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Analysis of atmospheric 
temperature data by 4D 
spatial–temporal statistical model
Ke Xu1* & Yaqiong Wang2

The meteorological data such as temperature of the upper atmosphere is ssential for accurate weather 
forecasting. The Universal Rawinsonde Observation Program (RAOB) establishes an extensive 
radiosonde network worldwide to observe atmospheric meteorological data from the surface to the 
low stratosphere. The RAOB data data has very high accuracy but can offer a very limited spatial 
coverage. Meanwhile, ERA-Interim reanalysis data is widely available but with low-quality. We 
propose a 4D spatiotemporal statistical model which can make effective inferences from ERA-Interim 
reanalysis data to RAOB data. Finally, we can obtain a huge amount of RAOB data with high-quality 
and can offer a very wide spatial coverage. In empirical research, we collected data from 200 launch 
sites around the world in January 2015. The 4D spatiotemporal statistical model successfully analyzed 
the observation gaps at different pressure levels.

Being able to accurately understand different temperatures at different latitudes, longitudes and altitudes is very 
important for research and practical applications1–4. These temperatures have very important applications in 
agriculture, ecology, biology, medicine, construction engineering, etc.5–9. The observation of Earth’s temperatures 
from space is generally recognized to be the key to future climate understanding. To ensure the temperature data 
from satellite products meet the mission specific requirements for climate and weather applications, rigorous 
validation and uncertainty assessment relies on in-situ observations, especially on radiosonde10–12.

One source of temperature data is from a project on Gap Analysis for Integrated Atmospheric ECV Climate 
Monitoring (http://​www.​gaia-​clim.​eu). It introduced the concept of network gap, which is a region of the atmos-
phere where the network forecasting capability is poor. This gap is relevant for both satellite validation and climate 
change understanding. One of this kind of data is ERA-Interim reanalysis data provided by European Centre for 
Medium-range Weather Forecasts (ECMWF).

Relative to ERA-Interim reanalysis data, reference measurements such as those provided by GCOS (Global 
Climate Observing System) Reference Upper Air Network (http://​www.​gruan.​org) are the ideal counterparts 
for satellite validation. In practice, data of the Universal RAwinsonde OBservation program (http://​www.​raob.​
com) are often used as a de-facto standard for this purpose. We abbreviate this kind of temperature data as RAOB 
data. RAOB data is very accurate temperature data. However, RAOB data offer a very limited spatial coverage. 
Moreover, RAOB data is usually very expensive and difficult to obtain.

In conclusion, ERA-Interim reanalysis data is widely available with low-quality; RAOB data with high-quality 
but can offer a very limited spatial coverage. Therefore, it is very important to establish a connection between 
these two kinds of temperature data. It can help scientists make effective inferences from ERA-Interim reanalysis 
data to RAOB data. This gives a new way to obtain RAOB data which is expensive and difficult to collect. To this 
end, we propose a 4D (3D space + 1D time) statistical model, it aims to estimate the observation gap between 
ERA-Interim reanalysis data and RAOB data. The 4D model merges two building blocks: a spatiotemporal model 
on the sphere, and the functional data approach. In fact on the one side, spatiotemporal statistical modelling of 
global atmospheric data must be able to consider both the spherical domain and the anisotropy of the atmos-
pheric dynamics. Moreover, radiosonde data arise as atmospheric profiles and a "natural" statistical framework 
is based on functional data approach13,14. The second building block is based on the functional representation 
of atmospheric profiles. In this regard, the ideas of Giraldo15 developed in the last ten years to spatial functional 
data and functional kriging. A fruitful approach is based on the representation of random functional objects as 
linear combinations of the basis functions with Gaussian random coefficients16.

Thanks to this approach, in this paper, we consider the RAOB temperature profiles indexed in space according 
to the launching site and indexed in time according to the day as mixed effect models with a vertical dimension 
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given by B-spline basis functions. The spline coefficients, indexed in space and time, are modelled as spatiotem-
poral models on the sphere. In fact, we use an extension of the observation-minus-background approach, which 
is common in atmospheric sciences17,18 and filter out large scale components.

