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Introduction
The production of nitric oxide (NO) by the vascular endothe-

lium is important for cardiovascular homeostasis, as endog-

enous NO regulates many fundamental cellular processes, 

including growth, mitochondrial respiration, differentiation, 

and migration. Endothelial NO synthase (eNOS or NOS3) syn-

thesizes NO in the endothelium lining all blood vessels, and ge-

netic deletion of eNOS causes many cardiovascular phenotypes, 

including increased blood pressure, impaired angiogenesis, 

abnormal vascular remodeling, and accelerated atheroscle-

rosis (Fulton et al., 1999). eNOS is a peripheral membrane 

protein that is modifi ed by dual acylation (N-myristoylation 

and S- palmitoylation), which targets it to specifi c biological 

membranes (Smotrys and Linder, 2004). All dually acylated 

proteins, including eNOS, src family members, and certain 

G-protein α subunits are  cotranslationally N-myristoylated on 

cytoplasmic ribosomes followed by posttranslational cyste-

ine palmitoylation. eNOS is N-myristoylated at glycine-2 and 

posttranslational S-palmitoylated on cysteines 15 and 26 (Sessa 

et al., 1993; Liu and Sessa, 1994; Liu et al., 1995; Robinson 

et al., 1995). N- myristoylation and S- palmitoylation mediate 

localization of eNOS to the Golgi complex and cholesterol-rich 

microdomains of the plasma membranes, including caveolae 

and lipid rafts  (Garcia-Cardena et al., 1996; Shaul et al., 1996; 

Liu et al., 1997). Acylation-defective mutants of eNOS that 

cannot target either domain impair basal and agonist-stimulated 

NO release (Liu et al., 1995, 1996).

Little is known about the enzymatic mechanisms for dual 

palmitoylation in mammalian cells. This fatty acid modifi cation 

is reversible, unlike N-myristoylation, which is permanent 

(Gordon et al., 1991). In the context of eNOS, palmitate turn-

over is 45 min, whereas myristate turnover occurs with the pro-

tein backbone (both �20 h; Liu et al., 1995). Palmitoylation 
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 L
ipid modifi cations mediate the subcellular localiza-

tion and biological activity of many proteins, includ-

ing endothelial nitric oxide synthase (eNOS). This 

enzyme resides on the cytoplasmic aspect of the Golgi 

apparatus and in caveolae and is dually acylated by both 

N-myristoylation and S-palmitoylation. Palmitoylation-

 defi cient mutants of eNOS release less nitric oxide (NO). 

We identify enzymes that palmitoylate eNOS in vivo. 

Transfection of human embryonic kidney 293 cells with 

the complementary DNA (cDNA) for eNOS and 23 cDNA 

clones encoding the Asp-His-His-Cys motif (DHHC) palmi-

toyl transferase family members showed that fi ve clones 

(2, 3, 7, 8, and 21) enhanced incorporation of [3H]-

 palmitate into eNOS. Human endothelial cells express all 

fi ve of these enzymes, which colocalize with eNOS in the 

Golgi and plasma membrane and interact with eNOS. 

Importantly, inhibition of DHHC-21 palmitoyl transfer-

ase, but not DHHC-3, in human endothelial cells reduces 

eNOS palmitoylation, eNOS targeting, and stimulated 

NO  production. Collectively, our data describe fi ve new 

Golgi-targeted DHHC enzymes in human endothelial cells 

and suggest a regulatory role of DHHC-21 in governing 

eNOS localization and function.
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and depalmitoylation of proteins may be regulated by extracel-

lular signals, providing a mechanism for dynamic regulation of 

protein localization (James and Olson, 1989; Degtyarev et al., 

1993; Mumby et al., 1994).

Recently, a new family of acyl transferase enzymes that 

catalyzed the protein palmitoylation was discovered (Fukata 

et al., 2004). Genetic screens in yeast identifi ed Erf2/4 (Lobo 

et al., 2002) and Akr1p (Roth et al., 2002) as palmitoyl transfer-

ases for yeast Ras2 and casein kinase2 (Yck2). Deletion of 

Erf2/4 or Ark1 reduces palmitoylation of Ras2 or Yck2, 

 respectively. Erf2/4 or Ark1 share a common region, the Asp-

His-His-Cys motif (DHHC), within a cysteine-rich domain 

(CRD). The DHHC and CRD domains are essential for palmi-

toyl acyl transferase (PAT) activity (Roth et al., 2002; Fukata 

et al., 2004). The human homologues of the yeast Erf2–Erf4 

complex are DHHC-9 and a Golgi-localized protein designated 

GCP16. This complex has been shown to palmitoylate H- and 

N-Ras in vitro (Swarthout et al., 2005). 23 genes encoding pro-

teins with DHHC-CRD domains have been identifi ed in mouse 

and human databases (Fukata et al., 2004). Some of these pro-

teins are known as Golgi-specifi c DHHC zinc fi nger protein 

(GODZ/DHHC-3; Uemura et al., 2002), the c-Abl–associated 

protein Abl-philin2 (Aph2/DHHC-16; Li et al., 2002), Sertoli 

cell DHHC protein (SERZ-β/DHHC-7; Chaudhary and  Skinner, 

2002), Huntingtin interacting protein 14 (HIP14/DHHC-17; 

Huang et al., 2004), and DHHC-15, which palmitoylates the 

neuronal scaffold protein PSD-95 (Fukata et al., 2004).

