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Introduction
Precision medicine represents a cutting-edge approach to dis-
ease prevention and treatment by considering individual differ-
ences in genetics, environment, and lifestyle. In this context, 
cancer classification using microarray gene expression profiling 
has garnered significant attention.1,2 Many statistical and 
machine-learning techniques have been applied to binary can-
cer classification using gene expression data.3,4 These methods 
include multiple logistic regression models (MLRs), support 
vector machines (SVMs), K-nearest neighbors (KNNs), linear 
discriminant analysis (LDA), and random forests (RFs), among 
others. While machine learning methods are popular, they 
often face a major drawback: they can be difficult to interpret 
and may not provide direct estimates of outcome probabilities. 

In contrast, statistical MLRs offer both explanatory power and 
probabilistic estimates.

Over the past decade, multicategory classification problems 
have become a significant focus for biologists and computer 
science researchers.5-7 In precision medicine, multicategory 
classification of cancer patients’ survival outcomes is particu-
larly crucial.8,9 By employing multicategory classification, it is 
possible to achieve more accurate diagnoses of cancer survival 
outcomes, which, in turn, enables the development of more tai-
lored and effective treatment options for patients.

The complexity of cancer development is well acknowl-
edged, frequently involving multiple biomarkers that interact 
synergistically, such as gene-environment (G-E) or gene-gene 
(G-G) interactions.10 Therefore, in addition to primary genetic 
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(G) or environmental (E) factors, interacting biomarkers can 
significantly influence cancer diagnosis. Incorporating these 
crucial interacting biomarkers into cancer classification models 
may improve their predictive accuracy.11,12 However, identify-
ing gene-gene (G-G) interactions is challenging due to the 
ultrahigh dimensionality of transcriptomic data. One approach 
to address this challenge is to utilize biological network infor-
mation to help pinpoint genuine G-G interactions.13 
Additionally, another challenge is that gene expression data are 
often contaminated by outliers.

In high-dimensional statistical learning, regularized regression 
methods are commonly recommended.14 However, a notable 
drawback of this approach is that the model size might exceed the 
sample size, potentially leading to suboptimal statistical power.15 
To address this issue, it is widely recognized that preliminary fea-
ture screening can significantly improve the effectiveness of 
model selection using regularization methods. Wang and Chen,16 
along with Wang et al,17 developed overlapping group screening 
(OGS) methods aimed at identifying active gene-gene (G-G) 
and gene-environment (G-E) interactions. These methods incor-
porate gene pathway information and use the identified features 
to build a survival time prediction model. The OGS approach has 
also been applied to clinical cancer versus normal outcome clas-
sification using a binary logistic regression model.4 The OGS 
methods are especially effective in tackling the challenge of a fea-
ture set that greatly exceeds the sample size, particularly when the 
feature groupings (pathways) overlap.

In this study, inspired by the methodology described by 
Feng et al,9 we integrate survival indices with clinical charac-
teristics to classify three distinct survival outcome categories: 
dead with no tumor, dead with tumor, and alive. This classifica-
tion is applied to cancer transcriptomic data from The Cancer 
Genome Atlas (TCGA), specifically for kidney renal papillary 
cell carcinoma (KIRP), lung adenocarcinoma (LUAD), and 
head and neck squamous cell carcinoma (HNSCC). For exam-
ple, the TCGA KIRP transcriptomic dataset includes 275 sub-
jects, with 235 (85.5%) alive, 12 (4.4%) dead with no tumor, 
and 28 (10.0%) dead with tumor. The dataset is inherently 
“imbalanced” in nature.

A dataset is termed “imbalanced” when certain classes have 
significantly fewer subjects compared to others. This imbalance 
can distort classification accuracy, resulting in poor perfor-
mance for minority classes despite high accuracy in majority 
classes. Consequently, classification models trained on imbal-
anced data are at a higher risk of severe overfitting and bias 
issues.18 The problem of class imbalance is more pronounced in 
multi-class classification than in binary classification.

Several strategies have been proposed to address the class 
imbalance problem and develop accurate prediction models.19,20 
In this study, we focus on resampling methods, which fall into 2 
main categories: over-sampling and under-sampling. Over-
sampling methods involve creating synthetic samples to increase 
the number of instances in the minority classes. The advantage 
of over-sampling is that it preserves all original information, but 

it can lead to overfitting since it involves duplicating data from 
minority classes. This issue can be mitigated through techniques 
like cross-validation. Under-sampling methods, on the other 
hand, reduce the number of instances in the majority classes to 
balance the dataset. This approach is more effective when there 
is a large amount of data and the minority class is not exces-
sively small. However, it risks losing valuable data from the 
majority classes, which is a significant drawback. In this work, 
we employ over-sampling methods to address the class imbal-
ance issue in TCGA transcriptomic data applications.

In this study, we apply the Overlapping Group Screening 
(OGS) method to TCGA cancer data with multiple (>2) sur-
vival outcomes. Specifically, the OGS technique is used to 
identify critical transcriptomic features and gene-gene (G-G) 
interactions associated with these survival categories. Based on 
these insights, we construct microarray-based cancer diagnosis 
models. Unlike the traditional binary logistic regression model 
used by Wang and Chen,4 we employ multinomial logistic 
regression to handle the multicategory outcomes. Additionally, 
we address the challenges posed by the ultra-high dimension-
ality of the gene expression data, contamination by outliers, 
and imbalanced outcome classes. We conduct a series of simu-
lations to compare the performance of several machine learn-
ing methods (SVMs, LDA, RFs, and KNNs) and a penalized 
multinomial logistic regression model with a grouped lasso 
penalty against our proposed method in accurately distin-
guishing clinical survival samples. We apply the OGS method 
to TCGA cancer transcriptomic data to identify significant 
gene-gene (G-G) interactions associated with clinical survival 
categories. Based on these identified interactions, we then 
construct microarray-based cancer diagnosis models.

