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Abstract

Leber congenital amaurosis (LCA) is the earliest and most severe form of all inherited retinal

dystrophies (IRD) and the most frequent cause of inherited blindness in children. The phe-

notypic overlap with other early-onset and severe IRDs as well as difficulties associated with

the ophthalmic examination of infants can complicate the clinical diagnosis. To date, 25

genes have been implicated in the pathogenesis of LCA. The disorder is usually inherited in

an autosomal recessive fashion, although rare dominant cases have been reported. We

report the mutation spectra and frequency of genes in 27 German index patients initially

diagnosed with LCA. A total of 108 LCA- and other genes implicated in IRD were analysed

using a cost-effective targeted next-generation sequencing procedure based on molecular

inversion probes (MIPs). Sequencing and variant filtering led to the identification of putative

pathogenic variants in 25 cases, thereby leading to a detection rate of 93%. The mutation

spectrum comprises 34 different alleles, 17 of which are novel. In line with previous studies,

the genetic results led to a revision of the initial clinical diagnosis in a substantial proportion

of cases, demonstrating the importance of genetic testing in IRD. In addition, our detection

rate of 93% shows that MIPs are a cost-efficient and sensitive tool for targeted next-genera-

tion sequencing in IRD.

Introduction

Leber congenital amaurosis (LCA, MIM #204000) was first described by Theodor Leber in

1869 and refers to a heterogeneous group of severe, mostly recessively inherited, early infan-

tile-onset retinal dystrophies with typically extinguished electroretinograms (ERGs). Later, a

separate group of milder disease phenotypes, with some preservation of the ERG responses,

the so-called “early-onset severe retinal dystrophy” (EOSRD) or “severe early childhood onset

retinal dystrophy” has been described. LCA and EOSRD together are the most severe and ear-

liest forms of all inherited retinal diseases (IRDs). They affect 20% of blind children and

account for 5% of all IRDs [1]. In Germany, the estimated number of cases is 2000 (source: Pro
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Retina Deutschland e. V.). To date, mutations in 25 genes have been associated with LCA

(https://sph.uth.edu/retnet/). A substantial proportion of cases (10–20%) remain unsolved

despite extensive molecular testing [2–4]. This is due to technical limitations as copy number

variations often remain undetected in datasets derived from capture panels or whole exome

sequencing, but also because of the focus on coding regions in most diagnostic settings which

will not detect deep intronic variants acting on splicing or variants in regulatory sequences.

There is a considerable clinical and genetic overlap between LCA, EOSRD and other types

of IRD, therefore, an accurate clinical diagnosis cannot always be made at the first visit of the

young patients. Furthermore, the clinical examination of infants is challenging or limited.

Hence, the initial clinical diagnosis sometimes has to be revised once genetic results are

available.

For a long time the genetic heterogeneity of LCA (and IRD in general) hampered DNA-

based (molecular) diagnoses, since parallel screening of all associated genes requires next gen-

eration sequencing approaches, for which reimbursement to the patient is often not guaran-

teed. We sought for a cost-effective and sensitive approach to obtain a molecular diagnosis for

27 patients that had been diagnosed with LCA at the University Eye Hospital Tuebingen. The

present study focuses on these genetically unsolved cases, which were screened for sequence

variants in 108 genes associated with non-syndromic IRD by a cost-effective targeted panel-

based next-generation sequencing approach.

Materials and methods

Subjects and clinical assessment

In this study we included 27 unrelated patients of German origin with a clinical diagnosis of

LCA who were not genetically pre-investigated. Their clinical diagnosis was established by

standard clinical ophthalmologic examinations including patient history, psychophysical and

electrophysiological examinations. Genomic DNA of patients was extracted from peripheral

blood using standard protocols. Samples from all patients and family members were recruited

in accordance with the principles of the Declaration of Helsinki and were obtained with writ-

ten informed consent accompanying the patients´ samples. The study was approved by the

institutional review board of the Ethics Committee of the University Hospital of Tuebingen.