In the present work, we screened the 23 known DHHCs to 

examine which isoforms can palmitoylate eNOS. We found that 

fi ve mammalian DHHC proteins (DHHC-2, -3, -7, -8, and -21) 

palmitoylate eNOS, are present in human umbilical vein endo-

thelial cells (HUVECs), and colocalize with eNOS on the Golgi 

apparatus. Finally, inhibition of DHHC-21 reduces eNOS pal-

mitoylation, mislocalizes eNOS, and antagonizes NO release 

from endothelial cells.

Results
Identifi cation of candidate eNOS PATs
Human embryonic kidney (HEK) 293 cells were cotransfected 

with each of the palmitoyl transferase cDNAs together with 

eNOS and the biosynthetic incorporation of 3[H]-palmitate into 

eNOS examined by fl uorography. As shown in Fig. 1 A, only 

fi ve clones (DHHC-2, -3, -7, -8, and -21) markedly enhanced in-

corporation of 3[H]-palmitate into eNOS (Fig. 1 A, top, see fold 

increase in label relative to total eNOS), defi ning them as puta-

tive eNOS PATs. The incorporation of palmitate into thioester 

linkages is sensitive to the strong base hydroxylamine. As shown 

in Fig. 1 B, the incorporation of 3[H]-palmitate into eNOS is re-

duced by hydroxylamine, demonstrating that this occurs via a 

Figure 1. Screening for potential eNOS PATs. 
(A) Individual DHHC clones were cotransfected 
with eNOS into HEK 293 cells. After metabolic 
labeling with 3[H]-palmitic acid, proteins were 
separated by SDS-PAGE, followed by fl uorog-
raphy (top; 3[H]-eNOS). The same samples 
were analyzed by Western blotting (bottom; 
eNOS WB). Note that several DHHC enzymes 
enhance the incorporation of 3[H]-palmitic 
acid into eNOS (bold numbers). The bottom 
blots depicts the level of the HA-tagged DHHC. 
(B) Treatment with hydroxylamine (NH2OH) re-
duces 3[H]-palmitate incorporation into eNOS 
after cotransfection of eNOS and several 
DHHC enzymes. The NH2OH sensitivity of 
PSD-95 was used as control. (C) Mutagenesis 
of DHHC-3 and -7 abolishes the 3[H]-palmitate 
incorporation into eNOS. (D) Total mRNA was 
isolated from different human cell lines, and 
the expression of DHHC isoforms was ana-
lyzed by RT-PCR. (E) The palmitoylation of WT 
eNOS by DHHC-21 is diminished by mutation 
of the two sites of eNOS palmitoylation, cyste-
ines 15 and 26.
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thioester linkage similar to the palmitoylation of PSD-95 by 

DHHC-3, which was recently described (Fukata et al., 2004). 

In addition, mutation in the core DHHC domain of these enzymes 

(mutation of DHHC to DHHS) reduces the incorporation of 
3[H]-palmitate into eNOS (Fig. 1 C), consistent with previous 

reports (Roth et al., 2002; Fukata et al., 2004). Next, we exam-

ined the expression of the fi ve candidate eNOS PATs by RT-PCR 

in different human cell lines, including HUVECs, human aortic 

smooth muscle cells (HASMCs), HEK 293, lung carcinoma 

(A549), and prostate carcinoma cells (LnCAP). As shown in 

Fig. 1 D, all of tested DHHCs are expressed in the cell lines 

studied. However, in HUVEC, the major cell type that expresses 

eNOS, DHHC-21 was the most highly expressed, followed by 

DHHC-2 and -3. Cysteines 15 and 26 have been identifi ed as the 

major sites of palmitoylation of eNOS (Liu et al., 1995;  Robinson 

et al., 1995). As displayed in Fig. 1 E, transfection of DHHC-21, 

but not -11 (as a control), increases the incorporation of 
3[H]-palmitate into eNOS, an effect eliminated by mutation of 

cysteines 15 and 26 to serine (C15/26S eNOS).

DHHC-2, -3, -7, -8, and -21 localize 
to the Golgi region and plasma membrane 
in a pattern similar to eNOS
We expressed the HA-tagged DHHC proteins in COS-7 cells 

and localized them by immunofl uorescence microscopy. As 

shown in Fig. 2 A, DHHC-21 (middle) colocalized with the 

Golgi matrix protein GM-130 (left), as did DHHC-2, -3, -7, 

and -8 (Fig. S1, available at http://www.jcb.org/cgi/content/

full/jcb.200601051/DC1). Increasing the magnifi cation of these 

images by 4× (Fig. 2 A, bottom) depicts clear colocalization 

of DHHC-21 with GM130 and a lesser amount of protein in 

the plasma membrane (Fig. 2 A, arrows). Next, we determined 

the proportional distribution of these enzymes in sodium car-

bonate using a discontinuous sucrose gradient. In this method, 

tightly embedded membrane proteins are buoyant (at the 5–30% 

sucrose interface in fractions 2–4), whereas soluble proteins 

remain at the bottom of the gradient (in fractions 7–10). 

In all the gradients, the distribution of caveolin-1, the coat 

protein of caveolae, and β-COP, a marker of Golgi and post-

Golgi vesicles were used to confi rm adequate fractionation. 

As shown in Fig. 2 B, the DHHCs and eNOS cofractionated 

into two pools, light membranes enriched in caveolin-1 and heavy 

membranes enriched in β-COP and β-actin (not depicted). 

Densitometric quantifi cation (Fig. 2 B, right) of protein local-

ization showed that a fraction of all DHHCs sediment as inte-

gral membrane proteins, with the greatest proportional amount 

for DHHC-2 and -21.