Methods
Data structure and the multiple pathways

Given a multiple (K + 1)-class data with n subjects, where 
K � �, assume that each subject i in the data belongs to a cer-
tain outcome class, so that subject i’s outcome y Ki � �{ , , , }� � . 
Also, suppose that data on subject i’s p genes xi � � ��x xi ip�, ,

 
are available by some genotype encoding method, and the cor-
responding two-way gene-gene interactions are denoted by 
wi � � ���x x x x x x x xi i i ip i i ip ip1 2 1 2 3 1, , , , ,  . Indeed, it’s common 
for the number of genes to exceed the sample size in transcrip-
tomic studies, and the genes are assigned to several gene path-
ways that may overlap with one another; that is, a given gene 
may belong to multiple pathways. Pathway information deline-
ates the inherent hierarchy of genes, with overlapping path-
ways frequently present in gene expression data. Our objective 
is to uncover key genes and their interactions correlated with 
various clinical survival outcomes in cancer patients, utilizing 
pathway information to enrich our investigation. Pathway 
information is accessible through the Human Molecular 
Signature Database (MSigDB),21 downloadable from the 
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website http://www.broadinstitute.org/gsea/msigdb. TCGA 
gene expression data can be obtained from either the R pack-
age “UCSCXenaTools.”22

Random oversampling example (ROSE) for 
imbalanced data

A popular over-sampling scheme for dealing with imbalanced 
data is random oversampling example (ROSE) proposed by 
Menardi and Torelli.23 The ROSE procedure is a sampling 
method based on data synthesis, which addresses the problem 
of class imbalance by generating artificial data from a few 
minority classes. It recommends using model estimation and 
evaluation to create a more balanced data, where model evalu-
ation is performed using a smoothed bootstrap re-sampling to 
validate the chosen estimation technique. The ROSE proce-
dure can be implemented by the R package “ROSE,” and can 
be naturally applied to the class imbalance problem in multi-
class classification.

Evaluation criteria for multicategory classif ication

Some multicategory classification evaluation criteria are used. 
Let the recall REC j  and precision PRE j  for each class 
j j K( , , )� ��  be given as
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Liu et  al24 proposed the overall accuracy (OA) measure, 
defined as
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which measures the fraction of correctly classified samples over 
all samples, and is dominated by the performance in the major-
ity classes. In addition, consider
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and the macro-F-measure is defined as

F PRE REC
PRE REC
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� .

In principle, higher values of REC, PRE, and F reflect better 
performance of the method, and, in contrast to OA, these met-
rics reflect more performance in the minority classes.

The overlapping group screening (OGS) approach 
for binary classif ication

Here we briefly review the OGS for binary classification in 
Wang and Chen.4 This procedure involves a two-stage 
group screening process aimed at identifying main and 
interaction effects for binary classification. Considering that 
gene pathways may overlap with each other, that is, different 
pathways may share common genes, the latent effect 
approach proposed by Jacob et al25 is used to consider over-
lapping group information. We give a simple example in the 
appendix to illustrate the latent effects approach, which 
expresses the characteristic effect of the genes as the sum of 
group-specific effects. All transcriptomic signatures need to 
be standardized before OGS methods can be applied. The 
procedure of the OGS method for binary logistic regression 
models is as follows.

Step 1: We utilize the overlapping group binary logistic 
regression model to identify important gene groups (pathways) 
by executing the R package “grpregOverlap.”26 At this stage, 
assume that P candidate pathways are identified among all S 
pathways.

Step 2: We follow the idea of Wang and Chen16 to construct 
groups of G-G interaction pairs within a candidate pathway, 
between 2 distinct candidate pathways identified in Step 1, and 
between a pathway identified in Step 1 and an uncharacterized 
pathway. The Sequence Kernel Association Test (SKAT) by 
Wu et  al27 is then applied to the binary outcomes to derive 
group-specific P-values for each group of G-G interactions. 
The SKAT statistic under the binary logistic regression model 
is defined as

Q h Hh h h h( ) ( ) ( ) ( ) , , , ,� � � � �m R W mR �

where H P S P PP� � � � �� ( )  is the total number of inter-
acting pathway pairs considered in Step 2, m  is the vector 
of residuals estimated from the null logistic models for 
binary outcomes without considering any predictors (ie, the 
models with only the intercept term); R( )h h ij n l

r� �
��

�
��� � �

, 
where n is the sample size and l  is the number of G-G 
interaction pairs in the interacting pathway pair h , r h ij� �  is 
the j th G-G interaction pair of i th subject in the interacting 
pathway pair h , and W( )h  is a diagonal weight matrix that 
contains the weights (for power improvement) of the l  
interaction pairs in the interacting pathway pair h . Following 
Wu et  al,27 we consider an unsupervised weight that is 
defined as

http://www.broadinstitute.org/gsea/msigdb
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W( ) , , , , , ; , , ,h j j jBeta v j l h H� � � � � � �� �� � �

where v
Var r

Var rj
h j

j h j

� � �

� � � ��
( )

( )
.

.

, hence the square of the weight is 

a beta probability density function with parameters 1 and 25, 
evaluated at the ratio of the sample variance of the j-th interac-
tion in the interacting pathway pair h to the sample variance of 
all interactions in this pair.

Under the null hypothesis, it is assumed that all gene-gene 
interaction pairs in candidate pathway h have no effect. The 
SKAT statistic for each G-G interaction pairs group follows a 
weighted sum of chi-square distribution. The group-specific 
P-value is obtained from the above chi-square distribution using 
the Davies and Algorithm28 method, which can be computed by 
the R package “CompQuadForm.”29 A smaller P-value indicates 
greater significance, thereby granting higher priority in 
selection.

Step 3: We adopt the approach outlined by Wang et al17 to 
randomly permute the original data, creating permuted data 
that adhere to the null model. Re-run Step 2 to calculate the 
group-specific P-values q qH�

* *� �,...,  and determine the desired 
threshold δ  by selecting the minimum value among these 
P-values q qH�

* *� �,..., . For obtaining a stable threshold, it is 
necessary to repeat the permutation process multiple times, and 
the median of the resulting desired thresholds is utilized as the 
final cutoff point. G-G interaction pairs groups are deemed 
significant if their corresponding p-values fall below the cutoff 
point. Leveraging the selected pathways and G-G interaction 
pairs, we employ regularized logistic regression with Ridge, 
Lasso,14 or adaptive Lasso penalty30 to construct the final 
microarray-based classification model. This can be accom-
plished using the R package “glmnet.”31

The extension of the OGS approach for binary 
classif ication to multicategory classif ication

Without loss of generality, we take class 0 as the  
reference and then consider the multicategory  
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 Note 

that ββ  and γγ  are the corresponding effects of major genes 
and gene-gene interactions, respectively.