Sequencing analysis

Molecular testing was performed by targeted next-generation sequencing at a core facility

(Department of Human Genetics, Radboud University Nijmegen Medical Centre). We used

molecular inversion probes (MIPs) with 5-bp molecular tags to conduct targeted next genera-

tion sequencing of 108 genes associated with IRD (see S1 Table). The 1,524 coding exons and

the 10 bp flanking each exon were targeted with 6,129 probes for an overall target size of

647,574 bp. On average, 4–6 MIPs cover one exon. The panel also includes the frequent LCA-

associated pathogenic intronic variant c.2992+1655A>G in CEP290 [5]. Pooled and phos-

phorylated probes were added to the capture reactions with 100 ng of genomic DNA from

each individual to produce a library for each individual. The libraries were amplified with 21

cycles of PCR, during which an 8-bp sample barcode was introduced. The barcoded libraries

were then pooled and purified with AMPureXP beads (Beckman-Coulter). Sequencing was

performed on an Illumina NextSeq 500 system. Demultiplexed BAM files were aligned to a

human reference sequence (UCSC Genome Browser hg19) via the Burrows-Wheeler Aligner

(BWA) v.0.6.2 [6]. In-house automated data analysis pipeline and variant interpretation tools

were used for variant calling. Rare and potentially disease-causing variants were confirmed by

Sanger sequencing using standard protocols. Sanger sequencing was also used to screen for the

MIP screening in LCA
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recurrent c.2843G>A/p.C948Y variant in the CRB1 gene because it was not covered by the

MIP reads.

Variant filtering and classification

Only non-synonymous single nucleotide variants (nsSNVs), nonsense variants, putative splice

site (±10 bps) variants, insertions, duplications and deletions represented by more than 20

sequence reads were considered for further analysis. In addition, variants with a minor allele

frequency (MAF) >0.5% in the Genome Aggregation Database (gnomAD) Version r2.0.2 [7]

were excluded from further investigation. For variant classification we applied the terminology

proposed by the American College of Medical Genetics and Genomics and the Association for

Molecular Pathology [8].

In silico predictions

The potential pathogenicity of the missense changes identified in this study was assessed using

four online prediction software tools, namely SIFT (http://sift.bii.a-star.edu.sg/) [9], PolyPhen-

2 (http://genetics.bwh.harvard.edu/pph2/) [10], Mutation Taster (www.mutationtaster.org/)

[11], and Provean (http://provean.jcvi.org/) [12].

Results

Utilizing our capture panel technology, we were able to obtain an average of 1.2 million reads

on target per sample, with an average coverage of 213 reads per probe. Moreover, an average

of 88% of targeted regions had 10x coverage or more, which was sufficient for accurate variant

calling. The pipeline initially called an average of 532 single nucleotide variants and 64 inser-

tions/deletions for each sample. Putative pathogenic variants were identified in 25/27 index

cases (Table 1), thereby achieving a detection rate of 93%. All putative disease-associated vari-

ants were validated by conventional Sanger sequencing. Homozygosity was observed for eight

patients (26%): variants were seen in true homozygous state in four patients and in apparent

homozygous state in four patients, respectively. Two patients were hemizygous, and com-

pound heterozygosity was observed for four patients based on the analysis of paternal alleles.

Trans configuration of variants could not be demonstrated for 11 patients because DNA of

family members was not available and the respective variants were located too far apart for

allelic cloning. In patient 26, a single heterozygous variant in IMPG2 was observed. In patient

27, no putative disease-causing variants were identified. The mutation spectrum comprises 34

different alleles, 17 of which are novel. All novel variants were deposited to the ClinVar data-

base (https://www.ncbi.nlm.nih.gov/clinvar/) [13] with accession codes provided in Table 1.

The variants comprise 14 missense variants, eight nonsense variants, seven deletions or

duplications leading to a frame-shift, three canonical splice site variants, two non-canonical

splice site variants and one in-frame deletion. Pathogenicity was interpreted in accordance

with the American College of Medical Genetics guidelines [8]. The respective categories are

given in Table 1. Missense variants that have never been reported before were analysed using

different in silico prediction algorithms. These scores, together with the MAFs sourced from

the gnomAD browser are shown in Table 2.