Colocalization and coimmunoprecipitation 
of DHHC enzymes with eNOS
Next, we examined colocalization of eNOS with DHHC enzymes 

by immunofl uorescence microscopy in transfected cells. COS-7 

cells were cotransfected with the cDNAs for eNOS and HA-

tagged DHHC-21 and localized with antibodies against eNOS 

and the HA epitope. As shown in Fig. 3 A, eNOS and DHHC-21 

(other DHHCs are shown in Fig. S2, available at http://www.

jcb.org/cgi/content/full/jcb.200601051/DC1) colocalized in 

the Golgi region and to a lesser extent in plasma membrane. 

Figure 2. DHHC-PATs colocalize with GM130 
and eNOS and cosediment with eNOS. 
(A) COS-7 cells were transfected with HA-
tagged DHHC cDNAs. After 48 h, cells were 
fi xed, incubated with antibodies against 
GM-130 (Golgi marker; green) and HA (red), 
and mounted on glass slides with medium con-
taining nuclear dye DAPI (blue). Merged im-
ages with DAPI are shown. Bars, 10 μm. 
(B) COS-7 cells were transfected with plasmids 
encoding DHHC-HA enzymes and eNOS, and 
lysates were fractionated as described (see 
Materials and methods). Equal volumes of 
each fraction were separated by SDS-PAGE 
and Western blotted for eNOS, HA, caveolin-1, 
and β-COP. Results are representative of two 
separate experiments that gave similar results. 
Quantitative analysis shows that DHHC-2 
and -21 are enriched in light membrane frac-
tions. In region of interest 1, the arrow is point-
ing to Golgi-localized DHHC-21, whereas in 
region of interest 2, the arrow is pointing to 
DHHC-21 in plasma membrane.
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Because palmitoylation is a cytoplasmic event and eNOS is a 

peripheral membrane protein, we determined whether DHHC 

enzymes and eNOS can interact. As seen in Fig. 3 B (left), the 

HA-tagged DHHCs and eNOS were well expressed in total cell 

lysates prepared from the cells. Immunoprecipitation of HA-

tagged DHHC enzymes using an anti-HA monoclonal antibody 

detected the coassociation with eNOS (Fig. 3 B, right, third to 

seventh lanes) with the DHHCs, whereas no immunoreactive 

protein was observed after immunoprecipitation of lysates from 

cells expressing eNOS alone (Fig. 3 B, right, fi rst lane).

Previously, we targeted eNOS to the Golgi versus the 

plasma membrane using different domains of syntaxin-3 ( Fulton 

et al., 2004; Jagnandan et al., 2005). To determine the impor-

tance of localization on the interaction between eNOS and 

DHHC enzymes, we cotransfected Golgi-targeted eNOS (eNOS 

S17) or plasma membrane–targeted eNOS (eNOS S25) and 

DHHC-3, -7, and -21. As shown in Fig. 3 C, the interaction be-

tween the Golgi-targeted eNOS and the DHHC enzymes was 

stronger than the plasma membrane–targeted isoform, consis-

tent with the majority of DHHCs and eNOS present on the 

Golgi of transfected cells (Fig. 2).

Next, we assessed whether the phosphorylation state 

could affect the interaction of eNOS with DHHCs. To address 

this question, DHHCs were cotransfected with wild-type (WT) 

eNOS and two eNOS phosphomutants, eNOS S1179A and 

S1179D. Serine 1179 is a key phosphorylation site for several 

kinases, including Akt, AMP kinase, and cAMP protein kinase 

(Fulton et al., 2001), and phosphorylation of this site is associ-

ated with eNOS activation. Mutation of S1179 to D renders 

eNOS constitutively active, whereas S1179 to A is less activated 

(Dimmeler et al., 1999; Fulton et al., 1999; McCabe et al., 

2000). As seen in Fig. 3 D, in all cases, WT and phospho mutants 

were associated with DHHC enzymes, indicating that phos-

phorylation of this particular residue was not critical for the in-

teraction of eNOS with DHHC-3 and -21.

eNOS fatty acylation is required 
for an effi cient interaction with DHHC 
proteins and NO release
To examine whether the localization of eNOS is important for 

the interaction of eNOS with DHHCs, COS cells were trans-

fected with WT and different mutants of eNOS that infl uence 

eNOS acylation and targeting (Fig. 4 A). Cells were trans-

fected with WT eNOS (N-myristoylated and S- palmitoylated, 

Golgi, and plasmalemma targeted), G2A eNOS (neither 

 N-myristoylated nor S-palmitoylated and cytosolic), C15/26S 

eNOS (N-myristoylated but not S-palmitoylated; diffuse peri-

nuclear localization), or L2S eNOS (N-myristoylated but not 

palmitoylated because of the mutation of the intervening leu-

cines between the two palmitoylation sites, C15 and C26; 