Binary classifiers are commonly used in machine learning to 
develop classification rules for multi-class problems.32 One 
approach to applying binary classification algorithms to multi-
class scenarios involves dividing the multi-class dataset into 

several binary-class datasets and fitting a binary classification 
model to each subset. This approach includes 2 main strategies: 
One-versus-Rest (OvR) and One-versus-One (OvO). In the 
OvR strategy, all classes except the one under consideration are 
combined into a single class, while in the OvO strategy, the 
model is trained to distinguish between 2 classes at a time, with 
each class being compared against the other classes.

The One-versus-One (OvO) strategy offers the advantage of 
faster training speed because each classifier is trained on data 
from only 2 classes, making the training process quicker than 
when training on all classes simultaneously. Additionally, OvO 
can achieve higher classification accuracy as each classifier focuses 
specifically on distinguishing between 2 classes. On the other 
hand, the advantage of the OvR strategy lies in the reduced num-
ber of classifiers required only (K + 1) classifiers need to be 
trained, with each classifier tasked to distinguish one class from 
all others. The implementation process is relatively straightfor-
ward, as it involves constructing (K + 1) binary classifiers and 
comparing the output of each classifier. However, its disadvantage 
is that each classifier may face imbalanced datasets during train-
ing, which could affect its performance. Moreover, OvR may not 
achieve the same high accuracy as OvO, as each classifier needs to 
distinguish all other classes, which can be challenging.

Following Li et al,33 we adopt the OvO binary classifier to 
split a multi-class dataset into multiple binary-class datasets, 
and fit K individual binary logistic models to model the prob-
ability ratio of class j to class 0, j = 1,. . .,K. Accordingly, the 
OGS approach can be extended naturally to multinomial logis-
tic regression models for multicategory survival outcomes in 
cancer diagnosis via the OvO strategy of Li et al.33 Specifically, 
we divide the whole dataset into K datasets { , , }C CK� � , where 
Cl  is the dataset embracing samples from the classes 0 and l . 
Based on the Cl  dataset, apply the OGS approach with binary 
logistic regression proposed by Wang and Chen4 to obtain the 
corresponding estimate ββ l  of ββ l  and γγ l  of γγ l . Repeat the 
above procedure from class 1 through class K, we can then col-
lect { , , , , , }�� �� �� ��� � � �

� �� �K K  to get the predicted probability of 
occurrence of the l-th category given as

p exp

exp
l Kl
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� . The final classification is determined by 

the category with the highest predicted probability. The OvO 
strategy offers a key advantage in computational efficiency. 
This is because not all data are used simultaneously for model 
training, allowing for the use of parallel computing to acceler-
ate the process.

The alternative classif ication methods

The “SIS_GROUP_LASSO” method utilizes a two-stage 
selection procedure,34 where the top n/(2∙log(n)) main predictors 
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are selected in the first step by univariate multinomial logistic 
regressions with the marginal Akaike information criterion 
(AIC), and in the second step, we examine the interactions cor-
responding to the main effects selected in the first step. Then, 
the penalized multinomial logistic regression model with a 
grouped-lasso penalty for all the K + 1 coefficients (correspond-
ing to K + 1 classes) for each selected biomarker is employed to 
build the classification. Since a grouped-lasso penalty is imposed 
on each biomarker, the effects of a biomarker over the outcome 
classes will all be zero or nonzero. The approach can be executed 
using the R package “glmnet.”

In the machine learning (ML) framework, we first utilize 
unsupervised learning feature selection to pick the top 
n n/ ( )� .log � �  predictors with the largest absolute variation 
for subsequent ML analysis. Furthermore, the SVM method 
employs a radial basis kernel with a tuning gamma hyperpa-
rameter set to 1, �� �� , �� �� , �� ��� �� � , or 0. This can be imple-
mented using the tune() function of the R package “e1071” to 
conduct a cross-validation process on a selection of models, 
aiming to derive the optimal prediction model. The KNN 
method utilizes a rectangular kernel and can be executed using 
the kknn() function from the R package “kknn.” Additionally, 
we conduct a cross-validation process to identify the optimal 
k-nearest neighbor values within the KNN algorithm, aiming 
to derive the most accurate prediction model. Within the RF 
method framework, 2 hyperparameters, ntree and mtry, require 
tuning. We explored ntree values ranging from 1 to 500 and 
mtry values from 1 to 10. Subsequently, we conducted a cross-
validation process on a selection of models to identify the 
optimal predictive model. This process can be implemented 
using the R package “randomForest.” In summary, we have 
included Table A.1 of Appendix, which provides a detailed 
description of the hyperparameter settings for the ML 
approaches utilized in this paper.

Results
Simulation studies: Synthetic dataset with complex 
gene structure

We are currently conducting a numerical analysis to showcase 
our proposed OGS method with multinomial logistic regres-
sion. Additionally, we aim to evaluate the predictive efficacy of 
our method in comparison to several established machine 
learning approaches. Synthetic data consisting of 500 samples 
are utilized as the training set, with each subject’s responses 
generated from a 3-class multinomial distribution,

p j pj
j j

k k k j

�
� � �� �

� � � �� �
� � �

�
��

exp

exp

i i

i i

x w

x w

�� ��

�� ���
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�

� �, , and
��

�

�p j

with the covariates x  are distributed uniformly between (−3,3) 
and w  denotes the two-way interaction covariates. To assess 
the prediction accuracy of various methods, we generate a test 
dataset comprising 300 samples, drawn from the same distri-
bution as the training data but independent of it. Within the 
framework of 3-class multinomial logistic regression, we pre-
dict the subject’s label using the following equation,

Y l if p p p pl l
    � � � �max � �, ,

where pk
 , k = 012, are obtained by the method in Section 2.5.

