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Abstract

The tick Ixodes ricinus is the main vector of the spirochaete Borrelia burgdorferi sensu lato, the causal agent of Lyme
borreliosis, in the western Palearctic. Rodents are the reservoir host of B. afzelii, which can be transmitted to
I ricinus larvae during a blood meal. The infected engorged larvae moult into infected nymphs, which can
transmit the spirochaetes to rodents and humans. Interestingly, even though only about 1 % of the larvae
develop into a borreliae-infected nymph, the enzootic borreliae lifecycle can persist. The development from larva to
infected nymph is a key aspect in this lifecycle, influencing the density of infected nymphs and thereby Lyme borreliosis
risk. The density of infected nymphs varies temporally and geographically and is influenced by multi-trophic (tick-host-
borreliae) interactions. For example, blood feeding success of ticks and spirochaete transmission success differ between
rodent species and host-finding success appears to be affected by a B. afzelii infection in both the rodent and the tick.

In this paper, we review the major interactions between /. ricinus, rodents and B. afzelii that influence this development,
with the aim to elucidate the critical factors that determine the epidemiological risk of Lyme borreliosis. The
effects of the tick, rodent and B. afzelii on larval host finding, larval blood feeding, spirochaete transmission
from rodent to larva and development from larva to nymph are discussed. Nymphal host finding, nymphal blood feeding
and spirochaete transmission from nymph to rodent are the final steps to complete the enzootic B. afzelii lifecycle and are
included in the review. It is concluded that rodent density, rodent infection prevalence, and tick burden are the major
factors affecting the development from larva to infected nymph and that these interact with each other. We suggest that
the B. afzelii lifecycle is dependent on the aggregation of ticks among rodents, which is manipulated by the pathogen
itself. Better understanding of the processes involved in the development and aggregation of ticks results in more precise
estimates of the density of infected nymphs, and hence predictions of Lyme borreliosis risk.
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Background with different enzootic lifecycles [4] and clinical manifes-

Borrelia burgdorferi sensu lato (s.l.), a tick-borne patho-
gen, can cause Lyme borreliosis in humans [1]. Borrelia
burgdorferi s.l. consists of several genospecies, of which
B. afzelii, B. garinii and B. burgdorferi sensu stricto (s.s.)
are the main cause of Lyme borreliosis in the western
Palearctic [2, 3]. Each of these genospecies is associated
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tations [5]. Borrelia afzelii has been mostly associated
with skin manifestations, whereas B. garinii is consid-
ered to be the most neurotropic and B. burgdorferi s.s.
seems to be the most arthritogenic [6, 7]. Depending on
the geographical location, the most common genospe-
cies in I ricinus are B. afzelii and B. garinii [8-12].
These genospecies are associated with different verte-
brate host species. Borrelia afzelii is associated with
rodents [4, 13—-15], whereas B. garinii is associated with
birds [4, 16]. Because there is sufficient data on the
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interactions between rodents, ticks and borreliae (in
contradiction to the data on birds) and because rodents
are the main blood host for larvae [17], this review
focusses on B. afzelii and rodents.

Ixodes ricinus is the principal vector of borreliae in the
western Palearctic. This tick has three blood-feeding
stages (larva, nymph and adult), which take a single
blood meal before moulting to the next stage or laying
eggs in the case of an adult female. Adult males do not
feed. Larvae can become infected with B. afzelii via a
blood meal from an infected rodent or via a blood meal
from an uninfected host when feeding in close vicin-
ity of a B. afzelii-infected tick, a co-feeding infection
[18-21]. Rodents can become infected through the
bite of an infected tick. It is generally believed that
nymphs are responsible for infecting rodents because
larvae are rarely infected and adults rarely feed on rodents.
Nymphs are also the principle vectors that transmit borre-
liae to humans [22]. Therefore, the density of infected
nymphs affects Lyme borreliosis risk, as was shown in the
Nearctic [23]. The density of infected nymphs is deter-
mined by the density of nymphs * nymphal infection
prevalence.