LCA / EOSRD patients

A summary of clinical findings is shown in Table 3 including all 27 index patients. In 19 of 27

patients, the initial diagnosis of LCA/EOSRD was confirmed by the molecular genetic analysis.

In all of these cases, disease onset was typically at birth or within the first months of life.

MIP screening in LCA
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Nystagmus and strabismus were common features, indicating the lack of visual development.

Visual acuity was severely reduced in all cases, ranging from 0.2 (decimal) to no light percep-

tion (NLP). Where visual field testing was possible, only small residual visual islands could be

detected. Fullfield ERGs were extinguished in each case at time of recording. Morphological

findings included typical salt & pepper pigmentary changes of the retina, pale optic disks and

attenuated retinal vessels. Patients showed a progressive disease history with severe visual

impairment from the beginning. In the following, the LCA-associated genes that were found

to be mutated in these patients are listed in detail.

Table 2. Assessment of pathogenicity of missense variants identified in this study.

Gene Variant gnomAD

MAF

Mutation

Taster

Polyphen SIFT Provean phyloP Grantham

Score

ABCA4 c.3377T>C/

p.L1126P

4.061e-6 Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.0)

Deleterious

(-6.51)

3.60 98

ABCA4 c.3259G>A/

E1087K

1.624e-5 Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.0)

Deleterious

(-3.84)

6.22 56

AIPL1 c.857A>T/p.

D286V

none Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.0)

Deleterious

(-8.31)

4.09 152

CDHR1 c.634G>A/

p.A212T

0.0001312 Disease

causing

(0.99)

Probably

damaging

(0.99)

Damaging

(0.0)

Deleterious

(-3.22)

4.93 58

CDHR1 c.1132C>T/

p.R378W

7.584e-5 Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.02)

Deleterious

(-3.84)

1.25 101

CRB1 c.2798G>A/

p.C933Y

none Disease

causing

(0.99)

Probably

damaging

(0.99)

Damaging

(0.0)

Deleterious

(-9.66)

5.69 194

CRB1 c.2308G>A/

p.G770S

2.036e-5 Disease

causing

(0.99)

Probably

damaging

(1.0)

Tolerated

(0.06)

Deleterious

(-5.48)

5.69 56

CRB1 c.2843G>A/

p.C948Y

0.0002027 Disease

causing

(0.99)

Probably

damaging

(0.99)

Damaging

(0.0)

Deleterious

(-9.66)

5.31 194

CRB1 c.2042G>A/

p.C681Y

4.067e-6 Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.0)

Deleterious

(-10.74)

5.74 194

NMNAT1 c.769G>A/

p.E257K

0.0006968 Disease

causing

(0.99)

Benign

(0.09)

Tolerated

(0.52)

Neutral

(-2.31)

3.87 56

RP2 c.314G>A/

p.C105Y

none Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.0)

Deleterious

(-8.6)

5.50 194

RPE65 c.110G>C/

p.W37S

none Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.02)

Deleterious

(-12.62)

5.78 177

RPE65 c.722A>G/

p.H241R

none Disease

causing

(0.99)

Probably

damaging

(1.0)

Damaging

(0.0)

Deleterious

(-7.58)

4.74 29

RPE65 c.203A>C/p.

H68P

none Disease

causing

(0.99)

Probably

damaging

(1.0)

Tolerated

(0.06)

Deleterious

(-9.34)

4.78 77

MAF, minor allele frequency.

https://doi.org/10.1371/journal.pone.0205380.t002
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Table 3. Summary of clinical findings.

Patient

Nr.

Current age

(y) Gender

Genetic findings Revised

diagnosis

Disease

onset

BCVA

OD

OS

Nystagmus Cataract Strabism Fundus

pigmentary

changes

Other findings

1 50 / m AIPL1
c.857A>T/p.D286V

homozygous

LCA 6 months 1/35

1/35

yes yes yes S&P no

2 31 / m AIPL1
c.834G>A/p.W278�

heterozygous

c.277+6T>C/p.?

heterozygous

LCA n.a. CF

CF

yes no yes S&P no

3 8 / f CEP290
c.2991+1655A>G/p.

