode fabrication processes. The current values within this potential range can quantitatively confirm the formation of the WO₃ film under each condition and support the findings of the EDX analyses.⁴⁴ Due to the lack of any sacrificial agent in the aqueous solution, Figure 7B confirms the occurrence of the photoelectrocatalytic water oxidations at the FTO/WO3 photoanode even under the neutral solution condition (as in the inset of Figure 7B). The FTO/WO₃ photoanode prepared from H₃BO₃ at a concentration of 0.2 mol/mL exhibits the highest photoelectrocatalytic activity for water oxidation.

Figure 9. (A) Mott–Schottky plots and Φ_{fb} values for each electrode obtained at a frequency of 10,000 Hz. (B) Energy band diagrams of FTO/WO₃ fabricated by the LPD process with various H₃BO₃ concentrations of (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mol/mL.

Under this condition, the onset potential for water oxidation begins at 0.1 V and is more negative than under other conditions, indicating that the electrocatalytic activity of the electrode was promoted. Under the light illuminations, the light-stimulating WO₃ semiconductor causes the separation of electron (e⁻) and hole (h⁺) excited from the VB to the conduction band (CB). The generated e⁻ at CB is transferred to the counter electrode, while the remaining h⁺ at VB oxidizes the H₂O at the electrode surface to produce oxygen. While under dark conditions, as shown in Figure 7A, no evidence was found that the water oxidation peak was caused by the absence of light illuminations.

Figure 8A demonstrates that the photoelectrocatalytic activity of the FTO/WO₃ photoanode for water oxidation was dependent on the H3BO3 concentrations in the LPD process by using a conventional three-electrode system under on-off light illuminations. This result indicates that a suitable concentration of H₃BO₃ can facilitate the strong adhesion of the WO₃ thin film to the substrate, which improves the photoelectrocatalytic activity of the FTO/WO₃ electrodes. The repetitive light illuminations at the constant potential also showed this tendency, as shown in Figure 8A. Moreover, the EIS measurements were utilized to investigate the charge transfer resistance (R_{ct}) of the FTO/WO₃ photoanode fabricated by varying concentrations of H₃BO₃ in the LPD process. Figure 8B demonstrates that FTO/WO₃ fabricated at an H₃BO₃ concentration of 0.2 mol/mL has the smallest semicircle of the Nyquist plot, corresponding to the lowest

value of charge transfer resistance (R_{ct}) compared to other conditions. The lowest R_{ct} value under the optimal conditions implies the highest electron transfer rate at the electrode surface, which is in good agreement with the highest photocurrent generations. The research demonstrates that the concentration of H₃BO₃ in the precursor solution has a substantial influence on the photoelectrocatalytic activity of the FTO/WO₃ photoanode produced via the LPD approach. Boric acid is a critical factor in forming and enlarging WO₃ crystals, which impacts the films' adhesion, shape, and arrangement via the LPD method. Our research reveals that a boric acid concentration of 0.2 mol/mL produces WO3 coatings in a highly uniform and highly crystalline state. As a result of their robust adhesion to the FTO substrate, these coatings improve light absorption and charge separation. Conversely, films produced at concentrations that are either higher or lower are less effective, as a result of insufficient nucleation or excessive saturation. Following the reaction with boric acid, it is possible to modify the residual HF in order to generate a fully integrated W-fluoride complex. It is essential to achieve a welldefined crystalline structure and robust adhesion in order to enhance reactivity and optimize the surface area.

