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Abstract

Rationale The orexin-hypocretin system is important for
translating peripheral metabolic signals and central neuronal
inputs to a diverse range of behaviors, from feeding, motiva-
tion and arousal, to sleep and wakefulness. Orexin signaling is
thus an exciting potential therapeutic target for disorders of
sleep, feeding, addiction, and stress.

Objectives/methods Here, we investigated the low dose phar-
macology of orexin receptor antagonist, SB-649868, on neu-
roendocrine, sympathetic nervous system, and behavioral re-
sponses to insulin-induced hypoglycemic stress, in 24 healthy
male subjects (aged 18-45 years; BMI 19.0-25.9 kg/m?),
using a randomized, double-blind, placebo-controlled,
within-subject crossover design. Alprazolam, a licensed ben-
zodiazepine anxiolytic, was used as a positive comparator, as
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it has previously been validated using the insulin tolerance test
(ITT) model in humans.

Results Of the primary endpoints, ITT induced defined in-
creases in pulse rate, plasma cortisol, and adrenocorticotropic
hormone in the placebo condition, but these responses were
not significantly impacted by alprazolam or SB-649868 pre-
treatment. Of the secondary endpoints, ITT induced a defined
increase in plasma concentrations of adrenaline, noradrena-
line, growth hormone (GH), and prolactin in the placebo
condition. Alprazolam pre-treatment significantly reduced
the GH response to ITT (p<0.003), the peak electromyogra-
phy (»<0.0001) and galvanic skin response (GSR, p=0.04) to
acoustic startle, the resting GSR (p=0.01), and increased
appetite following ITT (p<0.0005). SB-649868 pre-treatment
produced no significant results.
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Conclusion We concluded that the ITT model may be infor-
mative for assessing the effects of drugs directly acting on the
neuroendocrine or sympathetic nervous systems, but could
not be validated for studying low dose orexin antagonist
activity.

Keywords SB-649868 - Alprazolam - Orexin - Antagonist -
Insulin - Hypoglycemia - Randomized controlled trial

Introduction

The orexin-hypocretin system is fundamentally important in
regulating a diverse range of behaviors from feeding, motiva-
tion and arousal (Sakurai 2007), to sleep and wakefulness
(Hagan et al. 1999; Sutcliffe and de Lecea 2000). In addition,
lateral hypothalamic orexinergic neurons have been shown to
respond to peripheral metabolic signals including blood pH,
ghrelin, leptin, and glucose, indicating that these neurons
could be crucial in coupling energy homeostasis to vigilance
states (Yamanaka et al. 2003).

Since the early studies of narcolepsy in animals (Lin et al.
1999; Chemelli et al. 1999), a number of reports have impli-
cated the orexin system in endogenously regulating the stabil-
ity of arousal, and its dysregulation in anxiety and panic-like
behaviors (Johnson et al. 2010; Li et al. 2010). Several lines of
evidence suggest that orexinergic neurons are central compo-
nents of the stress response via activation of the
hypothalamus-pituitary-adrenal (HPA) axis. These include
histological (Blanco et al. 2003; Lopez et al. 1999), in vitro
(Nanmoku et al. 2002; Sakamoto et al. 2004; Samson et al.
2002; Kuru et al. 2000), and behavioral stress paradigm data
(Martins et al. 2004; Reyes et al. 2003), with a number of
additional studies suggesting a direct role for the
corticotrophin-releasing factor (CRF) peptidergic system in
mediating the effects of orexin on the HPA axis (Samson
et al. 2002; Ida et al. 2000a, 2000b; Jaszberényi et al. 2000;
Winsky-Sommerer et al. 2004). Furthermore, there is evi-
dence that both orexin receptor 1 (OxR1) (Johnson et al.
2010) and orexin receptor 2 (OxR2) antagonists (Chang
et al. 2007) can inhibit stress-induced adrenocorticotropic
hormone (ACTH) responses, and panic-like behaviors in rats
(respectively), indicating a role for both receptors in dysregu-
lated stress responses.

Clinical development of orexin receptor antagonists in
phase I and II has focused on insomnia, using relatively high
doses to induce sleep. SB-649868, an orally active non-
selective OxR1 and OxR2 antagonist (Hagan et al. 1999;
Faedo et al. 2012), has hypnotic efficacy from 20 mg per
day orally, as characterized by increased sleep time and re-
duced latency to persistent sleep. However, concerns over
potential toxicity from prolonged use of high doses in animal
studies, and inter-individual variability in pharmacokinetic
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parameters, have limited the dose of SB-649868 that can be
used in humans. Given this, and the potential therapeutic value
of the orexin target, it was thus considered important to
evaluate whether this orexin antagonist had pharmacodynam-
ic effects in humans at doses lower than those previously
studied.