[Cys998�, = ] homozygous

LCA birth n.a. yes no yes n.a. no

4 45 / f CRB1
c.2798G>A/p.C933Y

heterozygous

c.2843G>A/p.C948Y

heterozygous

EOSRD childhood LP

HM

yes no yes S&P n.a.

5 61 / m CRB1
c.4039del/p.T1347Lfs�5

heterozygous

c.2843G>A/p.C948Y

heterozygous

LCA birth n.a. yes yes n.a. n.a. n.a.

6 25 / f CRB1
c.410del/p.P137Lfs�11

heterozygous

c.2843G>A/p.C948Y

heterozygous

LCA 6 months n.a. yes no yes S&P no

7 27 / m CRB1
c.70+1G>A/p.?

heterozygous

c.2042G>A/p.C681Y

heterozygous

LCA 9 months 1/35

1/35

yes no yes S&P no

8 55 / f CRB1
c.2308G>A/p.G770S

heterozygous

c.2843G>A/p.C948Y

heterozygous

EOSRD 3 years LP

LP

n.a. yes n.a. S&P anti-phospholipid

syndrome, asthma

9 28 / m CRB1
c.2072G>A/p.W691�

heterozygous

c.2843G>A/p.C948Y

heterozygous

LCA birth 1/5

1/5

yes no yes n.a. n.a.

10 48 / f NMNAT1
c.12dup/p.E5Rfs�4

heterozygous c.769G>A/p.

E257K heterozygous

LCA birth LP

LP

yes yes n.a. n.a. n.a.

11 20 / f RD3
c.180C>A/p.Y60�

homozygous

EOSRD 2 years LP

LP

yes no yes n.a. no

12 36/ m RPE65
c.110G>C/p.W37S

heterozygous

c.722A>G/p.H241R

heterozygous

LCA birth 1/50

1/35

yes no yes S&P n.a.

(Continued)
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Table 3. (Continued)

Patient

Nr.

Current age

(y) Gender

Genetic findings Revised

diagnosis

Disease

onset

BCVA

OD

OS

Nystagmus Cataract Strabism Fundus

pigmentary

changes

Other findings

13 48 / f RPE65
c.203A>C/p.H68P

heterozygous

c.825C>G/p.Y275�

heterozygous

LCA birth HM

1/50

yes no yes n.a. n.a.

14 26 / f RPGRIP1
c.2440C>T/p.R814�

homozygous

LCA birth NLP

NLP

yes no yes S&P no

15 36 / m RPGRIP1
c.1303A>T/p.K435�

heterozygous

c.801-25_c.843del

heterozygous

LCA 6 months HM

HM

yes no yes n.a. no

16 47 / m RPGRIP1
c.2941C>T/p.R981�

homozygous

LCA n.a. LP

LP

yes yes yes S&P no

17 17 / f RPGRIP1
c.800+1G>A/p.?

heterozygous

c.2718dup/p.N907�

heterozygous

LCA birth 1/10

1/10

yes no yes S&P no

18 33 / f ABCA4
c.1765del/p.W589Gfs�60

homozygous

CRD 3 years n.a. n.a. n.a. n.a. n.a. n.a.

19 47 / f ABCA4
c.5461-10T>C/p.

[T1821Vfs�13, T1821Dfs�6]

heterozygous

c.3377T>C/p.L1126P

heterozygous

CRD 7 years 1/35

1/35

yes no yes S&P n.a.

20 44 / m ABCA4
c.3259G>A/E1087K

heterozygous

c.5917del/p.V1973�

heterozygous

CRD n.a. LP

LP

n.a. yes n.a. dense no

21 18 / f ABCA4
c.5917del/p.V1973�

homozygous

CRD childhood LP

LP

n.a. no n.a. dense no

22 20 / m CACNA1F
c.4504C>T/p.R1502�

hemizygous

CSNB birth 1/6

1/10

yes no no no no

23 35 / f CDHR1
c.634G>A/p.A212T

heterozygous

c.1132C>T/p.R378W

heterozygous

CRD n.a. HM

HM

yes no yes S&P renal insufficiency,

hyper-parathyroidism,

obesity

24 50 / m PROM1
c.1209_1229/p.