The interactions between ticks and rodents are com-
plex and can influence pathogen transmission [24, 25].
The development from uninfected larva to infected
nymph is a key aspect in the enzootic borreliae lifecycle.
Density of larvae is about one order of magnitude higher
than the density of nymphs [26, 27]. Nymphal infection
prevalence varies temporally and geographically, due to
differences in climatic conditions [28], but is about 10 %
[9, 12, 29]. As a result, only about 1 % of the L ricinus
larvae develops into a borreliae-infected nymph.

The aim of this review is to give an overview of the
major multi-trophic (tick-rodent-B. afzelii) interactions
that influence the development from an uninfected larva
to an infected nymph. This development depends on the
success of 1) host attachment of larvae, 2) blood feeding
of larvae, 3) borreliae transmission from rodent to lar-
vae, and 4) development from engorged larva to nymph
(Fig. 1). Host attachment of nymphs, blood feeding of
nymphs and borreliae transmission from nymph to
rodent are the final steps to complete the enzootic B.
afzelii lifecycle and therefore included. The review sum-
marizes the current state of knowledge of the interac-
tions between sub-adult I ricinus, rodents and B. afzelii
in the western Palearctic and how these interactions
affect Lyme borreliosis risk.

Host attachment

Ixodes ricinus feeds on a variety of host species. Each
instar of the tick climbs into the vegetation and enters a
host-finding stage, termed questing, and senses hosts by
CO,, host volatiles and vibrations [30-32]. Questing
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height was lower for larvae compared to nymphs [33].
During questing, water is lost from the tick, which can
be reabsorbed when in the litter layer [34]. Attachment
to a host is the first major step in the development from
larva to nymph, but the chance that a larva encounters a
rodent is unknown. Instead, tick burden will be used as
a measurement of host-attachment success. Tick burden
is determined by tick encounter rate, attachment suc-
cess, grooming and tick feeding duration [35]. Factors
affecting larval and nymphal host attachment are com-
parable and therefore combined in this paragraph.

Host effects

The chance that a questing larva encounters a host
affects the density of nymphs and is influenced by the
density and activity of hosts [36, 37], which vary between
host species. Tick burdens vary between the most com-
mon rodent species in Europe; wood mouse (Apodemus
sylvaticus), yellow-necked mouse (Apodemus flavicollis)
and bank vole (Myodes glareolus). Larval tick burden is
higher on wood mice than on bank voles [38—44], which
may be caused by differences in ecological niche, activ-
ity, home range, grooming activity and immune response
[45-47]. Bank voles have an innate and acquired tick
resistance resulting in a lower tick attachment success
compared to wood mice [45-51]. Ixodes ricinus can
sense their host by smell [52] and may even be able to
distinguish between host species as was shown in the
Nearctic for L scapularis [53, 54]. The genetic popula-
tion structure of I ricinus indicated that the species
shows some host specialization [55]. The scale of this
specialization is, however, unknown. Tick burden also
varies within host species. In general there are many
individuals with low tick burdens and few hosts with
high tick burdens, feeding the majority of ticks [40, 56],
following the 20/80 rule [57, 58]. This intra-species vari-
ation can be influenced by sex, age, body mass and activ-
ity of the host. In general, tick burden is higher on males
compared to females, older rodents compared to youn-
ger rodents, heavy weight rodents compared to light
weight rodents and active rodents compared to less-
active rodents [40, 59-64]. However, these relationships
are complex, can be correlated to each other (e.g. males
have a greater body weight than females) or interact with
each other (tick burdens on females decreased with age
whereas they increased on males) [56, 65].