One of the most powerful methods for studying low dose
antagonist pharmacology is under conditions of high endoge-
nous agonist release. Orexin signaling can be stimulated ex-
perimentally in a number of ways including psychological,
physical, and pharmacological/endocrine stress paradigms;
hypercapnic challenge; and hypoglycemia. Ethical stress par-
adigms in animals can produce robust activation of the HPA
axis (Winsky-Sommerer et al. 2004; Chang et al. 2007), but
only modest activation in humans (Gaab 2002). Furthermore,
such paradigms are prone to poor test-retest reliability. Simi-
larly, while pre-clinical studies have shown that orexinergic
neurons are sensitive to CO, levels and pH (Williams et al.
2007), both well known chemical triggers of anxiety, use of
CO, inhalation methods to enhance arousal and anxiety in
humans have produced modest and variable results (Bailey
et al. 2007; Gorman et al. 1997; Poma et al. 2005), and HPA
axis activation has been inconsistently reported (van Duinen
et al. 2004). In contrast, hypoglycemia has been shown to
robustly increase orexinergic neuron activation (Sakurai et al.
1998; Moriguchi et al. 1999; Cai et al. 2001) and orexin levels
(Moriguchi et al. 1999; Cai et al. 1999, 2001; Griffond et al.
1999), specifically, orexin A (Liu et al. 2001). These effects
are thought to be mediated by “glucose-sensing” neurons
(Anand et al. 1964; Oomura et al. 1969; Ouedraogo et al.
2003). In the brain, these are thought to be lateral hypotha-
lamic orexinergic neurons, after a number of studies showed
that their firing is glucose-inhibited, and conversely activated
under conditions of systemic hypoglycemia (Sakurai et al.
1998; Moriguchi et al. 1999; Cai et al. 2001). More recently,
it has been shown that physiological fluctuations in blood
glucose concentrations can directly modulate the firing of
orexinergic neurons (Burdakov et al. 2005), suggesting that
normal variations in the body’s energy resources could be
translated into appropriate behavioral states, including arousal
(Adamantidis et al. 2007).

A well-established method for inducing hypoglycemia and
HPA axis activation is the insulin tolerance test (ITT). Insulin-
induced hypoglycemia has been shown to increase ACTH,
cortisol, growth hormone (GH), and catecholamine release in
a number of studies (Greenwood et al. 1966; Plotsky et al.
1985; Fish et al. 1986; Giordano et al. 2003). The increase in
ACTH is thought to be mediated by CRF, as immunization
against CRF abolishes the ACTH response to ITT in rats
(Plotsky etal. 1985; Caraty etal. 1990). CRF is in turn thought
to mediate the effects of orexin on the HPA axis (Samson et al.
2002; Ida et al. 2000a, 2000b; Jaszberényi et al. 2000), per-
haps by direct innervation of orexinergic neurons (Winsky-
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Sommerer et al. 2004). In addition, ITT has been shown to
increase c-fos expression in lateral hypothalamic orexinergic
neurons (Cai et al. 2001), which is coupled to an increase in
activity of these neurons, suggesting that insulin-induced hy-
poglycemia is able to robustly activate the orexin system.
The aim of the present study was to investigate the low
dose effects of the OxR1 and OxR2 antagonist, SB-649868,
on the HPA axis, specifically, its effects on the sympathetic
nervous system (SNS) and neuroendocrine responses to hy-
poglycemia. The idea was to investigate whether SB-649868
could have effects on these systems by inhibiting abnormally
activated orexin signaling, such as is thought to occur in
anxiety or panic disorders (Li et al. 2010; Johnson et al.,
2012a, 2012b). Alprazolam, a licensed benzodiazepine anxi-
olytic (and GABA, receptor modulator), was used as a pos-
itive comparator. It has been previously validated using the
ITT model in a placebo-controlled experimental medicine
study, and was shown to attenuate increases in ACTH, GH,
and adrenaline (Giordano et al. 2003). To this effect, we
studied the effects of pre-treatment with SB-649868, alprazo-
lam, and placebo on a range of neuroendocrine and SNS
markers in response to ITT in young, healthy volunteers.