3.2.4. Electronic Structure of Deposited Films. Mott– Schottky (MS) curves were utilized to verify the positions of the CB energy (Φ_{CB}) or flat band potentials (Φ_{fb}) of the WO₃ thin film under the dark condition. Figure 9A demonstrates that all samples showed the n-type semiconductor properties as can be found from the positive slope.^{45,46} The Φ_{fb} values for

Tał	ole	1.	Comparison	of (Current	Densities	for W	/O3	Photoanod	es	by Dif	ferent Fa	abrication	Methods

photoanode	fabrication process	electrolyte/light source	current density at 1.00 V vs Ag/AgCl	ref
FTO/WO ₃	LPD	0.5 M Na ₂ SO ₄ /14.4-W light-emitting diode (LED)	$\sim 120 \ \mu \mathrm{Acm}^{-2}$ at	this work
FTO/WO3/Fe2O3	sputtering	0.5 M Na ₂ SO ₄ /visible light irradiation	\sim 50 μ Acm ⁻²	47
ITO/WO ₃	FPD	0.1 M Na ₂ SO ₄ /60-W tungsten lamp	$\sim 80 \ \mu A cm^{-2}$	41
ITO/WO ₃	electrodeposition	0.1 M Na ₂ SO ₄ /visible light illuminated	$\sim 90 \ \mu Acm^{-2}$	42

each electrode were found to be at -0.48, -0.040, 0.20, and -0.040 V vs Ag/AgCl, respectively, when the H₃BO₃ concentration was varied to 0.1, 0.2, 0.3, and 0.4 mol/mL. From these values, the energy level of the valence band ($\Phi_{\rm VB}$) position of each FTO/WO₃ could be determined using the following equation as $\Phi_{\rm fb} = \Phi_{\rm CB} + E_{\rm g}$. The $\Phi_{\rm VB}$ values for FTO/WO₃ under different concentrations of H₃BO₃ of 0.1, 0.2, 0.3, and 0.4 mol/mL are found to be 2.12, 2.06, 2.80, and 2.66 V (vs Ag/AgCl), respectively. Such a difference would also originate from the different oxygen contents, defect sites at the band gap, or fluorine contents. This is supported by the different slopes of MS plots, which reflect the doping density of the semiconductor.

Figure 9B depicts a schematic energy diagram of the electronic structure of fabricated WO3 depending on the H₃BO₃ concentration. It verifies that the optimal electronic band structure for photoelectrocatalytic water oxidation under visible light irradiation is exhibited by the FTO/WO₃ photoanode prepared with a 0.2 mol/mL H₃BO₃ condition. It displays the narrowest band gap energy value, leading to the highest visible light absorption properties and highest photocurrent values. Furthermore, it was observed that the VB of WO₃ was more positive than the water oxidation potential in all situations, verifying its capacity to convert water oxidation into oxygen. The findings validate that WO₃ electrodes, prepared with a boric acid concentration of 0.2 mol/mL, exhibit maximum photocurrent. This is attributed to their exceptional light absorption capability and superior h⁺ production, enhancing the water oxidation efficiency. It is evident from the aforementioned statement that the concentration of H_3BO_3 in the precursor solution substantially influences the characteristic and photoelectrocatalytic activity of the FTO/WO_3 photoanodes. The function of H_3BO_3 in the precursor solution for WO₃ film fabrication in the LPD process is to regulate the amount of HF that remains after the reaction, which promotes the formation of a fully integrated W-fluoride complex compound. This compound production process significantly affects the WO₃ thin film's effective adhesion to the FTO substrate. The effective optimization of H₃BO₃ concentration in the LPD method facilitates achieving excellent adhesion efficiency for the WO₃ film. This is supported by developing an well-defined crystalline structure, distinctive morphology with a substantial surface area for enhanced reactivity, and the capacity to exhibit desirable properties. The exceptional capacity of WO₃ to efficiently absorb visible light is attributed to its favorable electrical band structure. The outcome of this study yields a WO₃ photoanode with exceptional photoelectrocatalytic water oxidation characteristics. Moreover, it should be emphasized that the present improvements in current density are notable when we compare the photoconversion abilities with other fabrication processes, as can be found in Table 1.47 From the above facts, it is possible to conclude that our current electrode preparation procedure would be a promising candidate for future

advancements in energy and environmental management applications.