Host preference of I ricinus has not been tested experi-
mentally, but there are examples of other tick species that
show an intra-species host preference. Dermacentor varia-
bilis preferred the odours from larger and male mice over
smaller and female mice [66], I arboricola preferred well
developed bird nestlings over less developed nestlings
[67], whereas I hexagonus preferred sick hedgehogs over
healthy ones [68]. Testosterone can also affect tick
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Fig. 1 From larva to infected nymph. Schematic overview of the steps involved in the development from an uninfected Ixodes ricinus larva to a B.
afzeli-infected nymph and the transmission process of B. afzelii between rodent and tick. Dotted lines indicates continuation of questing after a

burden. It facilitates dominance in wild mice [69] and
reduces innate and acquired resistance to ticks [47].
Testosterone levels also differed between rodent spe-
cies and the level was 10 times higher in wood mice
compared to bank voles [47]. High testosterone levels
can also reduce tick feeding speed, as was found for
ticks feeding on lizards [70].

Tick effects

Ectoparasites such as ticks affect the fitness of their
hosts in various ways. For example, only 0.17 % blood
loss of gerbils (Gerbillus dasyurus) resulted in a 16 %
increased energy use [71]. This increased energy use
should be compensated by an increased energy uptake
and therefore host activity, increasing ectoparasite en-
counter rate. Feeding ticks can consume up to 65 % of
the blood from a rodent [40], affecting fitness and activ-
ity. Tick feeding can also cause erosion of the ear margin
[72], reducing host fitness. Hosts with a larger home
range have a higher reproductive success but may also
have a higher tick burden, as was shown for L scapularis
and D. variabilis [64, 73]. Larval tick burdens on rodents
increased with increasing densities of questing larvae,
but it was suggested that rodents can become satu-
rated with larvae [65]. In addition, the heterogeneity
in larval tick burdens on rodents can also be affected
by the heterogeneous dispersal of larvae in the envir-
onment, increasing the chance of acquiring multiple
larvae simultaneously.

Borreliae pathogen effects

There is abundant evidence that pathogens can influ-
ence their host and/or vector to enhance transmission
[74, 75]. Evidence of borreliae manipulating host
attachment of ticks is, however, scarce. In the field,
borreliae-infected rodents have higher tick burdens
compared to borreliae-uninfected rodents [14, 44, 62].

Once infected, spirochaete load did not affect tick
burden on rodents [76]. It is unclear whether borre-
liae can manipulate tick burden (e.g. due to a higher
energy demand or altered odour of the rodent) or
whether a high tick burden increased exposure risk to
borreliae. Hosts with high nymphal tick burdens have
a higher chance of becoming infected with borreliae and
rodents infested with nymphs have higher larval tick bur-
dens than rodents without nymphs [40, 60, 77]. A borre-
liae infection does not affect rodent survival [78, 79], but a
specific borreliae antibody response altered foraging be-
haviour of white footed mice in the Nearctic [80, 81],
which may increase tick encounter rate. There is also evi-
dence that borreliae can influence host-tick contact rate
when in the tick. A borreliae infection in adult female L
ricinus increased host finding efficacy [82]. In addition,
borreliae-infected nymphs had higher energy reserves and
spent more time questing for a host compared to
borreliae-uninfected nymphs [33, 83-87]. These effects
were influenced by B. burgdorferi sl. genospecies [86].
However, all these results are from field-collected ticks
and observed differences may, therefore, have been caused
by characteristics of the host on which the ticks fed as
larvae (e.g. species, tick burden, immune response). If,
for example, tick burden positively affects blood meal
size (see below), borreliae-infected ticks will have a
higher fat content due to the higher tick burden of
infected rodents, while this was not caused by the
borreliae infection of the tick.

Blood feeding

Once a sub-adult tick has encountered a rodent, it needs
to find a feeding site, bite the host and acquire a blood
meal. It is generally assumed that each larva takes only
one bloodmeal before moulting to a nymph. Factors af-
fecting larval and nymphal blood feeding are comparable
and therefore combined in this paragraph.
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Host effects

Blood feeding of I ricinus is a complex process with
major events occurring within the tick [45] and can be
influenced by host species. Blood meal size and per-
centage of fully engorged ticks are larger for larvae
feeding on Apodemus mice, which therefore moult
into larger nymphs, compared to larvae that fed on
bank voles [40, 41, 47, 88]. Exposure to tick saliva
caused acquired tick resistance in bank voles, resulting in
a decreased blood ingestion speed [47-50], whereas this
was increased in yellow necked mice [48]. In addition,
feeding duration had a positive effect on blood meal size
in bank voles, but not in wood mice [41]. The effect of
acquired tick resistance on tick feeding in I ricinus was
also found for rabbits [89].