Materials and methods

Study design This study (GSK #115268) used a randomized,
double-blind, placebo-controlled, within-subject crossover de-
sign. The study was conducted in two cohorts with an interim
analysis separating cohorts 1 and 2. Each subject attended up to
three testing sessions, each separated by a minimum 2-week
washout period. At each session, subjects received either of the
following: SB-649868 10 mg, alprazolam 0.02 mg/kg (to the
nearest 250 pg; Giordano et al. 2003), or a placebo, orally, in
accordance with the drug regime they had been randomly
assigned. Drug conditions were crossed over for future sessions.
Alprazolam 0.02 mg/kg was used here as a positive control, in
order to validate the insulin-induced hypoglycemia model, as it
has been previously used to study the effects of hypoglycemia
on neuroendocrine and sympathetic nervous system (SNS) re-
sponses in humans, at this dose (Giordano et al. 2003).

The study was specifically designed to test the effects of
SB-649868 at sub-hypnotic doses. This was motivated partly
by concerns about potential toxicity and pharmacokinetic
variability of this molecule at high doses, and partly by the
intention to investigate the possibility that SB-649868 might
have benefits for patients with abnormally activated orexin
signaling associated with increased sympathetic tone and/or
hypercortisolemia, such as is thought to occur in anxiety or
panic disorders (Johnson et al. 2010, 2012a; Li et al. 2010). It
was decided on the basis of prior data that doses greater than
10 mg were likely to be associated with hypnotic effects
(Bettica et al. 2012a, b) and therefore 10 mg was chosen as

the starting dose. The study was designed so that the dose
could be adaptively reduced in the light of interim analysis,
after collection of data from cohort 1 (N=12). However, when
no significant treatment effects were demonstrated by the
interim analysis, we opted, per protocol, to increase the sam-
ple size to N=24, still testing for effects at a dose of 10 mg, to
mitigate the risk of type Il error. When no significant treatment
effects were demonstrated by analysis of the full sample, we
opted, per protocol, to stop the study.

Testing sessions started between 0845 and 0915 h following
an overnight fast of 9 hours. Thirty to 60 min prior to dosing,
subjects were cannulated and began a schedule of continuous
cardiac monitoring, and venous blood sampling for glucose,
study endpoints, and pharmacokinetic assays. Subjects were
dosed at time =0 min with either SB-649868, alprazolam, or
placebo. At /=90 min, an intravenous bolus of 0.1 U/kg insulin
(ITT) was administered (Fish et al. 1986; Giordano et al. 2003).
Blood glucose concentrations were monitored every 5 min from
10 to 45 min after insulin injection (=100 to 135 min), then
every 15 min until /=270 min (3 hours after the start of the ITT).
At =210 min, the ITT was concluded and participants were
offered an ad libitum choice of food and drink. Cardiac monitor-
ing continued until normalization of blood glucose concentra-
tions, and less frequent venous blood sampling until 1600 h. A
summary of the testing procedure can be found in Fig. 1.

The protocol was reviewed and approved by the Welwyn
Ethics Committee, and the study was conducted in accordance
with ICH Good Clinical Practice guidelines, and the guiding
principles of the 2008 Declaration of Helsinki. All subjects
provided written informed consent prior to testing.

Endpoints Primary endpoints were divided into markers of
HPA axis activation (plasma ACTH (pmol/L) and cortisol
(nmol/L) concentrations), and markers of SNS activation
(pulse rate (beats/min) and mean arterial pressure (MAP,
mmHg)). Secondary neuroendocrine markers included plasma
glucose (mmol/L), adrenaline (nmol/L), noradrenaline (NA,
nmol/L), growth hormone (GH, pg/L), prolactin (ng/L), and
luteinizing hormone (LH, IU/L) concentrations. Correspond-
ing secondary SNS markers included resting galvanic skin
response (GSR, uS) over 4 min, respiratory rate (breaths/min),
and acoustic startle response using GSR (uS) and surface
electromyography (EMG, V). The acoustic startle comprised
10 pseudo-randomized bursts of white noise, at 100110 dB,
lasting 50 ms each, over the course of 15 min.

Subjects Twenty-four healthy male subjects (aged 18—
45 years inclusive; BMI 19.0-25.9 kg/m?) were initially re-
cruited in two separate cohorts of 12 subjects each. The final
cohort comprised 33 subjects, including 9 replacements (see
Section 3.1). Eligible participants underwent pre-study
screening 30 days prior to the first dose to rule out any
previous, or current, medical or psychiatric condition which
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Time (min)
08:00— (-60) <= Cannulation
08:30— (-30) <= Baseline Assessments

09:00— (0) &= Alprazolam / SB-649868 /
Placebo

10:30— (+90) <= Insulin Tolerance Test

10:45 — (+105) —

Assessments

12:30 — (+230) —

Fig.1 Overview of study testing protocol. Conditions were crossed over,
such that subjects attended up to three testing sessions, with a minimum
2-week washout period, each time receiving either placebo, SB-649868
(10 mg) or alprazolam (0.02 mg/kg)

may have compromised subject or investigator safety, and/or
the interpretation of results. Additionally for this study, the
following endocrine criteria were set: fasting plasma insulin
<60 pmol/L, fasting plasma glucoses <7.0 mmol/L, and morn-
ing plasma cortisol >100 nmol/L.