The rest of the paper is organized as follows. “Datasets” section describes the RAOB dataset, and the ERA-
interim reanalysis data, which is used as the background. In “4D spatiotemporal statistical model” section, we 
present the 4D spatio-temporal statistical model. “Model results” section reports the model results, and “Con-
clusion” section concludes.

Datasets
In this section, we introduce the data used for the estimation and validation of the model: the RAOB radiosonde 
temperature vertical profiles which are used as the model response, and the European Centre for Medium-range 
Weather Forecasts (ECMWF) ERA-interim reanalysis data, which are used as the background.

The universal rawinsonde observation program.  In this paper, we use the RAOB dataset for January, 
2015. This dataset is obtained from the database implemented by the Earth System Research Laboratory of the 
National Oceanic and Atmospheric Administration (NOAA/ESRL, https://​ruc.​noaa.​gov/​raobs/).

We consider twice a day observations at 00:00 UTC and 12:00 UTC from the  n = 200 worldwide launch 
sites. Temperature data collected at the latitude 42.27 and longitude 118.97 in January 2015 is depicted in Fig. 1, 
where the y-axis presents the barometric pressure levels.

A radiosonde is made by a set of instruments carried into the atmosphere by a weather balloon, measuring 
various atmospheric parameters and transmitting them by radio to a ground receiver up to altitudes of approxi-
mately 30–35 km, depending on the balloon burst. The observations are processed and encoded for transmission 
and efficient storage. While the radiosonde transmits an essentially continuous stream of temperature readings 
back to the station (each 5–10 m of altitude, measured each 1–2 s), only a subset of this information is encoded 
and transmitted.

ERA‑interim description.  ERA-Interim is a global atmospheric reanalysis data provided by ECMWF. It 
is based on assimilating global observations into a computational model which gives the best state estimate19. 
We focus on 00:00 UTC and 12:00 UTC reanalysis which are described as instantaneous, though they represent 
30 min averages and have a horizontal resolution of 0.75o , which is about 80 km depending on latitude. The 
product comprises 60 vertical levels from the surface up to 0.1 hPa, and each level is populated by 241 × 480 
pixels.

Figure 1.   In the left panel, the vertical axis on the left represents pressure, and the vertical axis on the right 
represents temperature. The horizontal axis represents time points, and data are collected every half day. In the 
right panel, the vertical axis represents pressure, and the horizontal axis represents temperature. Data collected 
at different times are represented by lines of different colors. All data are collected at the latitude 42.27 and 
longitude 118.97 in January 2015.

https://ruc.noaa.gov/raobs/
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4D spatiotemporal statistical model
In this section, we introduce a 4D spatiotemporal statistical model, which fits the functional data on the sphere. 
Let yTEMP(s, h, t) be the atmospheric profile at site with coordinates s = (lat, lon) ∈ S

2 and time t , observed at 
altitude or barometric pressure h , where S2 is the sphere representing the Earth. The model is defined by the 
following measurement and dynamics equations:

In this model, yTEMP(s, h, t) represents RAOB data and xERA(s, h, t) represents ERA-Interim reanalysis data. 
Among (1), s represents different position of launching site on the two-dimensional plane of longitude and lati-
tude, h represents the third dimension of altitude or pressure, and t  represents the fourth dimension of time. In 
addition, φ(h)′z(s, t) means the difference between RAOB data and ERA-Interim reanalysis data with altitude 
h in position s at time t  . To this end, this is a 4D model, which is relatively novel. This model is very different 
from conventional 3D models in traditional literature. In the case study, we define h ∈ H = [50, 925] hPa , 
t = 1, . . . , 62 . In the measurement equation, ǫ(s, h, t) is a Gaussian measurement error. The variance of ǫ(s, h, t)  
is represented as σ2ǫ (h). To this end, σ2ǫ (h) needs to satisfy the following condition:

where φ(h) is a set of p× 1 basis functions, and βERA(h) is modelled as:

where cβ is a p× 1 vector needed to be estimated. In Eq. (2), z(s, t) is a p-variate latent random variable with 
Markovian dynamics ruled by the persistency matrix G . Therefore, G matrix is the correlation coefficient matrix 
of latent random variable z(s,t) in time. In the dynamics equation, η(s; t) is a p dimensional Gaussian innovation 
random field which is independent in time, with spatial covariance function:

In fuction (5), v = (v1, . . . , vp)
′ is the variance vector, and ρ

(
s, s′; θj

)
 is a valid spatial correlation function20 

on the sphere with range parameter θj from θ = (θ1, . . . , θp)
′ . In addition, “diag()” means the elements on the 

diagonal of the matrix.
The O− B approach is generalized here by using the ERA-interim background as the unique covariate of 

model, where O refers to observations and B refers to background21. In fact, the O− B approach is generalized 
to O = βB+ e , where e = �′z + ǫ is capable to give a more detailed description of the bias structure. To model 
the effect of the East–West atmospheric dynamics on the O− B error, the following simple anisotropic correla-
tion structure is used:

In this paper, we use the B-spline system (B-spline) as φ(h) in the above model equation. Knots are the values 
of where the pieces of polynomial meet, which are denoted and sorted into nondecreasing order. Figure 2 shows 

(1)yTEMP(s, h, t) = xERA(s, h, t)βERA(h)+ φ(h)′z(s, t)+ ǫ(s, h, t),

(2)z(s, t) = Gz(s, t − 1)+ η(s, t).

(3)log
(
σ2ǫ (h)

)
= φ(h)′cǫ,

(4)βERA(h) = φ(h)′cβ,

(5)Ŵ
(
s, s′; θ

)
= diag

(
v1ρ

(
s, s′; θ1

)
, . . . , vpρ

(
s, s′; θp

))
.

(6)ρ
(
s, s′; θ

)
= exp

(
−

d(s,s′)
θ(1)

)
exp

(
−
|l1−l1

′|
θ(2)

)
.

Figure 2.   Example of a B-spline basis with 5 functions represented by 5 different colors.
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a B-spline curve with an order of 3 and knots of 3, with the vertical dashed line as the internal breakpoint that 
defines the spline curve. Note that the sum of the B-spline basis function values at any point h is equal to 1.

Model results
We first estimated the model by Expectation–Maximization algorithm. Second, we analyzed the model estimation 
results and verified the fitting goodness of our model based on cross-validation R2. Finally, based on the results 
of spatial prediction, we analyzed the observation gaps by O− B approach.

Model estimation results.  We choose Bspline to model Eqs. (1–2). As the accuracy of the data at high 
altitude decreases, we set more internal breakpoints at high altitudes where the barometric pressure is below 
300 hPa . Based on the empirical analysis, we set the parameter knots for estimating βERA(h) and σ2ǫ (h) as

The estimated coefficient z(s, t) of the latent term φ(h)′z(s, t) in Eq. (1) is p-variate latent Gaussian random 
variable. Since the computation burden would be pretty high if too many knots are set, here the knots is as

We implement a cubic spline here. Therefore, the number of basis functions for βERA(h) , σ2ǫ (h) and φ(h)′z(s, t) 
is 9, 9, 4 respectively. Tables 1 and 2 show the estimate results for cβ and cǫ.

We plot the βERA(h) and σ2ǫ (h) estimates in Fig. 3. We can find that in the low-altitude layer with barometric 
pressure higher than 400 hPa , the estimated value of βERA(h) is close to 1, and the variance σ2ǫ (h) of the residuals 
is pretty low. In the atmosphere where the barometric pressure is lower than 400 hPa , the variance σ2ǫ (h) of the 
residuals increases, and βERA(h) deviates from the value 1. Thus, our model captures the bias from high-level 
RAOB temperature data, benefiting the accuracy of estimation of parameters.