Tick effects

Tick saliva has anti-haemostatic, anti-inflammatory, and
immunosuppressive effects on the host’s immune sys-
tem, facilitating blood consumption of ticks [51, 90]. A
larger tick burden results in more tick saliva and a
higher immunosuppressive effect, which could therefore
facilitate blood feeding of ticks. As a result, a high tick
burden increased feeding success of I ricinus feeding on
wood mice and bank voles [47].

Borreliae pathogen effects

There are indications that aborreliae-infection results in
an increased blood meal size of larvae. Infected engorged
larvae collected from wood mice were heavier and
moulted into larger nymphs compared to uninfected lar-
vae [85]. The higher energy reserve of borreliae-infected
nymphs (see above) is also likely to be a result of a larger
blood meal during the larval stage. However, these dif-
ferences could have been caused by a higher tick burden
of infected hosts, affecting the immune response of the
host (see above). In an artificial feeding system, blood
meal size of nymphs decreased when fed Bartonella-in-
fected blood compared to Bartonella-uninfected blood,
whereas feeding duration was not affected [91].

Development from engorged larva to nymph

A larva that acquired a complete blood meal detaches
from the host to digest its blood meal and moult into a
nymph. When the larva acquired borreliae during this
blood meal, it will emerge as an infected nymph after
moulting.

Host effects

Moulting success from larva to nymph can be influenced
by host species and was higher for larvae that naturally
attached to field collected Apodemus mice compared to
bank voles [13, 92], but the opposite happened for
laboratory reared ticks [92]. After multiple infestations,
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moulting success remained stable in Apodemus mice but
declined in bank voles; this effect was abolished, how-
ever, when testosterone levels were increased [47, 48]. A
reduced moulting success was also found for I trianguli-
ceps feeding on bank voles [49] and may have been
caused by a difference in blood meal success (see above)
because partially-engorged larvae failed to moult [48].

Tick effects

Endosymbionts are widespread among arthropods [93, 94].
The effects of endosymbiots have not been investigated in
I ricinus. However, in the Nearctic they have been shown
to influence tick fitness [95] and the colonization of borre-
liae in the tick [96]. The relationship between the tick
microbiome and tick survival and borreliae transmission
are far from understood [97] and has not been investigated
in L ricinus.

Borreliae pathogen effects

During moulting, borreliae spirochaetes survive in the
midgut lumen of the tick and persistence until the next
feeding is crucial for successful transmission [98, 99].
The interactions between the tick’s defence mechanisms
and borreliae during moulting have been reviewed [100].
It was shown that in the case of I scapularis, even
though borreliae load is reduced five fold during moult-
ing and remained stable at <300 spirochaetes in the
emerged nymph [101], spirochaete genetic population
structure was not affected during moulting [102].
Whether a borreliae infection affects interstadial devel-
opment from 1. ricinus larva to nymph is unknown.

Borrelia transmission from rodent to larva

To maintain the enzootic borreliae lifecycle, rodents
must feed both larvae and nymphs and an infection ac-
quired by a larva must be transstadially transmitted dur-
ing the moult to a nymph. Feeding larvae can also
become borreliae-infected through co-feeding with an
infected nymph on a host without a systemic infection
[18-20]. However, because rodents are the main host
used by larvae and can be systemically infected with bor-
reliae, the effect of co-feeding transmission on the zoo-
notic life cycle of borreliae appears to be limited. The
chance that a larva acquires borreliae from a host is
determined by the borreliae prevalence in the host
community, which is influenced by the probability
that infected nymphs feed on the host, host suscepti-
bility to the pathogen and the ability of the host to
maintain the infection. The survival of borreliae
within the host and tick, and transmission between
them, are underpinned by molecular mechanisms,
which have been reviewed [35, 103].
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Host effects