Analysis All endpoints in figures are shown as adjusted group
means (adjusted for group size and baseline differences) of
absolute values representing maximum change from pre-ITT
baseline (Amax), or as areas under the curve (AUC) calculated
by integration of values from the pre-ITT baseline (=90 min)
until the end of data collection for that endpoint. Statistical
analysis was conducted using standard parametric ANOVA or
ANCOVA. Data are plotted+95 % confidence intervals (95 %
CI). Statistical comparison of side effects between groups was
conducted using Fisher’s exact test.

Results
Subject response to ITT
Of the 12 subjects enrolled in cohort 1, 2 subjects were

withdrawn after failing to achieve a post-ITT reduction in
blood glucose level t0<2.2 mmol/L (the concentration
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required for adequate HPA axis and SNS activation; Fish
et al. 1986; Giordano et al. 2003). One subject was replaced
for all three sessions, and 1 subject was replaced for sessions 2
and 3. Of the 12 subjects enrolled in cohort 2, 1 subject was
withdrawn pre treatment, 4 subjects were withdrawn after
failing to achieve a post-ITT reduction in blood glucose level
t0<2.2 mmol/L, and 1 subject was withdrawn for an adverse
event deemed unrelated to the study drug. Of these, 2 subjects
were replaced for all 3 sessions, 2 subjects were replaced for
sessions 2 and 3, and 1 subject for session 3 alone. Where
subjects failed to achieve an adequate reduction in blood
glucose concentration following the ITT, glucose concentra-
tions were within 0.6 mmol/L of the target, and therefore these
data were used in the final dataset. Subjects were replaced
following an inadequate post-ITT reduction in blood glucose,
on the premise that they were more likely to not achieve the
desired reduction in blood glucose concentration in subse-
quent sessions. The analysis dataset thus comprised 80 ses-
sions (26 placebo, 30 SB-649868, and 24 alprazolam ses-
sions) from 33 subjects.

Side effects

Subjects experienced typical hypoglycemic symptoms in re-
sponse to the ITT, such as sweating, increased appetite, and
increased heart rate. In addition, a number of drug-related side
effects were also reported. These included somnolence, head-
ache, fatigue, dizziness, and lethargy. Somnolence had a sig-
nificantly higher incidence with alprazolam compared to both
placebo (p<0.0001) and SB-649868 (p=0.008), whereas fa-
tigue was reported more frequently in the SB-649868 and
alprazolam conditions, but was not significantly different
between any of the groups at p=0.05 (somnolence: placebo
4 %, SB-649868 17 %, alprazolam 54 %; fatigue: placebo
0 %, SB-649868 7 %, alprazolam 17 %). In contrast, headache
and lethargy were reported more frequently in the placebo and
SB-649868 conditions (headache: placebo 19 %, SB-649868
20 %, alprazolam 4 %; lethargy: placebo 4 %, SB-649868
3 %, alprazolam 0 %), and dizziness only with alprazolam
(alprazolam 8 %); however, these effects were not significant-
ly different between the conditions at p=0.05.

Neuroendocrine markers

Mean pre-dose baseline levels (=0 min) of all neuroendocrine
markers were not significantly different between drug condi-
tions. In addition, the glucose response to ITT was similar
regardless of the drug administered (Fig. 2). Thus, we con-
cluded that any effects of SB-649868 and alprazolam, com-
pared to placebo, must be a result of either drug administration
or ITT.

For both primary neuroendocrine markers, plasma cortisol,
and ACTH, we observed a marked increase in post-ITT



Psychopharmacology (2014) 231:3817-3828

3821

)

Glucose (mmol/l

'
N

)
S (I/1oww) xewy

1 T
-30 0 30 60

JL L
T rrrrT T T T T T M
90 105 120135 150 165180 195 210270 420 720
Planned Relative Time (min)

AUC (mmolehr/l)m

'
w

7h 12h

@ Placebo (PLA) @ SB-649868 (868) @ Alprazolam (ALP)