The simulation considers the gene group size (the number 
of genes per group) and the overlapping structure (the num-
ber of genes shared by two overlapping groups), as outlined in 
Table 1, where we can see, for instance, groups 10 and 11 each 
consist of 15 genes, totaling 25 unique genes between them, 
with 5 genes shared. Overall, this study encompasses 193 
genes and 243 potential group-specific gene effects. Figure 1 
illustrates the associated gene network structure. We further 
hypothesize that different biomarker effects are present in 
different outcome classes. In class 1, we hypothesize the effi-
cacy of gene groups 9 and 11, with genes in each group exhib-
iting consistent effects of −1.5 and 1.5, respectively. Moreover, 
within group 9, effective G-G interactions (G37-G39, G38-
G40) demonstrate effects of (1.5, 1.5), while between groups 
9 and 11, effective G-G interactions (G41-G58, G42-G59) 
display effects of (1.5, 1.5). In class 2, we hypothesize the 
efficacy of gene groups 13 and 15, with genes in each group 
exhibiting consistent effects of 1.5 and 1.5, respectively. 
Moreover, within group 13, effective G-G interactions (G78-
G80, G79-G81) demonstrate effects of (1.5, 1.5), while 
between groups 13 and 15, effective G-G interactions (G82-
G118, G83-G119) display effects of (1.5, 1.5). There are 
18 721 major genes and G-G interaction pairs in this simula-
tion study, and the average proportions of outcome classes 1, 
2, and 0 are 35%, 39%, and 26%, respectively.

We conducted the described simulation setup 500 times to 
gather numerical results. The results presented in Table 2 
indicate that the OGS method employing Ridge, Lasso, and 
Adaptive Lasso penalties consistently outperforms other 
methods, including common ML techniques, in multi-class 
prediction.

Table 1. The gene group structure for the varying gene group-size data.

GROUP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Gene Size 3 3 3 5 6 6 9 9 9 15 15 15 24 24 24 36 36

Overlapping 1 1 0 2 2 2 3 3 0 5 5 0 8 8 0 12
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Figure 1. The gene network structure for the varying gene group-size data.

Table 2. Averages (standard deviations) of testing prediction performance over 500 simulated replicates for various multi-class classification 
methods under the gene structure with different gene group sizes.

METHODS OA PRE REC F

OGS_Ridge 0.7067 (0.0433) 0.6987 (0.0449) 0.6983 (0.0441) 0.6985 (0.0444)

OGS_Lasso 0.7028 (0.0401) 0.6951 (0.0416) 0.6947 (0.0410) 0.6949 (0.0412)

OGS_ALasso 0.6923 (0.0390) 0.6853 (0.0401) 0.6849 (0.0401) 0.6850 (0.0400)

SIS_GROUP_LASSO 0.4271 (0.0399) 0.4054 (0.0465) 0.4012 (0.0396) 0.4031 (0.0420)

SVM 0.4763 (0.0346) 0.4636 (0.0361) 0.4565 (0.0334) 0.4600 (0.0344)

LDA 0.4786 (0.0351) 0.4669 (0.0352) 0.4645 (0.0343) 0.4657 (0.0346)

RF 0.4720 (0.0345) 0.4667 (0.0507) 0.4349 (0.0309) 0.4496 (0.0375)

KNN 0.4662 (0.0309) 0.4567 (0.0356) 0.4414 (0.0285) 0.4487 (0.0308)
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We also explore an alternate gene network structure, 
comprising 18 groups, each containing 10 genes. Details 
regarding group sizes and overlapping structure are pro-
vided in Table 3. This example encompasses 129 genes and 
180 potential group-specific gene effects. Figure 2 illus-
trates the associated gene network structure. In class 1, we 
hypothesize the efficacy of gene groups 1 and 4, with genes 
in each group exhibiting consistent effects of −1.5 and 1.5, 
respectively. Moreover, within group 1, effective G-G 
interactions (G1-G3, G2-G4) demonstrate effects of (1.5, 
1.5), while between groups 1 and 4, effective G-G interac-
tions (G5-G25, G6-G26) display effects of (1.5, 1.5). In 
class 2, we hypothesize the efficacy of gene groups 13 and 
18, with genes in each group exhibiting consistent effects 
of 1.5 and 1.5, respectively. Moreover, within group 18, 
effective G-G interactions (G123-G125, G124-G126) 
demonstrate effects of (1.5, 1.5), while between groups 13 
to 18, effective G-G interactions (G88-G127, G89-G128) 
display effects of (1.5, 1.5). There are 8385 major genes 
and G-G interaction pairs in this simulation study, and the 
average proportions of outcome classes 1, 2, and 0 are 38%, 
36%, and 26%, respectively.

From the results presented in Tables 2 and 4, it’s apparent 
that the OGS method with Ridge, Lasso, and Adaptive 
Lasso penalties consistently outperforms other methods, 
including traditional ML approaches, in terms of classifica-
tion performance. Additionally, both Tables 2 and 4 show-
case the standard deviations of accuracy metrics across 
different methods, indicating that the OGS methods exhibit 
slightly higher variability in accuracy compared to alterna-
tive approaches.

Real data application: Kaplan-Meier survival 
curves

We first display the 3 Kaplan-Meier survival curves for the 3 
cancer types (KIRP, LUAD, and HNSCC) across the 3 groups 
(alive, dead with no tumor, and dead with tumor). We then 
perform a log-rank test to assess whether there are significant 
differences between the survival curves of these 3 groups. 
From Figure 3, it can be observed that there are significant 
differences in the survival curves among the 3 groups in the 
survival data of KIRP and HNSCC. However, in the survival 
data of LUAD, there are no significant differences in the sur-
vival curves between the “dead with no tumor” and “dead with 
tumor” groups.