Figure 3. DHHC-PATs colocalize with eNOS 
and interact in coprecipitation experiments. 
(A) COS-7 cells were transfected with eNOS 
and HA-tagged DHHC-21 cDNAs. After 
48 h, cells were fi xed, incubated with anti-
bodies against eNOS (green) and HA (red), 
and mounted on glass slides with medium 
containing nuclear dye DAPI (blue). Bars, 
10 μm. (B) Coexpression of eNOS and DHHCs 
in COS-7 cell lysates (left) and the interac-
tion between eNOS and the DHHC-HA after 
 purifi cation of the HA-tagged DHHC (right). 
(C)  Coexpression of Golgi-targeted eNOS 
(S17 eNOS) or plasma membrane–targeted 
eNOS (S25 eNOS) and DHHCs in COS-7 
cell lysates (left) and the coprecipitation of 
eNOS isoforms with DHHC-HA enzymes (right). 
(D) WT and eNOS phosphomutants (S1179A 
and S1179D eNOS) and DHHC-PATs were 
coexpressed in COS-7 cells (left), and the in-
teraction between these proteins was studied 
after immunoprecipitation using anti-HA anti-
body (right). These experiments are represen-
tative of three separate experiments that gave 
 similar results.
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 diffuse perinuclear pattern; Liu et al., 1995, 1997; Sessa et al., 

1995) with DHHC-3–HA. As shown in Fig. 4 B (left), WT 

eNOS is primarily Golgi targeted and G2A eNOS is diffusely 

distributed throughout the cells, whereas the palmitoylation-

defi cient mutants, C15/26S and L2S eNOS, were retained in 

the perinuclear region but are more diffusely distributed com-

pared with WT eNOS. WT eNOS clearly colocalized with 

HA-tagged DHHC-3, whereas G2A eNOS did not, and the 

palmitoylation mutants (C15/26S and L2S eNOS) had a par-

tially overlapping perinuclear pattern.

Next, we performed coimmunoprecipitation experiments 

to determine the role of acylation and subcellular localization 

on the coassociation of eNOS with DHHC. The eNOS con-

structs and DHHC-3 or -21 were equally expressed based on 

Western blotting of the proteins in cell lysates (Fig. 4 C, left), 

and immunoprecipitation of DHHC-3–HA resulted in ample 

 recovery (Fig. 4 C, middle) of DHHC-3 and -21. Interestingly, 

immunoprecipitation of DHHC-3 and -21 resulted in the coas-

sociation with WT eNOS but not with the other acylation-

 defective eNOS mutants (Fig. 4 C, right). These results indicate 

that the fatty acylation and targeting are important for the inter-

action between eNOS and the DHHC-PATs.

Finally, we examined whether the DHHCs can infl uence 

eNOS function by measuring NO release (as nitrite after 24 h of 

accumulation). Cotransfection of COS-7 cells with WT eNOS 

and DHHC-3, -7, and -21 increased the basal accumulation of 

NO2
− into the media (Fig. 4 D). However, this effect was elimi-

nated in cells cotransfected with acylation-defective G2A or 

C15/26S eNOS (Fig. 4, E and F).

Knock down of endogenous DHHC-21, 
but not -3, levels in endothelial cells 
impairs eNOS palmitoylation, cellular 
targeting, and NO release
Although several DHHC enzymes can palmitoylate eNOS, 

DHHC-21 mRNA was the most highly expressed in endothelial 

Figure 4. eNOS palmitoylation state regu-
lates the interaction of eNOS with DHHC-PATs 
and NO release. (A) Schematic illustration 
of eNOS constructs. WT eNOS (both my-
ristoylated and palmitoylated), G2A eNOS 
(neither myristoylated nor palmitoylated), 
and C15/26S and L2S eNOS (myristoylated 
but not palmitoylated). (B) COS-7 cells were 
transfected with HA-tagged DHHC and eNOS 
 cDNAs. After 48 h, cells were fi xed, incubated 
with antibodies against eNOS (green) and 
HA (red), and mounted on glass slides with 
medium containing nuclear dye DAPI (blue). 
Merged images with DAPI are shown. Bars, 
10 μM. (C) COS-7 cells transfected with plas-
mids encoding DHHC-3 (top) or -21 (bottom) 
and eNOS mutants were subjected to im-
munoprecipitation with anti-HA monoclonal 
antibody and Western blotted for eNOS to 
determine relative coassociation with DHHC 
enzymes. The left panels show expression of 
eNOS (top) and DHHC-PPATs (bottom) in total 
cell lysates, the middle panels show the quan-
titative recovery of the HA-tagged DHHC, and 
the right panels show the specifi c coassocia-
tion of WT eNOS with DHHC-3 and -21. The 
Western blots are representative of two sepa-
rate experiments that gave similar results. NO 
release from COS-7 cells cotransfected with 
WT eNOS (D), G2A eNOS (E), C15/C26 
eNOS (F), and DHHC (D–F) cDNAs. The nitrite 
accumulation in the medium was quantifi ed af-
ter 24 h. All of the data represent the mean ± 
SEM in three separate experiments. *, P < 0.05 
compared with eNOS alone.
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cells, and the protein localized on the Golgi and interacted 

with eNOS. To determine the role of DHHC-21 in palmitoylat-

ing eNOS in endothelial cells, an RNAi approach was used. 

As shown in Fig. 5 A, transfection of endothelial cells with 

DHHC-21 siRNA duplex RNAs (at 12.5 nM) reduced the ex-

pression of DHHC-21 (via quantitative RT-PCR) expression in 

a time-dependent manner, with maximal reduction at 48 h, 

where nonsilencing RNA as a control was ineffective. The re-

duction in DHHC-21 mRNA levels resulted in a marked dimi-

nution in the incorporation of 3[H]-palmitate into eNOS by 

�60% (Fig. 5 B). Because eNOS palmitoylation is crucial for 

the perinuclear targeting of eNOS onto the Golgi, we performed 

an immunofl uorescence analysis of eNOS in DHHC-21–

 depleted endothelial cells. As shown in Fig. 5 C (middle), knock 

down of DHHC-21 resulted in a more diffuse, perinuclear pat-

tern of eNOS immunoreactivity compared with cells treated 

with nonsilencing RNA (left). In addition, treatment of endo-

thelial cells with 2-bromopalmitate, a substrate-based inhibitor 

of palmitoylation, resulted in a similar but more extensive mis-

localization of eNOS (Fig. 5 C, right).