Fig. 2 Plasma glucose concentration timecourses. Left panel shows
group average glucose concentrations, across the three conditions: place-
bo, SB-649868, and alprazolam. Right panel shows area under curve

plasma concentrations (relative to the pre-ITT baseline, 1=
90 min), where subjects were pre-treated with placebo (AUC
+95 % CI: Amax+95 % CI; cortisol, 457.8+72.5 nmol-hr/L:
395.8+44.6 nmol/L; ACTH, 17.0£6.0 pmol-hr/L: 27.7+£9.2
pmol/L). There was no significant difference to this AUC or
Amax response (see Methods section) when subjects were pre-
treated with either SB-649868 or alprazolam (Fig. 3a, b). How-
ever, absolute pre-ITT baseline cortisol and ACTH levels were
significantly reduced in response to alprazolam administration,
compared to placebo (alprazolam-placebo, difference in ad-
justed mean score+95 % CI; cortisol, —101.1£37.0 nmol/L,
»<0.0001; ACTH, —1.74+0.4 pmol/L, p<0.0001), and conse-
quently, plasma concentrations of cortisol and ACTH at sub-
sequent time points were significantly lower in the alprazolam
condition than in the placebo condition (Fig. 3a, b).

Of the secondary neuroendocrine markers (plasma GH, pro-
lactin, and LH), a marked increase in plasma concentration was
observed in response to ITT for both GH and prolactin, but not
LH (AUC=95 % CI: Amax=+95 % CI; GH, 22.3+7.4 pg-hr/L:
21.546.2 pg/L; prolactin, 21.6+8.7 ug-hr/L: 22.7+8.6 pug/L;
LH, —0.2+1.2 TU-hr/L: 1.3£0.8 IU/L). In addition, the pre-ITT
baseline levels of GH and prolactin were significantly increased
by alprazolam, but not SB-649868 (alprazolam-placebo, differ-
ence in adjusted mean score+95 % CI; GH, 1.1£0.4 ug/L,
»<0.0001; prolactin, 3.3+1.5 pug/L, p < 0.0001; Fig. 4a, b, c).
Furthermore, pre-treatment with alprazolam significantly reduced
the GH response to ITT, but this was not observed for SB-649868
(alprazolam-placebo, AAUC=95 % CI, —10.7+6.2 ug-hr/L, p=
0.001; Amax+95 % CI, —8.0£5.2 pg/L, p=0.003). Pre-treatment
with alprazolam or SB-649868 had no significant impact on
prolactin or LH responses to ITT (Fig. 4a, b, c).

Sympathetic nervous system markers

As with the neuroendocrine markers, the pre-dose baseline
levels (+=0 min) of primary and secondary SN'S markers were
not significantly different between drug conditions.

Of the two primary SNS markers, pulse rate and MAP, a
marked increase in pulse rate was observed in response to ITT

(AUC) and maximum change from baseline (Amax) values (taken from
the pre-ITT baseline, /=90 min, until the end of data collection). Error
bars represent 95 % confidence intervals

(and also in response to drug administration at =0 min),
reaching a maximum 30 min after insulin administration, in
the placebo condition (AUC+95 % CI: Amax+95 % CI,
589.3+£196.2 beats: 19.643.6 beats/min; Fig. 3c). There were
no synchronous changes in MAP, however, administration of
alprazolam progressively reduced the mean baseline values of
MAP, meaning that the pre-ITT baseline was significantly
lower in the alprazolam condition than in the placebo condi-
tion (alprazolam-placebo, difference in adjusted mean score+
95 % CI, —6.4+2.8 mmHg, p<0.0001; Fig. 3d). In analyzing
the effects of SB-649868 and alprazolam on ITT-induced
changes in pulse rate and MAP, we observed no significant
difference from placebo, as measured by the AUC and Amax .

A number of secondary SNS markers were investigated:
plasma adrenaline and NA, respiratory rate, resting GSR, and
GSR and EMG responses to acoustic startle. ITT caused a
marked increase in plasma concentration of adrenaline and
NA, after pre-treatment with placebo, though this was more
marked for adrenaline (AUC£95 % CI: Amax+95 % CI;
adrenaline, 1.7+0.6 nmol-hr/L: 2.94+0.8 nmol/L; NA, 77.3+
27.1 nmol-hr/L: 125.8+41.7 nmol/L). Pre-treatment with al-
prazolam or SB-649868 resulted in no significant change from
the placebo responses to ITT, nor did they significantly change
pre-ITT baseline values of adrenaline and NA (Fig. 4d, e).
Similarly, there was no significant difference between pre-
treatment with SB-649868 or alprazolam, and placebo, with
regards to mean respiratory rate (Fig. 5a). In addition, the
mean respiratory rate did not significantly change in response
to ITT, and the pre-ITT baseline was not significantly different
between the three conditions.