Not all host species used by I ricinus are borreliae reser-
voirs and there is high variation in transmission efficiency
among reservoir hosts. Rodents are associated with B.
afzelii [4, 13-15). Borrelia burgdorferi sensu stricto, B.
bavariensis and B. spielmanii are also associated with ro-
dents, but have a lower infection prevalence in questing
nymphs [9, 104, 105]. Rodents can also be co-infected
with multiple B. burgdorferi s.1. genospecies [15, 106, 107].
However, these different genospecies were not necessarily
acquired through the bite of one nymph co-infected with
multiple genospecies, but could be transmitted by mul-
tiple infected nymphs. Large mammals like roe deer and
red deer are hosts for ticks, but incompetent for borreliae
transmission, presumably because of anti-borreliae im-
mune responses [108, 109]. In the Nearctic, rodent infec-
tion rate (percentage of infected hosts) and host infectivity
(percentage of uninfected larvae that acquire a borre-
liae infection during feeding on an infected host) are
positively correlated and vary between host species
[110]. Whether this is also true for the western
Palearctic is not known. Rodent infection rate is lower in
wood mice compared to bank voles and varies temporally
and geographically [13, 15, 44, 111]. Rodent infection rate
can also differ between sexes and was higher in males
compared to females [112], which was likely due to higher
nymphal tick burdens on males, increasing exposure to
borreliae. Infected rodents stay infective throughout their
life resulting in a higher rodent infection rate of older
rodents compared to younger rodents [113]. Borreliae in-
fection prevalence of ticks fed on wild rodents was lower
in April (1.2-10.5 %) compared to June/July (15.1-17.5 %)
and did not increase until October [39], which is probably
explained by a lower rodent infection rate caused by a
lower exposure to borreliae-infected nymphs during win-
ter compared to spring, summer and autumn.

Host infectivity is also influenced by host species and
is lower in mice compared to voles [13, 39, 114, 115].
The differences between wood mice and bank voles can
be caused by the number of borreliae-specific antibodies
in the host, which correlated negatively to infectivity
[116]. Even though infections were not lost, host infect-
ivity can vary over time and decreases since inital infec-
tion of the rodents [112, 117]. A correlation between
host body size versus infectivity and spirochaete burden
in feeding ticks has not been tested for I ricinus. How-
ever, this correlation was negative at host species level
for I scapularis [118]. These authors suggested that this
was caused by a difference in time between inoculation
and putative threshold for infectiousness.

Tick effects
The aggregation of ticks among hosts results in an in-
creased borreliae transmission when larval and nymphal
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tick burdens are correlated. In addition, infectivity in-
creased with successive larval infestations and larval tick
burden [39, 113], increasing the contribution of these
heavily infested individuals. Host infectivity of host asso-
ciated B. burgdorferi s.l.-genospecies (B. garinii and B.
valaisiana for birds) increased with successive infesta-
tions with field collected I ricinus nymphs, whereas
infectivity of genospecies associated with other hosts (B.
afzelii for birds) decreased, suggesting a possible devel-
oped resistance [119]. The effect of tick burden on
infectivity may be caused by the immunosuppressive ef-
fect of tick saliva on the rodent immune system [51, 90],
resulting in an increased infectivity. However, infectivity
of bank voles was reduced at sites with high tick dens-
ities [39]. Borreliae transmission from host to ticks in-
creases with feeding time and started 2-8 h after tick
attachment [120]. Borrelia afzelii has to survive the tick
immune system during blood digestion, moulting and
migration via the haemolymph to the salivary glands
[121]. Nymphal infection prevalence had a positive effect
on infection prevalence of larvae fed on rodents [39],
most likely due to a higher exposure of rodents to
infected nympbhs.