We next examined the effect of DHHC-21 knockdown on 

basal and agonist-stimulated NO release from endothelial cells. 

In endothelial cells, increases in cytoplasmic calcium activate 

calmodulin, which binds to the canonical CaM binding domain 

in eNOS and serves as an allosteric regulator of electron fl ux 

through eNOS, leading to a burst of NO release (Busse and 

Mulsch, 1990; Pollock et al., 1991; Fulton et al., 2001). 

 Reduction of DHHC-21, but not treatment with nonsilencing 

RNA, caused a slight decrease the basal accumulation of NO2
− 

into the media (Fig. 4 D, left). More important, reduction in 

DHHC-21 reduced the release of NO2
− stimulated by both ion-

omycin (middle) and ATP (right), indicating the importance 

of eNOS palmitoylation via DHHC-21 for eNOS activation. 

To examine the specifi city of DHHC-21 knockdown on eNOS 

function, we also reduced the levels of DHHC-3 with RNAi. As 

seen in Fig. 5 E, transfection of endothelial cells with DHHC-3 

siRNA (at 12.5 nM) reduced the expression of DHHC-3 (via 

quantitative RT-PCR) expression where nonsilencing RNA as a 

control was ineffective. However, under these conditions, basal 

and ATP-stimulated NO2
− was not affected (Fig. 5 F).

Discussion
The most salient feature of this paper is the identifi cation of fi ve 

DHHC-PAT cDNAs that can palmitoylate the dually acylated, 

peripheral membrane protein eNOS in vivo. DHHC-2, -3, -7, -8, 

and -21 colocalize with GM-130, a peripheral membrane protein 

of the Golgi in transfected cells, suggesting that palmitoylation 

can occur on the cytoplasmic aspect of the Golgi complex. The 

aforementioned DHHC-PATs also colocalize and associate with 

eNOS, providing evidence for the compartmentalization of pro-

tein palmitoylation. Most critical, reduction of DHHC-21 in 

endothelial cells diminishes eNOS palmitoylation, mislocalizes 

eNOS, and impairs agonist-stimulated NO release.

Although cysteine palmitoylation has long been recog-

nized as important for protein traffi cking and function, enzymes 

responsible for this have been elusive. Genetic and biochemical 

studies in yeast initially identifi ed that two genes containing 

CRDs are essential for palmitoylation of Ras2 and casein kinase 

(Lobo et al., 2002; Roth et al., 2002). This led to the discovery of 

mammalian DHHC genes and identifi cation of their specifi c sub-

strates. Out of the 23 independent mammalian genes encoding 

Figure 5. Depletion of DHHC-21 expression in endothelial cells reduces 
eNOS palmitoylation, localization, and NO release. (A) DHHC-21 siRNA 
down-regulates DHHC-21 mRNA expression. EA.hy.926 cells were trans-
fected with a control (nonsilencing [NS]) or DHHC-21 siRNA duplex. The 
DHHC-21 expression at the indicated time points was determined by real-
time PCR. (B) EA.hy.926 cells were transfected with a control (nonsilencing) 
or DHHC-21 siRNA, and cells were labeled with 3[H]-palmitate for 4 h 
and eNOS immunoprecipitated. The percentage of labeled eNOS/total 
eNOS from two experiments was then quantifi ed. (C) EA.hy.926 cells were 
transfected with nonsilencing or DHHC-21 siRNA or treated with 100 μM 
2-bromopalmitate, and cells were fi xed and stained for eNOS (green) and 
nuclei (DAPI; blue) and analyzed by immunofl uorescence microscopy. 
 Arrows indicate a signifi cant decrease in NO2

− release after DHHC-21 
knockdown. Bars, 15 μm. (D) NO release from control EA.hy.926 cells or 
cells transfected with nonsilencing or DHHC-21 siRNAs. The nitrite accumu-
lation was quantifi ed for 8 h (basal; left) and after the stimulation with iono-
mycin (middle) or ATP (right) for 30 min. (E) DHHC-3 siRNA down-regulates 
DHHC-3 mRNA expression. EA.hy.926 cells were transfected with a con-
trol (nonsilencing) or DHHC-3 siRNA duplex. The DHHC-3 expression at 
the indicated time points was determined by real-time PCR. (F) NO release 
from control EA.hy.926 cells or cells transfected with nonsilencing or 
DHHC-3 siRNAs. The nitrite accumulation was quantifi ed for 8 h (basal) 
and after the stimulation with ATP for 30 min. The data represent the mean 
± SEM of triplicate samples repeated in three separate experiments. 
*, P < 0.05 compared with control.
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DHHC-containing proteins, only a few enzyme substrates have 

been identifi ed. DHHC-2, -3, -7, and -15 can palmitoylate PSD-95 

(Fukata et al., 2004), DHHC-3 (GODZ; Uemura et al., 2002) 