In contrast, we observed a reduction from pre-dose values
(t=—45 min) of AUC GSR (measured as the area under the
curve for each startle response, averaged over 10 trials) and
peak EMG (averaged over 10 trials) in response to startle, after
ITT, in the placebo condition (=120 min; AAUC GSR+95 %
CL —2.3+1.0 uS-sec; Apeak EMG+95 % CI, —24.8+£8.9 uV;
Fig. 5b, c). The post-ITT reduction in AUC GSR and peak
EMG in response to startle was significantly larger than
placebo when subjects were pre-treated with alprazolam,

@ Springer



Psychopharmacology (2014) 231:3817-3828

3822

Fig. 3 Summary of results from a g
primary endpoints. Panels a and b

show primary neuroendocrine S so0d
markers; panels ¢ and d show E
primary sympathetic nervous £ 4004
system markers. All left panels 3

show group average timecourses £ 5004
under each of three conditions: ©
placebo, SB-649868 and alprazo- 04

AUC (nmolehr/l) B

PLA 868

1F )
lam. All right panels show area 30 0 90 105120 135 150 165 180 195 210 ALP
under curve (AUC) and maxi- Planned Relative Time (min)
mum change from baseline
(Amax) values, taken from the b 5.
pre-ITT baseline, £=90 min, until
the end of data collection. Error —~  40- u
d = >
bars represent 95 % confidence 3 £ 3
. . . g 304 = £
intervals. Shaded regions in a S I 5
show how the AUC was T 20 g 3
Q. =
calculated Q Dose g =
< 104 S 7|
<
R — 1717 -
-30 0 90 105120 135150 165 180195 210 PLA 868 ALP
Planned Relative Time (min)
(o
—~ 90-
<
% 25
] >
3 n 203
) 8 =
) © 15
[
v S 3
E < 55
4 0 m
— T T
445 30 0 15 30 45 60 75 90 105120135 150165180 195210 230 PLA 868 ALP
d Planned Relative Time (min)
=)
T
IS
£ 15 10
o |
7 £ 1
1] ° )
o o =
o £ O 03
© 3
E= £ T
Q = Q
= I3} S
<c( 2 7]
& <15 10
o — T
= 45 -30 0 15 30 45 60 75 90 105120 135150165 180195 210 230 PLA 868 ALP

Planned Relative Time (min)

@ Placebo (PLA)

but not when subjects were pre-treated with SB-649868
(alprazolam-placebo; AAUC GSR+95 % CI, —1.3£1.3
uS-sec, p=0.04; Apeak EMG=£95 % CI, —33.7+£6.1 uV,
p<0.0001; Fig. 5b, c).

In the continuous 4-min resting GSR monitoring, while
there was no significant difference in the number of sponta-
neous arousals before (r=—45 min) and after (=120 min) ITT,
in any condition, and likewise no significant difference be-
tween conditions, pre-treatment with alprazolam resulted in a
significant post-ITT reduction in AUC from the pre-dose
baseline resting GSR AUC value, where the effect of pre-
treatment with either placebo or SB-649868 was to marginally
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@ SB-649868 (868)

@ Alprazolam (ALP)

increase, or not affect, resting GSR after ITT (alprazolam-
placebo, AAUC=95 % CI, 1.7+1.3 mS-sec, p=0.01; Fig. 5d).

Behavioral markers

The following mood and behavioral markers were measured:
Beck’s Anxiety Inventory (BAI); Appetite (Visual Analogue
Scale, VAS); Hypoglycemic symptoms (VAS); Hunger, Crav-
ing, and Fullness Questionnaire (HCFQ); and the quantity and
rate of food consumption upon completion of the ITT. Pre-
treatment with alprazolam significantly decreased appetite
post-ITT, compared to placebo, as measured by the appetite
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Fig. 4 Summary of results from
secondary endpoints. Panels a, b,
and ¢ show secondary
neuroendocrine markers; panels d
and e show secondary
sympathetic nervous system
markers. All lefi panels show
group average timecourses under
each of three conditions: placebo,
SB-649868 and alprazolam. All
right panels show area under
curve (AUC) and maximum
change from baseline plasma
concentration (Amax) values, cal-
culated from the pre-ITT baseline,
t=90 min, until the end of data
collection. Starred columns rep-
resent data showing a significant
difference from placebo; error
bars represent 95 % confidence
intervals