4. CONCLUSIONS

A highly homogeneous precursor solution with a large volume was successfully produced for the fabrication of a WO₃ photoanode using the LPD technique. It can reduce inconsistencies, save time, and facilitate the LPD process for fabricating WO₃ thin films. The utilization of boric acid in the LPD process has a notable impact on the development of WO₃ thin films, particularly in enhancing their adhesion to the electrode substrate. The optimal WO3 thin film production condition is a 0.2 mol/mL concentration of H3BO3 in the precursor solution, which results in various desirable properties. These characteristics include a high current density, low charge transfer resistance, high surface roughness, and good crystallinity. Furthermore, it exhibits a great capacity for absorbing visible light due to its appropriate band energy, hence demonstrating exceptional photoelectrocatalytic characteristics for water oxidation. The findings of this study demonstrate that the WO₃ photoanode prepared by the present procedure has remarkable photoelectrocatalytic water oxidation properties, establishing it as a prospective contender for future developments in energy and environmental management applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.4c04738.

Energy-dispersive X-ray analyses of the synthesized films shown in Figure 3 (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Chatchai Ponchio Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12120, Thailand; Advanced Photochemical and Electrochemical Materials (APEM) Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Khlong Hok, Pathum Thani 12110, Thailand; Email: chatchai@rmutt.ac.th
- Hiro Minamimoto Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan; o orcid.org/ 0000-0002-2360-577X; Email: minamimoto@ godzilla.kobe-u.ac.jp

Authors

Watcharapong Nareejun – Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12120, Thailand Minoru Mizuhata – Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan; orcid.org/ 0000-0002-4496-2215

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.4c04738

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Research and Researchers for Industries (RRI) project and Eagle dream Co., Ltd. (N41A650408). The JSPS KAKENHI (JP22K144960 and JP22K18315) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Nippon Sheet Glass Foundation, Kansai Research Foundation for technology promotion is also acknowledged.

REFERENCES

(1) Mesones, S.; Mena, E.; López-Muñoz, M. J.; Adán, C.; Marugán, J. Synergistic and antagonistic effects in the photoelectrocatalytic disinfection of water with TiO_2 supported on activated carbon as a bipolar electrode in a novel 3D photoelectrochemical reactor. *Sep. Purif. Technol.* **2020**, 247, 117002.

(2) Zhang, J.; Tang, B.; Zhao, G. Selective photoelectrocatalytic removal of dimethyl phthalate on high-quality expressed molecular imprints decorated specific facet of single crystalline TiO_2 photoanode. *Appl. Catal. B: Environ.* **2020**, *279*, 119364.

(3) Mu, F.; Dai, B.; Zhao, W.; Zhang, L.; Xu, J.; Guo, X. A review on metal-organic frameworks for photoelectrocatalytic applications. *Chin. Chem. Lett.* **2020**, *31* (7), 1773–1781.

(4) Shao, Z.; Zhang, Y.; Yang, X.; Zhong, M. Au-Mediated Charge Transfer Process of Ternary Cu₂O/Au/TiO2-NAs Nanoheterostructures for Improved Photoelectrochemical Performance. *ACS Omega* **2020**, *5* (13), 7503–7518.

(5) Srevarit, W.; Moonmangmee, S.; Phapugrangkul, P.; Kuboon, S.; Klamchuen, A.; Saito, N.; Ponchio, C. Photoelectrocatalytic H2 evolution enhancement over CuO-decorated TiO₂ nanocatalysts and promoting E. coli degradation. *J. Alloys Compd.* **2021**, *859*, 157818.

(6) Rojviroon, T.; Laobuthee, A.; Sirivithayapakorn, S. Photocatalytic Activity of Toluene under UV-LED Light with TiO_2 Thin Films. Int. J. Photoenergy **2012**, 2012 (1), 1–8.

(7) Tayebi, M.; Lee, B.-K. Recent advances in $BiVO_4$ semiconductor materials for hydrogen production using photoelectrochemical water splitting. *Renewable Sustainable Energy Rev.* **2019**, *111*, 332–343.

(8) Zhou, S.; Yue, P.; Huang, J.; Wang, L.; She, H.; Wang, Q. Highperformance photoelectrochemical water splitting of $BiVO_4@Co-MIm$ prepared by a facile in-situ deposition method. *Chem. Eng. J.* **2019**, 371, 885–892.