can palmitoylate the GABA-A receptor (Keller et al., 2004), 

DHHC-17 can palmitoylate several neuronal substrates, includ-

ing SNAP-25 and PSD-95 (Huang et al., 2004), and DHHC-9 

can palmitoylate H- and N-Ras (Swarthout et al., 2005). In the 

present study, only DHHC-2, -3, -7, -8, and -21 signifi cantly 

increased the incorporation of palmitate into eNOS, suggesting 

some degree of substrate specifi city of the DHHCs. As DHHC-2,

-3, and -7 can palmitoylate the non myristoylated proteins 

PSD95 and GαS, these candidates are less likely to be specifi c

N-myristoyl–requiring PATs ( Fukata et al., 2004). RNAi-

 mediated knockdown of endogenous DHHC-21 in endothelial 

cells reduces the incorporation of 3[H]-palmitate into eNOS, 

mislocalizes eNOS, and reduces agonist-stimulated NO release, 

whereas knock down of DHHC-3 did not reduce NO release, 

suggesting that although at least fi ve DHHCs can signifi cantly 

palmitoylate eNOS in transfected cells, DHHC-21 may be a 

more specifi c eNOS PAT. The reasons for the apparent speci-

fi city of DHHC-21 toward eNOS in endothelial cells are not 

known, but it may be due to the amount of DHHC-21 protein 

relative to other DHHCs expressed in endothelial cells or to the 

posttranslational modifi cation of DHHCs that may determine 

its substrate specifi city or regulate its activity in a cell-specifi c 

context. In addition, we cannot rule the possibility that other 

DHHCs palmitoylate eNOS in endothelial cells, as a substantial 

knock down of DHHC-21 reduced palmitoylation by only 50% 

and NO release by 70%. Additional experiments using isoform-

selective antibodies and recombinant DHHC proteins with vari-

ous substrates will help deconvolve DHHC substrate specifi city 

and kinetics in more detail.

Other interesting fi ndings are that DHHC-2, -3, -7, -8, 

and -21 all enhance the transfer of palmitate into eNOS and 

are strongly colocalized with GM130, a Golgi matrix protein 

localized to the cytoplasmic face of the Golgi, consistent with 

our previous suggestion that the Golgi is the site for eNOS 

palmitoylation (Garcia-Cardena et al., 1996). Palmitoylation 

of substrates on the Golgi would stabilize protein association 

via kinetic trapping (Sowa et al., 1999) and allow for protein 

localization either on the Golgi or movement to the plasma 

membrane, as recently confi rmed for Ras (Rocks et al., 2005). 

Supporting this are data showing that DHHC-9, an H- and 

N-Ras PAT, colocalizes and interacts with GCP16, which is a 

Golgi-localized cosubunit (Swarthout et al., 2005) that appears 

necessary for DHHC-9 activity toward Ras and movement of 

Ras to the plasma membrane.

For most dually acylated proteins, N-myristoylation is a 

cotranslational modifi cation that favors posttranslational cysteine 

palmitoylation. For eNOS, mutation of the palmitoylation sites 

does not affect N-myristoylation but blocks tight perinuclear tar-

geting and NO release from cells (Liu et al., 1995, 1996, 1997). 

The mistargeting and dysfunction of these mutants may refl ect a 

structural change or lack of palmitoylation; however, our RNAi 

experiments, which show that reduction in DHHC-21 decreases 

eNOS palmitoylation and impairs targeting, indicate that palmi-

toylation of eNOS is crucial for proper targeting and function.

The discovery of DHHC-PATs in vascular cells repre-

sents a new, exciting area. Many proteins involved in signal 

transduction are palmitoylated, and this fatty acid modifi cation 

is often necessary for function. Understanding the tissue and 

cellular distribution of DHHCs and their substrates is critical 

for identifi cation of PAT inhibitors that may be therapeutically 

useful. Our data showing that DHHC-21 is a major eNOS PAT

suggests that antagonizing this enzyme may be useful for 

reducing NO-dependent changes in vascular permeability and 

tumor angiogenesis.

Materials and methods
Chemicals and antibodies
Mouse monoclonal antibodies against caveolin-1, GM 130, and eNOS 
were provided by BD Biosciences. Rabbit polyclonal antibody anti–β-COP 
was purchased from Affi nity BioReagents, Inc. Mouse monoclonal against 
β-actin antibody was provided by Sigma-Aldrich. Rat monoclonal antibody 
anti-HA high affi nity (3F10) was purchased from Roche. Rabbit polyclonal 
antibody against phospho-eNOS (Ser 1179) was obtained from Zymed 
Laboratories. Goat anti–mouse IRDye 800–conjugated antibody was pur-
chased from Rockland. Goat anti–rabbit Alexa fl uor 680 antibody was 
provided by Invitrogen, and goat anti–rat Texas red dye–conjugated anti-
body was purchased from Jackson ImmunoResearch Laboratories. The 
chemical products were provided by Sigma-Aldrich.

Cell culture
HEK 293, COS-7, HASMC, A 459, LnCap, and EA.hy.926 cells were 
grown in high-glucose DME (Invitrogen) supplemented with FBS (Hyclone), 
penicillin-streptomycin (Sigma-Aldrich), and HAT (EA.hy.926 only; Sigma-
Aldrich) at 37°C in a humidifi ed atmosphere of 5% CO2. HUVECs were 
grown in EGM-2 media (Clonetics).