Model fitting goodness.  In this section, 30% sites are randomly selected as test set, and the remaining 
70% sites are used for model estimation as training set. The real value and the predicted value from test set are 
defined as y = (y1, y2, . . . , yn1) and y∗ = (y∗1, y∗2, . . . , y∗n1) respectively, where n1 represents the number of 
sites in the test set. By comparing the predicted value with the real value for the selected 30% sites, we obtain the 
cross-validation R2 of the RAOB data model. Specifically,R2 = 1−

∑n1
k=1(y ∗ −y)2/

∑n1
k=1 (y −

∑n1
k=1 yk/n1)

2 . 
We show the fitting criteria R2 with respect to barometric pressure h , time t  , and launching site s , respectively, 
in Figs. 4 and 5. Note that, due to the continuous barometric pressure levels, we divide the pressure domain 

knots = [50, 150, 210, 290, 380, 510, 700, 925].

knots = [50, 340, 925].

Table 1.   Result of cβ estimates.

cβ Estimates Std. error t-statistic

Basis_1_@ERA 0.999 0.000 6709.991

Basis_2_@ERA 1.000 0.000 6045.506

Basis_3_@ERA 0.999 0.000 8770.185

Basis_4_@ERA 0.998 0.000 9224.893

Basis_5_@ERA 1.000 0.000 10,071.891

Basis_6_@ERA 0.999 0.000 10,766.577

Basis_7_@ERA 0.999 0.000 9800.519

Basis_8_@ERA 0.999 0.000 8499.463

Basis_9_@ERA 1.000 0.000 8200.708

Table 2.   Result of cǫ estimates.

cǫ Estimates Std. error t-statistic

Basis_1 1.444 0.015 93.849

Basis_2 1.137 0.026 44.112

Basis_3 0.519 0.021 24.539

Basis_4 0.024 0.025 0.972

Basis_5 0.499 0.029 17.490

Basis_6 0.519 0.024 21.602

Basis_7 0.004 0.024 0.165

Basis_8 0.790 0.028 28.027

Basis_9 0.400 0.022 18.005
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[50, 925] hPa into 20 equally intervals, and calculate the cross-validation R2 within these intervals. Therefore, the 
color bar, of the left part of Fig. 4, represents the number of data in each interval.

The left part of Fig. 4 shows that as the altitude increases, the cross-validation R2 becomes smaller. In gen-
eral, excluding the four upper-altitude intervals, the criteria R2 higher than 0.96 is achieved, indicating the high 
accuracy of model prediction. The right part of Fig. 4 shows that R2 fluctuates randomly over time. According 

Figure 3.   βERA(h) estimate and its 90%, 95%, 99% confidence bands (left), σ2ǫ (h) estimate and its 90%, 95%, 
and 99% confidence bands (right). Among them, the outermost light red border on both sides represent 90% 
confidence bands, red border in the middle of both sides represent 95% confidence bands, and the innermost 
crimson border on both sides represent 99% confidence bands.

Figure 4.   In the left panel, the horizontal axis represents cross-validation R2 with respect to h and the vertical 
axis represents pressure. In the right panel, the horizontal axis represents different time and the vertical axis 
represents cross-validation R2 with respect to t.
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to Fig. 5, we find that the accuracy of the prediction is higher in the densely site-located areas; otherwise the 
accuracy of the prediction is lower.

Observation gap analysis.  A typical use of the estimated model is to gather information on atmosphere 
where no measurement are available. The average O− B profile and the average standard deviation profile are 
given by

where z is the average of latent space–time variable z(s, t).
As mentioned in the introduction, the GAIA-CLIM project suggests to consider as observational gaps the 

areas of the atmosphere where the uncertainty of spatial prediction is higher. Figure 6 shows the average estimates 
of the difference φ(h)′z(s, t) between the RAOB and ERA-Interim at pressure level 450 hPa . As it is expected, 
the differences in areas where there are sampling sites can be estimated well with color marked on the map. To 
visualize the changes of the average uncertainty of spatial prediction along different altitudes, we drew Figs. 7 
and 8. These two Figures aim to show the value of σê(h) with different h. Figures 7 and 8 depict the average of 

(7)ê(h) = �(h)z,

(8)σê(h) = �(h)Var(z)�(h)′,

Figure 5.   It shows Cross-validation R2 with respect to sites s . The larger the value of Cross-validation R2 , the 
lighter the color on the map. Sites used for model estimation are marked with blue stars. The values of Cross-
validation R2 are relatively large. The software used to create the maps in the figure legend is Matlab 2018b, and 
can be downloaded at https://​www.​mathw​orks.​com/​produ​cts/​new_​produ​cts/​relea​se201​8b.​html.