Real data application: TCGA KIRP data

Our own TCGA KIRP data consist of 275 subjects, of whom 
235 (85.5%) alive, 12 (4.4%) dead with no tumor, and 28 
(10.0%) dead with tumor. The data is extremely imbalanced in 
terms of the outcome class distribution. Given that the pool of 
cancer-related genes is likely finite, it makes sense to streamline 
the gene set before constructing the classification model. We 
employ unsupervised learning for feature selection, identifying 
the top 1000 genes with the most significant absolute variation 
for subsequent analysis.

For the proposed OGS approach, out of the initial 1000 
genes selected through unsupervised learning, 697 genes are 
linked to 398 pathways based on prior pathway information 
from the GO Cellular Component (GO-CC) database. The 
remaining 303 genes, not mapped to any pathway in the 
GO-CC database, are either excluded or grouped together in 
the OGS method. These alternative approaches result in a total 
of 243 253 and 500 500 main and G-G interaction effects, 
respectively.

We randomly split the entire dataset into 10 sets of 
165:110 for 60% training and 40% testing, respectively, to 
evaluate the performance of all considered methods. The 
ROSE resampling is performed on the training data to 
address the class imbalance issue. Table 5 summarizes the 
average 10-fold classification results after removing 303 
ungrouped genes from the analysis. We also consider another 
pathway database, Kyoto Encyclopedia of Genes and 
Genomes (KEGG),35-37 and the corresponding analysis 
results are shown in Table A.2 of Appendix. From both sets 
of results, we see that the OGS method has better classifica-
tion performance compared to the other methods in terms of 
REC, PRE, and F performance metrics. The ML methods 
SVM and KNN have superior performance in terms of the 
metric OA but inferior REC, PRE, and F metrics compared 
to the OGS, owing to that the ML methods perform well in 
the majority outcome classes (alive and dead with tumor out-
comes), but perform poorly in the minority class (dead with 
no tumor outcome).

Next, based on the GO-CC database, we apply the OGS 
approach with the adaptive lasso penalty to the entire TCGA 
KIRP data, and examine the selected features in the dead with 
tumor outcome category. The method selects 95 G-G interaction 
biomarkers, and the corresponding network is shown in Figure 4. 
Some selected biomarkers have been shown to have biological 
meaningful in published literature. For example, Wang et  al38 

Table 3. The gene group structure for the equal gene group-size data.

GROUP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Gene Size 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Overlapping  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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Figure 2. The gene network structure for the equal gene group-size data.

Table 4. Averages (standard deviations) of testing prediction performance over 500 simulated replicates for various multi-class classification 
methods under the gene structure with equal gene group sizes.

METHODS OA PRE REC F

OGS_Ridge 0.6777 (0.0387) 0.6707 (0.0405) 0.6694 (0.0400) 0.6701 (0.0402)

OGS_Lasso 0.7065 (0.0379) 0.7000 (0.0394) 0.6988 (0.0391) 0.6994 (0.0392)

OGS_ALasso 0.7124 (0.0425) 0.7067 (0.0442) 0.7051 (0.0439) 0.7059 (0.0440)

SIS_GROUP_LASSO 0.5410 (0.0449) 0.5249 (0.0505) 0.5145 (0.0442) 0.5196 (0.0471)

SVM 0.5813 (0.0343) 0.5734 (0.0356) 0.5646 (0.0351) 0.5689 (0.0350)

LDA 0.5894 (0.0341) 0.5805 (0.0350) 0.5773 (0.0349) 0.5789 (0.0348)

RF 0.5561 (0.0339) 0.5666 (0.0428) 0.5235 (0.0340) 0.5439 (0.0358)

KNN 0.5326 (0.0297) 0.5302 (0.0357) 0.5107 (0.0304) 0.5201 (0.0312)
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showed that the “HOXDs” gene is lowly expressed in KIRP, and 
the upregulation of “HOXDs” is associated with improved overall 
survival of cancer patients. These findings suggested that 
“HOXDs” may be an indicator biomarker for pan-cancer progno-
sis and immunotherapy. Jia et al39 demonstrated the expression 
and function of “CAMK2B” in vitro and in vivo, and provided 
evidence that this protein promotes reregulation of the stromal 
tumor microenvironment and inhibits KIRP proliferation.

Real data application: TCGA LUAD data

The TCGA LUAD data consist of 454 subjects, of whom 304 
(67.0%) alive, 38 (8.4%) dead with no tumor, and 112 (24.7%) 
dead with tumor. There exists class imbalance in this dataset. 
We choose the top 1000 genes with the highest absolute varia-
tion for subsequent analysis.

For the proposed OGS approach, out of the initial 1000 
genes selected through unsupervised learning, 640 genes are 
linked to 402 pathways based on prior pathway information 
from the GO-CC database. The remaining 360 genes, not 
mapped to any pathway in the GO-CC database, are either 
excluded or grouped together in the OGS method. These 
alternative approaches result in a total of 205 120 and 500 500 
main and G-G interaction effects, respectively. We randomly 
split the entire dataset into 10 sets of 272:182 for 60% training 
and 40% testing, respectively, to evaluate the performance of all 
considered methods. The ROSE resampling is performed on 
the training data to alleviate the class imbalance.

Table 6 summarizes the average 10-fold classification results 
after removing 360 ungrouped genes from the analysis. We also 
consider KEGG pathway database, and the corresponding anal-
ysis results are shown in Table A.3 of Appendix. From both sets 

Figure 3. Kaplan-Meier survival outcomes for the three cancer types (KIRP, LUAD, and HNSCC) across the three groups (alive, dead with no tumor, and 

dead with tumor).

Table 5. Averages (standard deviations) of testing prediction performance of different methods with GO_CC gene sets databases in the TCGA 
KIRP data over 10 random splits of 165:110 training/test sets.