Plasmid constructions and cell transfections
cDNAs encoding DHHC proteins were cloned in PEF-Bos-HA (BD Bio-
sciences) as previously described (Fukata et al., 2004). WT, C15/26S, 
G2A, and L2S eNOS cDNAs were constructed and subcloned into the 
mammalian expression vector pcDNA3 (Invitrogen) as previously described 
(Liu et al., 1997). S17, S25, S1179A, and S1179D eNOS cDNAs were 
constructed and subcloned in pcDNA3 vector (Invitrogen) as previously de-
scribed (Fulton et al., 1999, 2004; Jagnandan et al., 2005). The sequences 
of the PCR fragments cloned were verifi ed by DNA sequencing. For cell 
transfection, semiconfl uent (60%) COS-7 and HEK 293 cells were grown in 
6-well plates and transfected with the different plasmids using Lipofectamine 
2000. A β-gal plasmid was used to normalize DNA quantities.

Immunofl uorescence
COS-7 and EA.hy.926 cells grown on coverslips were fi xed with 4% PFA 
for 5 min at room temperature and rinsed twice with PBS. The cells were 
then permeabilized with 0.1% Triton X-100 for 10 min, washed twice with 
PBS, and incubated with blocking solution (5% normal goat serum in PBS) 
for 45 min at room temperature. Next, the cells were incubated with the 
primary antibodies (diluted 1:500) overnight at 4°C and washed twice 
with blocking solution, followed by a 45-min incubation with fl uorophore-
conjugated secondary antibody (FITC or TRITC; diluted 1:250) at room 
temperature. The coverslips were then mounted on glass slides with 
 Gelvatol/DAPI (Sigma-Aldrich) and analyzed with an epifl uorescence mi-
croscope (Axiovert; Carl Zeiss MicroImaging, Inc.) with a 63× objective. 
Images were acquired using a charge-coupled device camera (Axio; Carl 
Zeiss MicroImaging, Inc.). Analysis of different images was performed 
 using Openlab software (Improvision) after subtracting background.

NO release analysis
48 h after transfection of eNOS and DHHC plasmids into COS-7 cells, the 
media was removed and the cells were supplemented with serum-free DME 
for 24 h. The media was then processed for the measurement of nitrite 
(NO2

−) by a NO-specifi c chemiluminescence analyzer (Sievers) as 
 described previously (Fulton et al., 1999). The same cells were then 
 incubated with fresh, serum-free DME for 30 min to calculate the preago-
nist nitrite accumulation. Subsequently, the cells were incubated with 1 μM 
ionomicin for another 30 min to allow postagonist nitrite accumulation. 
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The medium was then harvested, and nitrite accumulation was measured. 
In other experiments, DHHC-21 and -3 were silenced after treatment with 
specifi c siRNAs for 48 h, and EA.hy.926 cells were analyzed for basal 
and stimulated NO release as described.

Sucrose gradient
Transfected COS-7 cells (150-mm dish) were washed twice with PBS and 
scrapped into 2 ml of ice-cold 500 mM sodium carbonate, pH 11, supple-
mented with 1 mg/ml protease inhibitor cocktail (Roche), Dounce homoge-
nized, and sonicated (three 20-s bursts at 30% of maximal power). The 
homogenate was then adjusted to 42.5% sucrose by the addition of 2 ml 
85% sucrose prepared in MBS (25 mM MES, pH 6.5, and 0.5 M NaCl) 
and placed at the bottom of an ultracentrifuge tube. A 5–30% discontinu-
ous sucrose gradient was formed (3 ml of 5% sucrose and 5 ml of 30% 
 sucrose, both in MES containing 250 mM sodium carbonate) and centrifuged 
at 35,000 rpm for 18 h in a rotor (SW40; Beckman Coulter). Gradient 
fractions (1 ml) were collected from the top of the tube, and 50 μl of each 
fraction (1–12) was used for Western blotting analysis as described previ-
ously (Sowa et al., 1999). The percentage of total proteins in different 
fractions was determined by densitometry and plotted as percentage of 
 total protein (NIH program).

Immunoprecipitation and immunoblotting
EA.hy.926 and COS-7 cells were lysed in ice-cold buffer containing 50 
mM Tris-HCl, pH 7.5, 10% glycerol, 125 mM NaCl, 1% NP-40, 5.3 mM 
NaF, 1.5 mM NaP, 1mM orthovanadate, 1 mg/ml protease inhibitor cock-
tail (Roche), and 0.25 mg/ml AEBSF (Roche). Cell lysates were rotated at 
4°C for 30 min before the insoluble material was removed by centrifuga-
tion at 12,000 g for 10 min. After normalizing for equal protein concentra-
tion, lysates were precleared by incubation with protein G–agarose for 
45 min at 4°C with rocking. Precleared samples were then immunoprecipi-
tated with anti-HA and anti-eNOS antibodies. Proteins in both the cell 
 lysates and immunoprecipitates were heated in SDS sample buffer before 
separation by SDS-PAGE. After overnight transfer of the proteins onto nitro-
cellulose membranes, Western blots were performed using the antibodies 
described above (see Chemicals and antibodies).