Borreliae pathogen effects

Rodent infection rate varies between B. burgdorferi s.l.
genospecies and is highest for B. afzelii, followed by B.
burgdorferi s.s. and B. garinii [15, 44]. Hosts can trans-
mit multiple genospecies to feeding ticks [119], but host
infection does not necessarily mean that the spirochaetes
are transmitted to feeding ticks, as was shown for ro-
dents infected with B. garinii in internal organs, which
only transmitted B. burgdorferi s.s. to feeding larvae [4].
Spirochaete load of B. burgdorferi s.s. was higher when
mice were co-infected with B. garinii, compared to an
infection with only B. burgdorferi s.s., whereas the op-
posite happened for B. garinii [122], indicating interac-
tions between the two genospecies while in the same
host, which benefits B. burgdorferi s.s. Time until infec-
tiousness also differs between genospecies; wood mice
became infectious with B. afzelii in fewer days post
infection and with a higher infectivity compared to B.
burgdorferi s.s. [79, 117]. Borrelia burgdorferi s.s. was
found only in rodents during tick activity, but not during
winter [13], suggesting that these reservoir hosts are not
a permanent reservoir for all genospecies and can lose
infections, as was shown in the Nearctic for Peromyscus
leucopus [123). However, B. burgdorferi s.s. was also only
found in mouse blood up to eight days after inoculation,
whereas spirochaetemia lasted up to six weeks after in-
oculation [122]. Infectivity also differs between borreliae
isolates, as was shown for B. afzelii [124]. The increased
host’s infectivity with time (see above) was also genospe-
cies dependent and increased faster in B. afzelii
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compared to B. burgdorferi s.s. [120]. Borrelia afzelii (ro-
dent associated) on the one hand and B. garinii and B.
valaisiana (bird associated) on the other hand infect
adult I ricinus on a mutualistic exclusive way; they
co-occurred less frequently than expected compared
to co-infections with B. garinii and B. valaisiana [125].
Whether these different genospecies were transmitted
during a single feed on one host or two feeds on separate
hosts (as larva and nymph) is unclear, but it seems likely
that B. afzelii in nymphs feeding on birds was negatively
selected by host complement in the midgut of feeding
ticks [126]. Strong genetic differentiation was observed
between B. burgdorferi s.l. genotypes infecting different
rodent species, suggesting host specificity of borreliae
populations [127]. Spirochaete load at the feeding site
positively influenced host infectivity [76, 102] and rodents
with a high infectivity transmit more borreliae spiro-
chaetes to larvae compared to the larvae fed on rodents
with a lower infectivity [113]. However, even though spiro-
chaete load was ten times higher in voles compared to
mice, this did not result in a higher infectivity of voles
compared to mice and this was probably due to a larger
blood meal size on mice [76]. If a high spirochaete load in
rodents results in a high spirochaete load in feeding ticks,
infectivity from tick to host may also be enhanced. Spiro-
chaete load in rodents and feeding ticks were, however,
not correlated [76].

Borrelia transmission from nymph to rodent

Rodents acquire a borreliae infection through the bite of
an infected tick and not via vertical transmission from
female to offspring, as was shown for the Nearctic reser-
voir host Peromyscus leucopus [128, 129]. Ixodes ricinus
larvae are rarely infected with B. burgdorferi sl. [120]
and adults rarely feed on rodents [44], suggesting that
nymphs are responsible for transmitting borreliae to ro-
dents. After a borreliae-infected nymph attaches to a
host, the borreliae spirochaetes in the midgut multiply
and migrate through the midgut wall via the haemo-
lymph to the salivary glands, from which they may be in-
oculated with the tick saliva into the host [130, 131].
Borreliae transmission from nymph to host is positively
correlated with feeding duration of the tick and in gen-
eral does not occur before 24 h of feeding [132, 133].
However, borreliae can be transmitted as early as after
16-17 h of feeding [134], which may have been caused
by a systemic borreliae infection in the tick [135]. Once
spirochaetes have been inoculated into the host’s skin,
they remain at the inoculation site and disseminate after
a few days, as was shown for B. burgdorferi s.s. in the
Nearctic [136]. Borreliae have been detected in skin,
blood, joints, spleen, heart, liver, urinary bladder, kidney
and nervous system of vertebrate hosts [137-140].
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Host effects