METHODS OA PRE REC F

OGS_Ridge 0.6136 (0.0372) 0.4242 (0.0384) 0.5237 (0.0467) 0.4680 (0.0381)

OGS_Lasso 0.6282 (0.0292) 0.4288 (0.0337) 0.5192 (0.0482) 0.4689 (0.0344)

OGS_ALasso 0.6173 (0.0375) 0.4272 (0.0337) 0.5170 (0.0428) 0.4669 (0.0309)

SIS_GROUP_LASSO 0.4064 (0.0284) 0.4094 (0.0304) 0.5606 (0.0841) 0.4721 (0.0497)

SVM 0.6782 (0.0567) 0.3809 (0.0534) 0.4060 (0.0851) 0.3908 (0.0649)

LDA 0.6445 (0.0723) 0.3790 (.0.281) 0.4046 (0.0528) 0.3909 (0.0386)

RF 0.6482 (0.0828) 0.3900 (0.0508) 0.4211 (0.0556) 0.4047 (0.0516)

KNN 0.8464 (0.0347) 0.4090 (0.1048) 0.3809 (0.0624) 0.3928 (0.0794)
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Figure 4. The network of the selected G-G interactions by the OGS approach with the adaptive lasso penalty in the TCGA KIRP gene expression data 

with dead with tumor outcome.

Table 6. Averages (standard deviations) of testing prediction performance of different methods with GO_CC gene sets databases in the TCGA 
LUAD data over 10 random splits of 272:182 training/test sets.

METHODS OA PRE REC F

OGS_Ridge 0.5879 (0.0272) 0.4161 (0.0357) 0.4054 (0.0391) 0.4105 (0.0364)

OGS_Lasso 0.5621 (0.0328) 0.4006 (0.0383) 0.3974 (0.0627) 0.3986 (0.0500)

OGS_ALasso 0.5154 (0.0335) 0.3824 (0.0315) 0.3894 (0.0513) 0.3855 (0.0399)

SIS_GROUP_LASSO 0.3874 (0.0545) 0.3525 (0.0313) 0.3476 (0.0480) 0.3497 (0.0396)

SVM 0.6368 (0.0163) 0.3124 (0.1021) 0.3272 (0.0125) 0.3138 (0.0515)

LDA 0.4753 (0.0292) 0.3300 (0.0392) 0.3349 (0.0462) 0.3322 (0.0414)

RF 0.2593 (0.0708) 0.3752 (0.0203) 0.3552 (0.0346) 0.3646 (0.0272)

KNN 0.6582 (0.0243) 0.3518 (0.0291) 0.3439 (0.0094) 0.3473 (0.0160)
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of results, it is apparent that the OGS method consistently 
exhibits superior classification performance in terms of REC, 
PRE, and F metrics compared to other methods. The SVM and 
KNN have superior performance in terms of the metric OA but 
inferior REC, PRE, and F metrics compared to the OGS, owing 
to that the ML methods perform well in the majority outcome 
classes (alive and dead with tumor outcomes), but perform 
poorly in the minority class (dead with no tumor outcome).

Based on the GO-CC database, the OGS approach with 
the adaptive lasso penalty selects 121 G-G interaction bio-
markers, and the corresponding network is shown in Figure 5. 
Some selected biomarkers have been shown to have biological 
meaningful in published literature. For example, Zhang et al40 
showed that the gene “JPH3” was associated with non-small 
cell lung cancer (NSCLC), and they found that some genes 
including “JPH3” were frequently silenced by epigenetic mech-
anisms in lung cancer. Also, Nasser et al41 demonstrated that 
“S100A7” is upregulated in multiple types of malignancies, 
including non-small cell lung cancer, contributing to tumor 
growth, premetastatic niche formation, and metastasis.

Real data application: TCGA HNSCC data

 The TCGA HNSCC data consist of 491 subjects, of whom 
296 (60.3%) alive, 64 (13.0%) dead with no tumor, and 131 
(26.7%) dead with tumor. The data is moderately imbalanced 
in terms of the outcome class distribution. We choose the top 
1000 genes with the highest absolute variation for subsequent 
analysis.

For the proposed OGS approach, out of the initial 1000 
genes selected through unsupervised learning, 667 genes are 
linked to 393 pathways based on prior pathway information 
from the GO-CC database. The remaining 333 genes, not 
mapped to any pathway in the GO-CC database, are either 
excluded or grouped together in the OGS method. These 
alternative approaches result in a total of 222 778 and 500 500 
main and G-G interaction effects, respectively. We randomly 
split the entire dataset into 10 sets of 295:196 for 60% train-
ing and 40% testing, respectively, to evaluate the performance 
of all considered methods. The ROSE resampling is per-
formed on the training data to alleviate the class imbalance.

Figure 5. The network of the selected G-G interactions by the OGS approach with the adaptive lasso penalty in the TCGA LUAD gene expression data.



12 Cancer Informatics 

Table 7 summarizes the average 10-fold classification results 
after removing 333 ungrouped genes from the analysis. We also 
consider KEGG pathway database, and the corresponding 
analysis results are shown in Table A.4 of Appendix. These 
results reveal that, the OGS approach has slightly better per-
formance metrics than the ML methods in terms of REC, 
PRE, and F classification metrics, which focus more on the rare 
class, while the ML method SVM has the best classification 
performance in terms of the OA metric, which focuses more on 
the dominant classes.

Based on the GO-CC database, the OGS approach with 
the adaptive lasso penalty selects 85 G-G interaction biomark-
ers, and the corresponding network is shown in Figure 6. Some 
selected biomarkers have been shown to have biological mean-
ingful in published literature. For example, Irimie et al42 showed 
that the gene “MGST1” was associated with HNSCC, and they 
found that the expression levels of several genes, including the 
“MGST1” gene, were altered between smoking and nonsmok-
ing HNSCC patients. Misawa et al43 showed that neuropep-
tide genes including “GAL” are powerful epigenetic biomarkers 
in HNSCC.

We also report the biomarkers with the top- and bottom- 
coefficients for the “dead with tumor” outcome, identified using 
the OGS approach with adaptive lasso penalty to the 3 entire 
TCGA transcriptomic data, based on the GO-CC and KEGG 
databases. The results are detailed in Table 8 and A.5 of 
Appendix. Positive coefficients indicate that higher biomarker 
expression increases “dead with tumor” event probability, while 
negative coefficients indicate it decreases event probability.