Palmitate labeling
Transfected HEK 293 cells were preincubated for 30 min in serum-free 
DME with 10 mg/ml of fatty acid–free BSA (Sigma-Aldrich). Cells were 
then labeled with 0.5 mCi/ml 3[H]-palmitic acid (PerkinElmer) for 4 h in the 
preincubation medium. Cells were washed with PBS, scraped with SDS-
PAGE sample buffer (62.5 mM Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 
0,001% bromophenol blue, and 10 mM DTT), and boiled for 2 min. In 
other experiments, EA.hy.926 cells were solubilized by incubation in 1 ml 
of lysis buffer containing 50 mM Tris-HCl, pH 7.5, 10% glycerol, 125 mM 
NaCl, 1% NP-40, 5.3 mM NaF, 1.5 mM NaP, 1 mM orthovanadate, 
1 mg/ml protease inhibitor cocktail, and 0.25 mg/ml AEBSF and subjected 
to eNOS immunoprecipitation as described above (see Immunoprecipita-
tion and immunoblotting). For fl uorography, protein samples were sepa-
rated by SDS-PAGE. Gels were treated with Amplify (GE Healthcare) for 
30 min, dried under vacuum, and exposed to a fi lm (Biomax MS; Kodak). 
Autoradiographs were scanned with a scanner (Canon) and quantifi ed 
using the IMAGE J (NIH) program.

siRNA treatment
DHHC-21 (available from GenBank/EMBL/DDBJ under accession no. 
NM_178566) DNA and DHHC-3 (accession no. NM_016598) target se-
quences were designed by QIAGEN (HP guaranteed siRNA). In all experiments, 
we used the same concentration of each of the four siRNAs (12.5 nM). The 
target sequences for DHHC-21 were 5′-C A G G C A G T T A T A A G A T T G C A A -3′ 
(siRNA-1), 5′-C T A G T A T A A C T A G A T A G T A T A -3′ (siRNA-2), 5′-T A G C T A G T G-
T T A G G A A G T G A A -3′ (siRNA-3), and 5′-C A C C T T C T T A T A G T A T A G G T A -3′ 
(siRNA-4). The target sequences for DHHC-3 were 5′-A C G G G A A T A G A A C A-
A T T G A A A -3′ (siRNA-1), 5′A A C A T T G A G C G G A A A C C A G A A -3′ (siRNA-2), 
5′-A A A G G A A A T G C C A C T A A A G A A -3′ (siRNA-3), and 5′-C T A C G T G T A T A-
G C A T C A T C A A  (siRNA-4). Our nonsilencing DNA target was 5′-A A T T C T-
C C G A A C G T G T C A C G T -3′. siRNA duplexes were formed according to the 
manufacturer’s protocol. For cell transfection, EA.hy.926 cells were grown 
to 30% of confl uence in 6-well plates. 150 μl of Opti-MEM-1 medium 
(Invitrogen) was incubated for 5 min with siRNA sequences (50 nM fi nal 
concentration). In addition, 150 μl of Opti-MEM-1 was incubated with 5 μl 
of Oligofectamine (Invitrogen) for 5 min. The two solutions were combined 
and incubated at room temperature for 30 min and then added to cells 
(1.5 ml of total volume) for 6 h. After transfection, cells were supplemented 
with 1.5 ml of DME with 10% FBS and antibiotics.

RT-PCR and quantitative real-time PCR
Total RNA was extracted with Trizol reagent (Invitrogen). cDNA was 
synthesized from 5 μg using SuperScript fi rst-strand synthesis system for 
RT-PCR (Invitrogen). A 1-μl aliquot of the reverse-transcription reaction 
was then used for subsequent PCR amplifi cation with specifi c primers. 
Each 25-μl PCR contained 1 μl of the reverse-transcription reaction, 
1 mM dNTPs (Roche), 20 pmol of each primer, and 1.25 U of Taq DNA 
polymerase (QIAGEN). The primers sequences used were as follows: 
GAPDH (available from GenBank/EMBL/DDBJ under accession no. 
BC_013310), 5′-C C A C C C A T G G C C A A A T T C C A T G G C A -3′ and 5′-T C T A G A   -
C G G C A G G T C A G G T C C A C C -3′; DHHC-2 (accession no. NM_016353), 
5′-C G C C A T C C A G C T G T G C A T A G T G -3′ and 5′-G A G C A G T G A T GGCAG-
CGAT C T G -3′; DHHC-3 (accession no. NM_016598), 5′-T G T T T G T A A G C-
G G T G C A T T C G G -3′ and 5′-T T G G T C T G G C G T G G C A A A G G -3′; DHHC-7 
(accession no. NM_017740), 5′-T G C G A T G G G A A G G G A T G A A G T C -3′ 
and 5′-G G C G T T T G G C T T C T T C G T G T G  -3′; DHHC-8 (accession no. 
NM_013373), 5′-T C A A A C C C G C C A A G T A C A T C C C -3′ and 5′-A C G C C-
C G A T G C A G T T G T T G A C -3′; and DHHC-21 (accession no. NM_178566) 
5′-A A G C G T T C C C A T C A C T G C A G C -3 ′and 5′-G A A C T C G C A G T G G T T G  -
C C T C T G -3′. Each cycle of PCR consisted of denaturation at 90°C for 
1 min, primer annealing at 60°C for 1 min, and primer extension at 
72°C for 2 min. PCR products were separated on a 2% agarose gel and 
stained with ethidium bromide. Quantitative real-time PCR was performed 
by using iQ SYBR green supermix on iCycler real-time detection system 
(Bio-Rad Laboratories).

Statistical analysis
The results are expressed as mean ± SD. Statistical comparisons between 
groups were done by the t test, using the Statgraphics Plus 5.0 program 
(Statistical Graphics Corp.).

Online supplemental material
Fig. S1 shows the colocalization between DHHC-CRD enzymes (DHHC-2, 
-3, -7, and -8) and GM-130, a Golgi marker. Fig. S2 demonstrates the 
 colocalization between eNOS and different acyl transferases (DHHC-2, -3, 
-7, and -8). Online supplemental material is available at http://www.jcb.
org/cgi/content/full/jcb.200601051/DC1.
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