Q403_S410delinsH

homozygous

RP 16 years LP

LP

yes yes yes S&P no

25 45 / m RP2
c.314G>A/p.C105Y

hemizygous

XRP childhood 1/35

1/35

yes no yes n.a. no

(Continued)
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CRB1. CRB1 variants were detected in six patients (22.2%; 6/27). In total, eight variants

were identified, including one novel nonsense, two novel frame-shifting deletions, one novel

canonical splice site variant and one novel missense variant. Compound heterozygosity could

only be demonstrated in two patients. Five patients were heterozygous for the recurrent

c.2843G>A/p.C948Y variant, which has been reported to represent 23–31% of all CRB1 dis-

ease-associated alleles [14–15]. Of note, this particular variant was not covered by the MIPs in

our assay, but we screened all patients by conventional Sanger Sequencing for this variant,

because of its known high frequency and relevance (MAF 0.0002027).

RPGRIP1. Of the six potentially disease-causing variants in RPGRIP1 detected in four

patients (14.8%; 4/27), all represent likely null alleles and three were novel. Compound hetero-

zygosity of a reported nonsense variant and a novel 68-bp deletion was demonstrated for one

patient. One patient harbored a reported canonical splice site variant on one allele and a novel

frame-shifting duplication on the other allele. Two patients were homozygous for two different

nonsense variants, one of them novel.

RPE65. A total of four novel variants in RPE65 were identified in two patients (7.4%; 2/

27), including one nonsense and three missense. Biallelism could not be formally proven in

both cases.

AIPL1. Of the three variants detected in two affected individuals in AIPL1 (7.4%; 2/27),

there was one novel missense variant found in homozygous state in one patient. Another

patient harbored a nonsense variant and a non-canonical splice site change. Whether the vari-

ants are in trans configuration in this patient could not be established.

RD3. One patient was found to be homozygous for a known nonsense variant in RD3
(3.7%; 1/27).

NMNAT1. NMNAT1 variants were detected in one patient (3.7%; 1/27) who possessed

one reported frame-shifting duplication and the known hypomorphic variant c.769G>A/p.

E257K [16]. Biallelism could not be confirmed due to lack of additional family DNA samples.

CEP290. One patient was found to be homozygous for the common c.2991+1655A>G/p.

C998� allele which causes insertion of a cryptic exon and subsequent truncation [5,17].

Other patients

In addition to the cases described above, we identified eight patients (30%) who harbored

pathogenic variants in genes not typically associated with LCA. Clinical re-evaluation of these

cases led to a revision of the initial clinical diagnosis in all of them. Within this group, ABCA4
was the most frequently mutated gene, as biallelic variants were seen in four patients. In these

Table 3. (Continued)

Patient

Nr.

Current age

(y) Gender

Genetic findings Revised

diagnosis

Disease

onset

BCVA

OD

OS

Nystagmus Cataract Strabism Fundus

pigmentary

changes

Other findings

26 39/ m IMPG2
c.370T>C/p.F124L single

heterozygous

LCA 4 years n.a. yes no yes n.a. no

27 12 / m nothing of immediate

interest

EOSRD 3 years 1/20

1/20

no no yes S&P no

BCVA, best corrected visual acuity; OD, right eye; OS, left eye; m, male; f, female; LCA, Leber congenital amaurosis; EOSRD, early-onset severe retinal dystrophy; CRD,

cone-rod dystrophy; CSNB, congenital stationary nightblindness; RP, retinitis pigmentosa; XRP, X-linked RP; CF, counting fingers; HM, hand movement; LP, light

perception; NLP, no light perception; S&P, salt and pepper.

https://doi.org/10.1371/journal.pone.0205380.t003
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cases, a later onset of disease and a dense pigmentation of the retina were observed (Table 3).