VAS, at all time points analyzed (alprazolam-placebo, differ-
ence in adjusted mean score+95 % CI; =135 min, —55.7+
31.1 mm, p=0.0005; =180 min, —62.9£31.1 mm, p<0.0001;
t=210 min, —58.24+31.1 mm, p=0.0003). There was no sig-
nificant difference between pre-treatment conditions for any
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other behavioral endpoints (Supplementary Fig. 1).
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The concentration of SB-649868 was assayed at four
time points after dosing. A peak in mean plasma
concentration was observed 30 min after ITT (¢=
120 min; Supplementary Fig. 2a), which corresponded
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Fig. 5 Summary of results from
additional sympathetic nervous
system markers. a Left panel
shows group mean respiratory
rate across the three conditions
(placebo, SB-649868 and alpraz-
olam), for the duration of the
testing period. Right panel shows
the area under curve (AUC) and
maximum change from baseline
(Amax), taken from the pre-ITT
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of data collection. b and ¢ Left
panels show the peak galvanic
skin response (GSR) and electro-
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spectively, to acoustic startle,

45 min before dosing and 30 min
after ITT. In each case, subjects
were startled 10 times at pseudo-
random intervals over 15 min.
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to peak values for most primary and secondary end-
points. When subjects were pre-treated with SB-
649868, a corresponding decrease in plasma concen-
tration of orexin A was observed, though this was not
significantly different to placebo (Supplementary
Fig. 2b; orexin A levels assayed by Pharmidex UK).
No analogous decrease was observed in the alprazolam
condition. In addition, plasma orexin A concentrations
were not significantly changed in response to ITT in
any condition.
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Discussion

In this study, we attempted to validate the insulin tol-
erance test (ITT) model for studying orexin antagonist
activity in response to hypoglycemic stress in healthy
adult humans. A summary of the effect sizes of pre-
treatment with the positive control, alprazolam, and the
study compound, SB-649868, on neuroendocrine and
sympathetic nervous system responses to ITT can be
found in Table 1.
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Table 1 Summary of effect sizes for primary and secondary, neuroendocrine and sympathetic nervous system markers
Neuroendocrine Sympathetic nervous system
Endpoint SB-649868 Alprazolam Endpoint SB-649868 Alprazolam
AAUC Amax AAUC Amax AAUC Amax AAUC Amax
Primary Cortisol —-0.03 0.05 —-0.05 0.15 Pulse Rate —-0.03 —-0.16 —0.41 —-0.15
ACTH 0.15 0.28 —0.15 —0.04 MAP 0.45 0.28 0.40 0.12
Secondary GH 0.08 0.04 —-1.02 —0.93 Adrenaline —0.05 —-0.07 -0.20 0.06
Prolactin 0.10 0.02 -0.37 —0.27 NA 0.25 -0.28 —0.08 —0.25
LH —0.29 —0.41 —0.15 0.02 Resp. rate 0.05 —0.03 0.17 0.24
Glucose 0.11 —-0.07 Resting GSR 0.02 —-0.07 —-0.78 —0.17
Startle GSR —0.10 0.00 -0.19 —0.08
Startle EMG —0.16 -1.07

Bold figures represent endpoints showing a significant difference from placebo

In the placebo condition, ITT markedly increased plasma
concentrations of most neuroendocrine hormones (cortisol,
ACTH, GH, and prolactin), and most SNS markers (pulse
rate, plasma noradrenaline and adrenaline, and EMG / GSR
responses to acoustic startle), suggesting that the ITT model
may be of great utility for analyzing the pharmacological
efficacy of compounds acting directly or indirectly on these
systems.

Pre-treatment with alprazolam had a number of effects on
primary and secondary endpoints. First, alprazolam appeared
to affect almost all neuroendocrine markers from the time of
dosing, such that at /=90 min (the start of ITT), mean levels of
cortisol, ACTH, and MAP, were significantly lower than in
the placebo condition, and conversely, plasma concentrations
of GH, prolactin, and LH were significantly higher. These
findings are consistent with a previous experimental study
on the effects of alprazolam on neuroendocrine responses to
ITT (Giordano et al. 2003). The change in baseline after
dosing contributed a significant confound to subsequent anal-
yses, which all took pre-ITT values (/=90 min) as a reference
point. For endpoints where pre-ITT measurements were not
taken, and pre-dose values were used as baselines (resting
GSR, and EMG/GSR response to startle), this confound was
not apparent, and alprazolam pre-treatment was found to
significantly reduce post-ITT responses in all of these
markers, compared to placebo. The fact that alprazolam was
able to effect changes in baseline levels of neuroendocrine and
SNS markers suggests that the ITT model, which stimulated
increases in these markers, may be useful for investigating the
efficacy of alprazolam, or more generally, the role of GABA
receptors in the pituitary and adrenal medulla; however, the
experimental design may need to be modified to account for
the effects observed immediately after compound administra-
tion. Furthermore, the results reported in our study following
0.02 mg/kg alprazolam administration were broadly, but not
entirely, consistent with those reported in Giordano et al.