Additionally, we plot the receiver operating characteristic 
(ROC) curves for the “dead with tumor” category of these 3 
real datasets using various classification methods, and calcu-
lated the corresponding area under curve (AUC) values for 
both training and testing data. The ROC curves and AUC val-
ues for all methods are obtained by averaging the results from 
10 iterations of the validation set approach. The corresponding 

graphs are shown in Figure 7 and A.1 of Appendix. From the 
ROC curves and AUC values in these 2 figures, we can con-
clude that our proposed method effectively avoids the overfit-
ting problem compared to the common machine learning 
methods considered in the article.

The advantage of our proposed method compared to 
machine learning approaches is that we emphasize model 
inference. Specifically, we focus on understanding the relation-
ship between important biomarkers and the response variable, 
not black box models. In terms of prediction, our method 
allows us to calculate the probability that an observation 
belongs to a certain class, rather than merely predicting a clas-
sification. ROC curve analysis of real data also indicates that 
our method can avoid overfitting, which is a common issue 
with machine learning methods.

Discussion
In summary, we outline the similarities and distinctions among 
Wang et al,17 Wang and Chen,4 and the current paper. Wang 
et  al17 employed the OGS approach with Cox’s regression 
model to identify significant gene-environment interactions 
linked to clinical censoring survival outcomes. Conversely, 
Wang and Chen4 utilized the OGS approach with a binary 
logistic regression model to discover critical gene-gene interac-
tion biomarkers associated with the occurrence of binary can-
cer/normal outcomes. This article employs the OvO strategy 
to convert multi-class classification into multiple binary clas-
sifications. It then integrates this approach with the OGS pro-
cedure, utilizing a binary logistic regression model as outlined 
by Wang and Chen.4 This combination aims to identify sig-
nificant gene-gene interaction biomarkers associated with 
multiple survival statuses in cancer patients. In this paper, in 
addition to the typical challenges of ultra-high dimensionality 
and feature contamination, we also encounter the problem of 
data imbalance. Together, these factors pose significant obsta-
cles to accurate predictive modeling.

Table 7. Averages (standard deviations) of testing prediction performance of different methods with GO_CC gene sets databases in the TCGA 
HNSCC data over 10 random splits of 295:196 training/test sets.

METHODS OA PRE REC F

OGS_Ridge 0.4924 (0.0301) 0.3678 (0.0292) 0.3669 (0.0331) 0.3674 (0.0311)

OGS_Lasso 0.4848 (0.0234) 0.3856 (0.0285) 0.3813 (0.0323) 0.3834 (0.0301)

OGS_ALasso 0.4640 (0.0309) 0.3894 (0.0301) 0.3866 (0.0352) 0.3879 (0.0323)

SIS_GROUP_LASSO 0.3843 (0.0436) 0.3792 (0.0392) 0.3721 (0.0385) 0.3756 (0.0386)

SVM 0.5756 (0.0514) 0.3397 (0.0837) 0.3523 (0.0346) 0.3426 (0.0572)

LDA 0.4538 (0.0572) 0.3636 (0.0468) 0.3621 (0.0510) 0.3628 (0.0488)

RF 0.3142 (0.0453) 0.3600 (0.335) 0.3457 (0.0311) 0.3524 (0.0303)

KNN 0.5761 (0.0335) 0.4193 (0.1382) 0.3592 (0.0288) 0.3797 (0.0642)
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Potential improvements to the OGS method

Since the real-world data we are interested in is imbalanced, 
there are 3 main approaches to dealing with class imbalance: 
resampling, cost-sensitive, and ensembling, and several exten-
sions based on these approaches have also been developed.19,44-46 
In the real data applications, we just leverage the ROSE resa-
mpling procedure to balance the data, while a remaining inter-
esting problem is, how to find a best way to tackle class 
imbalance for downstream genome-wide association study 
(GWAS), and how this way may work with the OGS approach.

In practical data analysis, we first select the top 1000 genes 
with the highest variance in gene expression. However, since 
variance itself is susceptible to outliers and gene data is often 
contaminated, it is essential to explore more suitable unsuper-
vised feature selection methods.47 Moreover, Fan and Lv15 
pointed out marginal feature selection may overlook key pre-
dictors due to: (1) Joint correlation not captured by marginal 
analysis, (2) Selection of secondary predictors highly correlated 
with important ones, and (3) Collinearity among predictors. 
They proposed an iterative method to address these issues. In 

addition, feature selection is the process of trying to select more 
informative features. Too many redundant or irrelevant features 
may overwhelm the important features of the classification. 
Feature selection can solve such problems, thereby improving 
prediction accuracy and reducing the computational cost of 
classification algorithms. Another interesting issue is that after 
the OGS procedure selects the most important genes and gene 
pairs, we can try feeding these selected biomarkers into another 
machine learning algorithm to see how well the predictions 
perform. We will study these further issues in future work.

In the OGS method, the SKAT test is key for screening 
gene interactions. Lee et al48 evaluated various gene- or region-
based testing methods, including burden and variance-compo-
nent tests, and assessed their performance. Since different 
methods have unique strengths based on the biological context, 
future research should explore diverse testing approaches to 
enhance OGS effectiveness. The OGS method extracts gene 
network information using predefined pathways, which limits 
it to genes in those pathways and can result in information loss. 
Researching ways to relax these constraints could improve fea-
ture selection and classification prediction. Besides, we utilize 

Figure 6. The network of the selected G-G interactions by the OGS approach with the adaptive lasso penalty in the TCGA HNSCC gene expression data.
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two-way and multiplicative interactions for simplicity in inter-
action assessments. However, higher-order and more complex 
interactions are challenging and warrant further research.