(9) Bemana, H.; Rashid-Nadimi, S. Incorporation of NiO electrocatalyst with α -Fe₂O₃ photocatalyst for enhanced and stable photoelectrochemical water splitting. *Surf. Interfaces* **2019**, *14*, 184– 191.

(10) Farooq, U.; Chaudhary, P.; Ingole, P. P.; Kalam, A.; Ahmad, T. Development of Cuboidal KNbO₃ $@\alpha$ -Fe₂O₃ Hybrid Nanostructures for Improved Photocatalytic and Photoelectrocatalytic Applications. *ACS Omega* **2020**, *5* (32), 20491–20505.

(11) Mansoor, M. A.; Munawar, K.; Naeem, R.; Sarih, N. M.; Asghar, M. A.; Haider, A.; Zubir, M. N. M.; Zaharinie, T. Aerosolassisted facile fabrication of bimetallic Cr_2O_3 - Mn_2O_3 thin films for photoelectrochemical water splitting. *New J. Chem.* **2023**, 47 (17), 8347–8354.

(12) Ahmed, S.; Mansoor, M. A.; Basirun, W. J.; Sookhakian, M.; Huang, N. M.; Mun, L. K.; Söhnel, T.; Arifin, Z.; Mazhar, M. The synthesis and characterization of a hexanuclear copper-yttrium complex for deposition of semiconducting CuYO₂-0.5Cu₂O composite thin films. *New J. Chem.* **2015**, *39*, 1031–1037.

(13) Naeem, R.; Mansoor, M. A.; Munawar, K.; Adnan, A.; Zaharinie, T.; Mohd Zubir, M. N. Versatile Fabrication of Binary Composite SnO_2 - Mn_2O_3 Thin Films by AACVD for Synergistic Photocatalytic Effect. *J. Electron. Mater.* **2021**, *50* (7), 3897–3906.

(14) Chatchai, P.; Murakami, Y.; Kishioka, S.-y.; Nosaka, A. Y.; Nosaka, Y. Efficient photocatalytic activity of water oxidation over $WO_3/BiVO_4$ composite under visible light irradiation. *Electrochim. Acta* **2009**, *54* (3), 1147–1152.

(15) Peleyeju, G. M.; Umukoro, E. H.; Babalola, J. O.; Arotiba, O. A. Solar-Light-Responsive Titanium-Sheet-Based Carbon Nanoparticles/ B-BiVO₄/WO₃ Photoanode for the Photoelectrocatalytic Degradation of Orange II Dye Water Pollutant. *ACS Omega* **2020**, *5* (10), 4743–4750.

(16) Tayebi, M.; Masoumi, Z.; Lee, B.-K. Ultrasonically prepared photocatalyst of W/WO₃ nanoplates with WS₂ nanosheets as 2D material for improving photoelectrochemical water splitting. *Ultrason. Sonochem.* **2021**, *70*, 105339.

(17) Seferlis, A. K.; Neophytides, S. G. On the kinetics of photoelectrocatalytic water splitting on nanocrystalline TiO_2 films. *Appl. Catal., B* **2013**, 132–133, 543–552.

(18) Nomellini, C.; Polo, A.; Mesa, C. A.; Pastor, E.; Marra, G.; Grigioni, I.; Dozzi, M. V.; Giménez, S.; Selli, E. Improved Photoelectrochemical Performance of $WO_3/BiVO_4$ Heterojunction Photoanodes via WO_3 Nanostructuring. ACS Appl. Mater. Interfaces **2023**, 15 (45), 52436–52447.

(19) Naeem, R.; Afzal, S.; Mansoor, M. A.; Munawar, K.; Sherino, B.; Ahmed, R. A composite approach to synthesize a high-performance Pt/WO₃-carbon catalyst for optical and electrocatalytic applications. *New J. Chem.* **2022**, *46* (28), 13454–13464.

(20) Kangkun, N.; Ponchio, C. Photoelectrodeposition of $BiVO_4$ layer on FTO/WO₃ photoanodes for highly efficient photoelectrocatalytic chemical oxygen demand sensor applications. *Appl. Surf. Sci.* **2020**, *526*, 146686.