After genetic testing and re-evaluation of clinical data, the diagnosis was corrected to cone-rod

dystrophy (CRD), demonstrating severe morphological and functional damage in all cases.

In addition, we found a male patient to be hemizygous for a pathogenic variant in RP2. He

had been initially diagnosed in adult age with severely progressed retinal degeneration. Conse-

quently, his diagnosis was corrected to X-linked retinitis pigmentosa.

Another male patient was shown to be hemizygous for a pathogenic variant in CACNA1F.

He was suffering from nystagmus, night blindness, photophobia and very poor vision since

birth. His fullfield ERGs showed residual photopic and scotopic responses. Morphologically,

slight attenuation of the retinal vessels, changes in the macular reflexes and only minimal

peripheral pigmentary changes could be observed. In this case, the diagnosis was changed to

X-linked congenital stationary night blindness (CSNB).

One patient harbored pathogenic variants in CDHR1. The revised clinical diagnosis in this

case was CRD, but interestingly, this female patient also suffered from renal insufficiency, sec-

ondary hyperparathyroidism and obesity. Whether these symptoms can be considered as a

unique disease identity or syndrome remains unexplained. So far, such extra-ocular symptoms

have not been described as a feature of CDHR1-related disease but would be typical features of

a ciliopathy to which CDHR1-associated IRD does not belong to.

The last male patient presented in our clinic with a severe retinal degeneration at the age of

50 years and was found to be homozygous for an in-frame insertion/deletion in PROM1. On

the basis of patient history, clinical findings and genetic results, the clinical diagnosis was

changed to autosomal recessive retinitis pigmentosa.

Discussion

In a cohort of 27 German patients initially diagnosed with LCA, we were able to identify

sequence variants likely explaining the disease phenotype in 25 cases (93%) by applying a cost-

efficient targeted next-generation sequencing approach designed at the Department of Human

Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. The MIP panel

targets 108 known IRD genes, including 22 genes that are associated with LCA, that were

reported in October 2013.

Undoubtedly, those LCA genes with the highest disease-causing variant load have already

been discovered. However, the fact that half of the variants (17/34) we identified are novel sug-

gests that the mutation spectrum of LCA and other IRD genes is far from being saturated and

confirms the known genetic heterogeneity of IRD in an outbred European population.

The most frequently mutated LCA genes in our cohort were CRB1 (6 cases, 22%) and

RPGRIP1 (4 cases, 15%). Among the six patients with CRB1mutations, five carried the recur-

rent p.C948Y variant on one allele, which is known to be a founder mutation [18]. We only

identified one patient with a CEP290 variant in our cohort, despite CEP290 being one of the

most frequently mutated LCA genes in different populations [5, 19], but this is due to the fact

that most patients in the present study had already been pre-screened for the recurrent patho-

genic intronic variant c.2992+1655A>G.

Several criteria were considered to evaluate the potential pathogenicity of variants: (1) vari-

ants have previously been reported to be pathogenic, (2) variants are observed only in few het-

erozygous cases or are absent among 277,264 general population alleles sourced from

gnomAD browser; (3) variants represent likely null alleles (nonsense, canonical splice site and

frame-shift variants), and (4) in the case of missense variants they are predicted to be damag-

ing by in silico prediction algorithms. In addition, all variants were classified according to their

pathogenicity based on the American College of Medical Genetics and Genomics (ACMG)
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guidelines [8]. With nonsense, canonical splice site and frame-shifting variants having a strong

weight in the ACMG scoring system, this class of variants are consequently classified either as

likely pathogenic or pathogenic, whereas missense variants that lack segregation data and

functional analyses to support a damaging effect are always classified as variants of uncertain

significance (VUS). To compensate for this simplistic categorization of the ACMG classifica-

tion system, we provide in silico predictions from four algorithms for all missense variants

identified in this study, regardless of having been reported previously or not, along with phy-

loP scores, Grantham differences and MAFs sourced from the gnomAD browser (Table 2).