Misclassif ication analysis discussing

In this study, based on the classification by Feng et  al,9 we 
divided cancer patients into 3 groups according to their sur-
vival status and clinical condition (ie, dead due to cancer, dead 
due to other reasons, and alive). However, this classification 
could be further refined, for example: (1) Survivors Close to 
Death: If some survivors are in a health condition very close to 
death, this might impact the accuracy and interpretation of the 
classification results. Introducing indicators of health severity 
could improve classification accuracy. (2) Death without Tumor 
Population: If some individuals may not have been diagnosed 
with tumors or if the cause of death records are inaccurate, this 
could affect the accuracy of the analysis. To mitigate this 

impact, using grading or other indicators to assess the actual 
condition of these patients could be considered. (3) Censoring 
Issues: In survival data, censoring is an important considera-
tion. Future research should incorporate censoring information 
into the cancer patient classification to achieve more accurate 
classification and prediction. These considerations could help 
improve the precision of the classification and the reliability of 
the analysis, leading to a better understanding of cancer 
patients’ survival conditions and treatment outcomes.

Multiple cancer subtypes classif ication

van’t Veer and Bernards49 highlighted that identifying cancer 
subtypes is crucial for personalized precision medicine, as treat-
ment decisions heavily depend on understanding these sub-
types. For instance, Lavagna et  al3 developed a biomarker 
predictor to classify small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC), while Tian et  al50 used a 

Table 8. Biomarkers with the top- and bottom-coefficients for the “dead with tumor” outcome are identified using the OGS approach with the 
adaptive lasso, based on GO-CCdatabase.

KIRP (95 ACTIVE) LUAD (121 ACTIVE) HNSCC (85 ACTIVE)

ID COEFFICIENT ID COEFFICIENT ID COEFFICIENT

Top 10 biomarkers

 RIMS2-SH3GL2 0.735 GABRB3-INHA 0.560 ROS1-TBX18 0.516

 MFAP4-ABCC230 0.557 APOD-AZGP15 0.533 KRT1-MFAP5 0.495

 CLCNKA-LILRA4 0.479 CYP2A6-RYR1 0.474 DNAH11-KRT76 0.472

 CHGA-AGR29 0.359 CYP1A1-SPP2 0.395 KIF1A-OLFM4 0.452

 KRT5-TRIM54 0.344 CYP4F11-SHISA2 0.309 HRNR-SYT8 0.372

 CRB2-RHCG 0.315 ABCA439-ABCA490 0.297 MEGF10-TF 0.353

 HBB-ABCC294 0.293 AZGP15-SYT1 0.294 CALML5-GAL 0.348

 ABCC2-ABCC25 0.274 ABCA471-PPBP 0.284 GRP-SPESP1 0.314

 CBLN2-TAC1 0.271 AZGP1-NLGN4Y 0.263 SELP-SERPINB12 0.307

 GPRC5A-KCNH6 0.251 GRIA1-MUC13 0.255 CAMK2B-NLGN4X 0.263

Bottom 10 biomarkers

 GRID1-ABCC214 −0.312 GRIA1-TDRD5 −0.294 CDX2-HSPB7 −0.191

 DES-ABCC220 −0.327 DKK1-PRLR −0.346 ACTL82-PLA2G3 −0.210

 SH3GL2-SNURF −0.340 CHIT1-SERPINA5 −0.350 ACTC1-ACTL8 −0.231

 SH3GL2-SLC22A2 −0.382 ABCA400-RHCG −0.366 KRT3-MYH6 −0.234

 GAD1-USH1G −0.401 SLC6A15-UPK1B −0.423 PENK-TNNI3 −0.249

 CHGA-HOXD1 −0.404 MMP7-SFRP1 −0.425 SERPINB12-TCP11 −0.254

 ASXL3-ABCC291 −0.419 PTPRH-TSPAN8 −0.445 CHIT1-SYT8 −0.386

 KRT23-TNNT1 −0.429 ALDH3A1-FZD9 −0.496 CAMK2B-PROM1 −0.439

 POU2AF1-TBX18 −0.523 CHGB-S100A7 −0.539 NEFM-PROM1 −0.454

 CDH4-ABCC274 −0.633 ALDH3A1-VGF −0.564 KRT77-NEFL −0.520
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network-constrained sparse multinomial logit model to predict 
glioblastoma multiforme (GBM) subtypes. Tabibu et  al51 
applied deep learning to classify renal cell carcinoma and pre-
dict survival outcomes based on pathological images. Such 
classification methods support early diagnosis, enabling more 
precise treatments and prognostic assessments. Consequently, 
the OGS with multinomial logistic regression model could also 
be used for cancer subtype identification and prediction.

State-of-the-art methods

Recent studies at the forefront of the field have demonstrated 
improved classification results. It is widely recognized that 
metaheuristic algorithms have been extensively utilized to 
enhance classification performance. For example, the hybridiza-
tion of Particle Swarm Optimization has improved crime rate 
prediction.52 Similarly, combining Cuckoo Search with Harris 
Hawks Optimization has boosted cancer detection rates,53 while 
integrating Cuckoo Search with deep learning has enhanced 
cancer disease classification.54 Additionally, Marine Predator 
Chaotic Search has proven effective for detecting COVID-19.55 
Therefore, we are going to conduct a series of investigations and 
studies to examine the performance of different state-of-the-art 
methods on multiclass imbalanced biological data.

Large datasets integrations

Several public human databases, including Gene Expression 
Omnibus (GEO), Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC), National Cancer 
Database (NCDB), and The Cancer Genome Atlas (TCGA), 
are valuable for assessing the reproducibility of our findings. 
We believe that conducting a meta-analysis could help discover 
and validate survival prognostic biomarkers56 and plan to 
explore this in future research.

Conclusion
In this article, we employ the OvO strategy to transform multi-
class classification into multiple binary classification, and uti-
lize the OGS with binary logistic regression to include gene 
pathway information for identifying important major genes 
and gene-gene interactions for multicategory survival out-
comes. Based on the identified biomarkers, we can predict for 
each patient the probabilities that he/she belongs to each of the 
outcome classes. In simulation studies, we demonstrate that the 
classification performance of our proposed method outper-
forms some commonly used ML methods and the multinomial 
logistic regression with the group lasso penalty. In real data 
applications, we employ the ROSE resampling procedure to 
address the class imbalance and analyze 3 sets of TCGA cancer 
transcriptomic data (KIRP, LUAD, and HNSCC). The 
numerical results demonstrate that the new proposal leads to a 
substantial improvement in cancer diagnosis when compared 
to methods that do not take pathway information into account.
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