(21) Limwichean, S.; Kasayapanand, N.; Ponchio, C.; Nakajima, H.; Patthanasettakul, V.; Eiamchai, P.; Meng, G.; Horprathum, M. Morphology-controlled fabrication of nanostructured WO₃ thin films by magnetron sputtering with glancing angle deposition for enhanced efficiency photo-electrochemical water splitting. *Ceram. Int.* **2021**, 47 (24), 34455–34462.

(22) Chatchai, P.; Nosaka, A. Y.; Nosaka, Y. Photoelectrocatalytic performance of $WO_3/BiVO_4$ toward the dye degradation. *Electrochim. Acta* **2013**, *94*, 314–319.

(23) Deki, S.; Yu Yu Ko, H.; Fujita, T.; Akamatsu, K.; Mizuhata, M.; Kajinami, A. Synthesis and microstructure of metal oxide thin films containing metal nanoparticles by liquid phase deposition (LPD) method. *Eur. Phys. J. D* **2001**, *16* (1), 325–328.

(24) Zhang, M.; Yang, C.; Pu, W.; Tan, Y.; Yang, K.; Zhang, J. Liquid phase deposition of WO_3/TiO_2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation. *Electrochim. Acta* **2014**, *148*, 180–186.

(25) Yamanaka, S.; Hamaguchi, T.; Muta, H.; Kurosaki, K.; Uno, M. Fabrication of oxide nanohole arrays by a liquid phase deposition method. *J. Alloys Compd.* **2004**, 373 (1–2), 312–315.

(26) Saito, Y.; Sekiguchi, Y.; Mizuhata, M.; Deki, S. Continuous Deposition System of SnO_2 Thin Film by the Liquid Phase Deposition (LPD) Method. J. Ceram. Soc. Jpn. 2007, 115, 856–860. (27) Mizuhata, M. Aqueous solution reaction during liquid-phase deposition and its application in electrochemical materials. J. Ceram. Soc. Jpn. 2022, 130 (9), 752–761.

(28) Huang, J.-J.; Lin, C.-H.; Ho, Y.-R.; Chang, Y.-H. Aluminium oxide passivation films by liquid phase deposition for TiO_2 ultraviolet solid-liquid heterojunction photodetectors. *Surf. Coat. Technol.* **2020**, 391, 125684.

(29) Lei, P.-H.; Ding, M.-J.; Lee, Y.-C.; Chung, M.-J. Textured zinc oxide prepared by liquid phase deposition (LPD) method and its application in improvement of extraction efficiency for 650nm

resonant-cavity light-emitting diode (RCLED). J. Alloys Compd. 2011, 509 (21), 6152–6157.

(30) Mohammad-Hosseinpour, M.; Yourdkhani, A.; Poursalehi, R. Fast-switching electrochromic response of WO_3 ·2H₂O of plate-like particles synthesized by liquid phase deposition. *J. Alloys Compd.* **2021**, *879*, 160418.

(31) Deki, S.; Béléké, A. B.; Kotani, Y.; Mizuhata, M. Synthesis of tungsten oxide thin film by liquid phase deposition. *Mater. Chem. Phys.* **2010**, *123* (2), *614–619*.

(32) Darmawi, S.; Burkhardt, S.; Leichtweiss, T.; Weber, D.; Wenzel, S.; Janek, J.; Elm, M.; Klar, P. Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. *Phys. Chem. Chem. Phys.* **2015**, *17*, 15903–15911.

(33) Nareejun, W.; Ponchio, C. Novel photoelectrocatalytic/solar cell improvement for organic dye degradation based on simple dip coating $WO_3/BiVO_4$ photoanode electrode. *Sol. Energy Mater. Sol. Cells* **2020**, *212*, 110556.

(34) Ji, R.; Zheng, D.; Zhou, C.; Cheng, J.; Yu, J.; Li, L. Low-Temperature Preparation of Tungsten Oxide Anode Buffer Layer via Ultrasonic Spray Pyrolysis Method for Large-Area Organic Solar Cells. *Materials (Basel)* **2017**, *10* (7), 820.