(2003), which found that alprazolam pre-treatment signifi-
cantly reduced ITT-induced increases in ACTH and plasma
adrenaline, in addition to GH. We hypothesize that this most
likely reflects differences in the cohorts analyzed.

The orexin-hypocretin system, by contrast, appeared to
have no significant impact on any endpoints measured; our
findings can be summarized into two main results. First, in the
placebo condition, orexin A levels were approximately con-
stant throughout the experimental procedure, with no signifi-
cant change in plasma orexin A concentration in response to
ITT (Supplementary Fig. 2B, black line). This suggests that
either peripheral orexin A is not a good marker of central
nervous system (CNS) orexinergic neuron activity, our assay
method for orexin A was not sensitive enough to detect small
changes in plasma orexin A, or that the ITT model was unable
to stimulate high endogenous agonist release. Assaying CNS
signaling non-invasively, in general, presents a challenge; in
this study, subtle changes in CNS orexinergic neuron activity
might not have been well detected by peripheral markers, such
as plasma orexin A, and of course the measurements may have
been confounded by the activity of peripheral orexinergic
neurons. In addition, while there is substantial evidence to
suggest that hypoglycemia can robustly activate CNS orexin
signaling in vitro and in rodents, it is possible that this does not
translate well to humans, and that the method for
hypoglycemia-induced increase in HPA axis activation is
due in part to a different mechanism. Secondly, pre-treatment
with SB-649868 had no significant impact on any neuroen-
docrine, SNS, or behavioral responses to ITT, nor were any
significant changes to pre-dose baseline values observed after
dosing. If CNS orexin levels were not adequately stimulated
by hypoglycemic challenge, this result would not be entirely
surprising. In addition, although SB-649868 is known to be a
potent insurmountable antagonist at both OxR1 and OxR2
receptors (Faedo et al. 2012), previous in vivo studies
reporting increased plasma corticosterone (Hagan et al.

@ Springer



3826

Psychopharmacology (2014) 231:3817-3828

1999; Kuru et al. 2000) or plasma ACTH in response to orexin
administration in rodents, administered orexin centrally. By
extension, it is therefore possible that the local concentration
of SB-649868 at CNS OxR1 and OxR2 receptors was insuf-
ficient to have any pharmacological effect even if central
orexin signaling had been adequately stimulated by hypogly-
cemia; in other words, the compound had poor antagonist
efficacy at the bioavailable dose. The lack of antagonist effi-
cacy may also have been exacerbated by a lack of antagonist
affinity at human orexin receptors, or by any potential antag-
onistic effects of CNS versus peripheral orexin neurons. We
hypothesize that any combination of these factors could have
contributed to a lack of significant results produced by the
orexin-hypocretin system in response to hypoglycemic chal-
lenge in this study. However, we also note that this study was
motivated specifically by the intention to investigate the phar-
macodynamic efficacy of SB-649868 at doses lower than the
dose range previously associated with hypnotic efficacy, i.e.,
<20 mg. In future studies, it would be interesting to explore
the utility of the ITT model as a basis for evaluating
orexinergic antagonism over a wider dose range including
doses known to have efficacy on other markers, such as
measures of insomnia. It remains tenable that orexin antago-
nists will have the theoretically anticipated effect on neuroen-
docrine responses to hypoglycemia at higher doses; but it was
beyond the scope of this study to explore a range of higher
doses of this molecule.

Finally, there is some evidence that OxR1 and OxR2
receptors may have complementary roles relating to their
tissue expression, and this may underlie their different roles
in gating REM and non-REM sleep (Mieda et al. 2011).
Therefore, the development of selective receptor antagonists
may be beneficial for future experimental medicine studies.

Conclusion

In conclusion, we show that alprazolam reduces some neuroen-
docrine and sympathetic nervous system responses to insulin-
induced hypoglycemia and, furthermore, that this model may be
valuable for further assessing the role of GABAergic pathways
in the pituitary and adrenal medulla. However, hypoglycemia
did not appear to stimulate orexinergic neuron activity (as
measured by peripheral orexin A levels), nor did low dose SB-
649868 have a significant effect on any endpoint, and therefore
the ITT model could not be validated with regard to investigat-
ing pharmacotherapeutic effects on orexinergic pathways. These
findings may be particularly relevant in light of recent FDA
decisions to only grant approval for low dose studies of a similar
dual OxR1 and OxR2 antagonist, Suvorexant.
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