Figure 6.   The average difference φ(h)′z(s, t) between RAOB and ERA-Interim in January 2015 at 450 hPa . The 
bigger the gap, the darker the color. All 200 sites are marked with black stars. The differences in areas where 
there are sampling sites can be estimated well with color marked on the map. The differences in areas far away 
from sampling sites cannot be estimated well with gray marked on the map. The software used to create the 
maps in the figure legend is Matlab 2018b, and can be downloaded at https://​www.​mathw​orks.​com/​produ​cts/​
new_​produ​cts/​relea​se201​8b.​html.

https://www.mathworks.com/products/new_products/release2018b.html
https://www.mathworks.com/products/new_products/release2018b.html
https://www.mathworks.com/products/new_products/release2018b.html
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the standard deviations of the spatial predictions at barometric pressures 450 hPa and 100 hPa , respectively. We 
found that, no matter what the altitude is, the variance of differences in areas where there are sampling sites are 
very small, while the variance of differences in areas far away from sampling sites are very large. In this way, 
we explore the underlying mechanism of how the uncertainty changing at various barometric pressure levels.

Conclusion
Meteorological data such as temperature data of the upper atmosphere is essential for accurate weather fore-
casting. In this paper, we propose a 4D spatiotemporal model that objectively measures the observation gap 
of two types of temperature data (RAOB data and ERA-Interim reanalysis data). Based on the O− B method, 
the observation gap is analyzed through the spatial prediction results. The estimated results of the model are of 
significantly practical interpretation, and the model is meaningful in theory and practice.

From the theoretical point of view, we propose a 4D statistical model on the basis of traditional 3D model. 
This model not only considers the traditional third dimension of time, longitude and latitude, but also the 
dimension of altitude. Our model effectively characterizes the vertical profile of the radiosonde data through a 
linear combination of random components and B-spline curves. We establish the model with these two kind of 
temperature data from 200 launching sites worldwide in January 2015. The model shows a good model fitting-
ness by the criteria the cross-validation R2.

From an application point of view, it can help climate scientists make effective inferences from ERA-Interim 
reanalysis data to RAOB data. As mentioned before, ERA-Interim reanalysis data is widely available with low-
quality; RAOB data with high-quality but can offer a very limited spatial coverage. Through the method we 

Figure 7.   The average standard deviation of difference between RAOB and ERA-Interim in January 2015 at 
450 hPa . All 200 sites are marked with black stars. The variance of differences in areas where there are sampling 
sites are very small, while the variance of differences in areas far away from sampling sites are very large. The 
software used to create the maps in the figure legend is Matlab 2018b, and can be downloaded at https://​www.​
mathw​orks.​com/​produ​cts/​new_​produ​cts/​relea​se201​8b.​html.

Figure 8.   The average standard deviation of difference between RAOB and ERA-Interim in January 2015 at 
100 hPa . All 200 sites are marked with black stars. The variance of differences in areas where there are sampling 
sites are very small, while the variance of differences in areas far away from sampling sites are very large. The 
software used to create the maps in the figure legend is Matlab 2018b, and can be downloaded at https://​www.​
mathw​orks.​com/​produ​cts/​new_​produ​cts/​relea​se201​8b.​html.

https://www.mathworks.com/products/new_products/release2018b.html
https://www.mathworks.com/products/new_products/release2018b.html
https://www.mathworks.com/products/new_products/release2018b.html
https://www.mathworks.com/products/new_products/release2018b.html
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proposed, we can obtain a huge amount of RAOB data with high-quality and can offer a very wide spatial cover-
age. We explored the underlying mechanism of how the temperature of atmospheric regions changing at different 
barometric pressure levels, thus providing a meaningful reference for global climate prediction.
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