(35) Yao, J. N.; Chen, P.; Fujishima, A. Electrochromic behavior of electrodeposited tungsten oxide thin films. *J. Electroanal. Chem.* **1996**, 406 (1–2), 223–226.

(36) Leftheriotis, G.; Papaefthimiou, S.; Yianoulis, P.; Siokou, A. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO₃ films. *Thin Solid Films* **2001**, 384 (2), 298–306.

(37) Yu, H.; Yang, T.; Wang, Z.; Li, Z.; Zhao, Q.; Zhang, M. p-N heterostructural sensor with SnO-SnO₂ for fast NO₂ sensing response properties at room temperature. *Sens. Actuators, B* **2018**, 258, 517–526.

(38) Kumbhar, V. S.; Lee, H.; Lee, J.; Lee, K. Interfacial growth of the optimal $BiVO_4$ nanoparticles onto self-assembled WO_3 nanoplates for efficient photoelectrochemical water splitting. *J. Colloid Interface Sci.* **2019**, *557*, 478–487.

(39) Castillo, C.; Cabello, G.; Chornik, B.; Huentupil, Y.; Buono-Core, G. E. Characterization of photochemically grown Pd loaded WO_3 thin films and its evaluation as ammonia gas sensor. *J. Alloys Compd.* **2020**, *825*, 154166.

(40) Choi, J.; Song, T.; Kwon, J.; Lee, S.; Han, H.; Roy, N.; Terashima, C.; Fujishima, A.; Paik, U.; Pitchaimuthu, S. WO_3 nanofibrous backbone scaffolds for enhanced optical absorbance and charge transport in metal oxide (Fe_2O_3 , BiVO₄) semiconductor photoanodes towards solar fuel generation. *Appl. Surf. Sci.* **2018**, 447, 331–337.

(41) Kangkun, N.; Kiama, N.; Saito, N.; Ponchio, C. Optical properties and photoelectrocatalytic activities improvement of WO_3 thin film fabricated by fixed-potential deposition method. *Optik* **2019**, *198*, 163235.

(42) Supanantin, F.; Ponchio, C. Improvement ITO/WO₃ photo anode electrode fabrication using electrodeposition technique for highly efficient photoelectrocatalytic insecticide degradation. *Mater. Sci. Semicond. Process.* **2020**, *118*, 105212.

(43) Bi, Q.; Gao, Y.; Wang, Z.; Dang, C.; Zhang, Z.; Wang, L.; Xue, J. Preparation of a direct Z-scheme thin-film electrode based on CdS QD-sensitized BiOI/WO₃ and its photoelectrocatalytic performance. *Colloids Surf.*, A **2020**, 599, 124849.

(44) Xie, H.; Wang, Y.; Liu, H.; Wang, H.; Li, Y.; Qi, X.; Liang, T.; Zeng, J. Electrochromic electrode with high optical contrast and long cyclic life using nest-like porous doped-Sm WO₃ films. *Ceram. Int.* **2023**, 49 (5), 8223–8231.

(45) Ba, G.; Liang, Z.; Li, H.; Du, N.; Liu, J.; Hou, W. Simultaneous formation of mesopores and homojunctions in graphite carbon nitride with enhanced optical absorption, charge separation and photo-catalytic hydrogen evolution. *Appl. Catal. B: Environ.* **2019**, *253*, 359–368.

(46) Yan, K.; Liu, J.; Qin, J.; Zhang, J. A portable solar light-driven biophotoelectrocatalytic system for pollutant removal powered by photovoltaic cells. *J. Hazard. Mater.* **2022**, *435*, 128989.

(47) Wiriyachailerd, C.; Horprathum, M.; Eiamchai, P.; Ponchio, C. Improved the charge transfer for highly efficient photoelectrochemical water oxidation: the case of WO₃ and BiVO₄. *Mater. Today: Proc.* **2018**, 5 (6), 13874–13878.