The extremely low MAF or even the absence in the gnomAD browser, the evolutionary con-

servation as well as the type of the respective amino acid substitution are strong indicators that

all missense variants we identified and reported are indeed pathogenic. One missense variant

that is predicted to be benign by the majority of algorithms is the recurrent c.769G>A/p.

E257K variant in NMNAT1, but it has been shown previously that this is a hypomorphic vari-

ant and almost always causes LCA in combination with more severe alleles [16].

Apart from the fact that we lack segregation data for several patients, the only case that is

left with some level of uncertainty is patient LCA 108 who carries a nonsense variant and a

non-canonical splice site variant in AIPL1. The latter is a transition of T to C at position +6 of

the splice donor of exon 2. It is absent in the gnomAD browser, but since the +6 position is

not invariable, we performed an in silico prediction. The bioinformatic tool Human Splicing

Finder [20] predicts that the c.277+6T>C variant breaks the natural splice donor site, since

the mutant score is reduced by 41% compared to the wildtype score when using maximum

entropy as the algorithm type. However, since AIPL1 is not expressed in accessible tissues like

blood or skin fibroblasts, mRNA analyses to confirm the in silico prediction are not feasible.

Sanger sequencing of the entire coding region of AIPL1 in this patient revealed no other vari-

ants than c.834G>A/p.W278� and c.277+6T>C. While most cases with mutations in AIPL1
are biallelic, certain mutations may result in dominant cone-rod dystrophy or juvenile retinitis

pigmentosa [21], however, this most probably is not the case for loss of function alleles like the

c.834G>A/p.W278� variant in our patient. Of course, we cannot rule out that the phenotype

of our patient might not be related to AIPL1 at all.

The different forms of IRD may present with considerable clinical overlap [22]. This often

precludes the assessment of a diagnosis on the basis of the disease phenotype alone, no matter

how experienced and meticulous the clinician might be. Hence, we were not surprised that

eight patients in our cohort (30%) were found to carry pathogenic variants in genes not typi-

cally associated with LCA. We reassessed the clinical data of these patients and revisited the

initial diagnosis in all of them. A recently published study on Brazilian patients with LCA

found the same proportion (i.e. 30%) of patients that were solved by identifying variants in

non-LCA genes [23]. This impressively demonstrates how a molecular diagnosis can help to

refine a clinical diagnosis.

The underlying variants in two patients remained unresolved (7.4%; 2/27). One of these

patients was found to be heterozygous for a known missense variant in IMPG2. Biallelic muta-

tions in IMPG2 are a known cause for RP [24]. All exons and adjacent intronic regions of this

gene were sufficiently covered which excludes the existence of a second variant in the coding

region. Whether non-coding deep-intronic variants or large deletions in the IMPG2 gene

account for the second pathogenic allele in this patient remains unknown.

Supposing that all patients in whom we could not confirm trans configuration of variants

are indeed biallelic, our detection rate is 93%. This is in line with recent studies for LCA which

achieved 80–90% in panel-based approaches [2–3] and 89% by whole exome/genome sequenc-

ing [4]. Analysis of our sequencing data revealed several regions with low or no coverage, as

for instance for parts of exon 6 of CRB1. We would have missed several patients carrying the
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recurrent c.2843G>A/p.C948Y variant in this gene, had we not re-sequenced this exon in all

patients with conventional Sanger sequencing.

Several studies have shown that whole exome sequencing (WES) and whole genome

sequencing (WGS) can outperform targeted sequencing approaches in terms of variant detec-

tion [4, 25–27]. In fact, NHS England is already planning to commission WGS into routine

clinical care pathways [28]. However, targeted sequencing approaches have several benefits,

including a higher coverage rate for targeted regions and higher throughput in terms of patient

numbers. What is more important, they are associated with considerable lower costs, which is

relevant for those patients who cannot expect reimbursement from their health care provider

or have no health insurance at all. The MIP technology we used can be as low as € 80 per sam-

ple per gene panel, which is 10 to 20 times lower than the price tag for other NGS-based

sequencing procedures. Reaching a detection rate of 93%, we could demonstrate that MIPs are

a cost-efficient and sensitive tool for targeted next-generation sequencing in IRD.
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