Not all host species are susceptible to each B. burgdor-
feri sl. genospecies, due to differences in complement-
mediated sensitivity of the spirochaetes to host serum
[126]. Borrelia afzelii is mainly associated with rodents
[4, 14], B. garinii and B. valaisiana with birds [4, 16], B.
lusitaniae with lizards [141] and B. spielmanii with dor-
mice [142]. As a result, an infected tick that feeds on a
host that is incompetent for the concerning genospecies
appears to lose its infection [109, 143, 144]. However,
this is not always the case, as was shown for B. afzelii in
songbirds [119]. In the Nearctic, pre-exposure of rodents
to L scapularis reduced susceptibility to borreliae, irre-
spective of an acquired tick immunity [145, 146]. This
suggests that nymphal infection prevalence can influence
rodent infection rate directly (a low nymphal infection
prevalence reduces borreliae exposure to the host) or
indirectly (a low nymphal infection prevalence reduces
host susceptibility to borreliae) and that a high larval
tick burden may reduce rodent infection rate by ac-
quired immunity. This has not been investigated for I
ricinus, but indeed, rodent infection rate of white footed
mice was ten times higher in periods with high risk of
exposure to L scapularis nymphs compared to a period
of low risk [147]. Susceptibility to borreliae differed
between bank vole individuals and was influenced by
their genetic variation [112].

Tick effects

When borreliae-infected I ricinus nymphs can feed to
repletion, transmission success from nymph to host was
almost 100 % [134]. Nymphs do not need to have ac-
quired the borreliae spirochaete(s) during a blood meal
in the larval stage. It was shown for I scapularis that
nymphs can acquire borreliae during an interrupted
feeding of 16 h and can infect another host after 3-5
days without first moulting to the next stage [148]. How-
ever, larvae that fed partially (18 h) on a borreliae-
infected host were not infectious during a second blood
meal five weeks after the initial feeding, whereas borre-
liae were transmitted after they moulted into nymphs
[149]. Partially-fed ticks can arise by tick immunity of
the host [48]. In addition, grooming of the host or host
mortality may also result in partially-fed ticks. However,
whether this can also happen in I ricinus and frequen-
cies of naturally occurring partially-fed larvae and
nymphs are unknown.

Borreliae pathogen effects

Ticks can be co-infected with more than one B. burgdor-
feri sl. genospecies [8, 9, 12, 135, 150], with up to 45 %
of infected ticks harbouring multiple genospecies [151].
Even though adult ticks have taken an additional blood
meal, co-infection prevalence was not higher in adults
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compared to nymphs [12], which may be caused by the
clearance of the genospecies acquired during the first
blood meal by the ingestion of host complement during
the second blood meal. Therefore, at least in the case of
the nymphal stage, co-infections are likely to be acquired
during one single blood meal from a co-infected host.
The majority of co-infected nymphs is therefore co-
infected with two genospecies that can co-occur in the
same host [151, 152]. Spirochaete load in nymphs co-
infected with genospecies that share vertebrate hosts
was equal to or higher than the additive expectation,
whereas this was lower for genospecies associated with
different reservoir hosts [152]. Spirochaete load in in-
fected ticks was higher for B. garinii and B. bavariensis
compared to B. afzelii [83, 152]. Even though all spiro-
chaete clones present in the host were transmitted to
the feeding larvae and survived moulting to the nymphal
stage, only a small fraction of the spirochaetes in the
tick’s midgut are transmitted from nymph to host during
feeding [102, 153]. Whether a high spirochaete load in
infected nymphs results in a greater transmission suc-
cess to a host during feeding is unknown. When injected
intradermally, only 10 cultured borreliae spirochaetes
were enough to infect a mouse [154].

Conclusions
Understanding the factors that affect the density of
infected nymphs increases our knowledge on Lyme bor-
reliosis risk. The development from questing I ricinus
larva to borreliae-infected nymph is affected by many
biological and ecological factors. The existence of differ-
ent B. burgdorferi sl. genospecies and heterogeneity
between and within genospecies makes the tick-rodent-
borreliae interactions complex. The development from
larva to nymph, regardless of a borreliae infection,
affects nymphal density and appears to be successful in
only 10 % of the time [155]. The chance that a larva
encounters a rodent affects the density of nymphs
and is influenced by rodent density, which differs be-
tween rodent species and varies spatially and tempor-
ally [39, 63]. Even though it is a major step in the
development, there is no data of the chance that a larva
actually encounters a rodent or any other host. Host
encounter rate may not be fully dependent on external
factors but may be affected by the tick too, e.g. when lar-
vae are attracted to a rodent trail. Nymphs for example,
are attracted to perches that have been scented with
rodent odour [52]. It was shown that ticks prefer odours
from certain hosts over others. However, it is unknown if
questing larvae can afford to reject a non-preferred host,
risking the possibility of not acquiring any blood meal and
starving to death.

Rodents with high larval tick burdens, which are major
contributors to the density of nymphs, have in general
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also higher nymphal tick burdens, making them more
likely to be infected with borreliae. As a result, these
rodents are even larger contributors to the density of
infected nymphs. We hypothesize that this aggregation
increases nymphal infection prevalence and that this ag-
gregation is therefore necessary for the maintenance of
the enzootic borreliae lifecycle. There is some evidence
that the aggregation of ticks can be caused by borreliae
[14, 44]. Therefore, the chance that a larva acquires a
blood meal from an infected rodent may not solely be
the effect of the density of infected rodents, e.g. when
borreliae-infected rodents are more active than unin-
fected rodents, or when questing larvae prefer—the
odours from—borreliae-infected rodents, the chance of
acquiring a borreliae infection is greater than the effect
of rodent density alone. Even though the only experi-
mental study conducted on this subject showed no effect
of a borreliae infection in rodents on tick attraction [52],
there are many examples of parasites manipulating their
hosts [74, 75]. Therefore, understanding rodent or tick
manipulation by borreliae requires more experiments
with experimentally infected rodents and ticks to exclude
biases from differences in rodent characteristics on
physiological or behavioural differences between infected
and uninfected rodents and ticks.

The borreliae lifecycle does not only benefit from
aggregation of larvae on (borreliae-infected) rodents, but
also from the successful development from larvae to
nymph and the chance that aborreliae-infected nymph
encounters a (borreliae-uninfected) rodent. Whether
borreliae can affect interstadial tick development (e.g.
moulting success) is unknown and requires more research
to overcome a bias in the effect of the 90 % mortality dur-
ing development from larva to nymph [155].

Tick survival, rodent density, rodent infection rate and
host infectivity are major factors affecting the borreliae
lifecycle, whereas only the first two directly affect the
tick lifecycle. These factors also interact with each other,
e.g. even though infection rate and infectivity of bank
voles was higher, the higher tick burden on wood mice
and moulting success of ticks fed on wood mice made
wood mice more important contributors to the density
of infected nymphs [13]. The tick lifecycle clearly bene-
fits from a high density of nymphs, whereas the borreliae
lifecycle benefits from a high nymphal infection preva-
lence. However, the borreliae lifecycle also benefits from
a high density of nymphs, when this will lead to a higher
density of larvae and therefore a higher chance of borre-
liae transmission from rodent to tick and vice versa.
There is evidence that borreliae can affect tick survival,
increasing the density of nymphs and therefore enhan-
cing its own lifecycle. Therefore, in addition, the tick
lifecycle also benefits from a high nymphal infection
prevalence.
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More knowledge on these multi-trophic interactions
helps to obtain better estimates of the Lyme borreliosis
risk. This review showed the various factors that con-
tribute to the density of infected nymphs, and how they
interact. These results, together with the effect of abiotic
factors, could be mathematically modelled to determine
the key processes that determine the density of infected
nymphs, and thereby Lyme borreliosis risk.
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