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Simple Summary: As poikilotherms, insects are sensitive to ambient environmental conditions;
therefore, it is important to gauge how heat stress affects their survival and fitness. The ladybeetles
Hippodamia variegata (Goeze) and Propylaea quatuordecimpunctata (Linnaeus) are key natural enemies
within cotton fields in Xinjiang Province, China. This study investigated the effects of different
temperatures (i.e., 32, 35, and 38 ◦C) on the survival, reproduction, predation, and antioxidant
capacity of adult ladybugs. Laboratory assays showed that elevated temperatures (i.e., 35 and
38 ◦C) impacted P. quatuordecimpunctata survival and reproduction to a greater extent than that of
H. variegata. At all experimental temperatures, H. variegata’s predation rate on aphid prey surpassed
that of P. quatuordecimpunctata. Yet, prey consumption rates of H. variegata were highest at 35 ◦C,
while those of P. quatuordecimpunctata gradually decreased with higher temperatures. Lastly, super-
oxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-s-transferases (GSTs), total
antioxidant capacity (T-AOC), and protein content in both ladybugs were significantly affected by
ambient temperature. By assessing the thermal biology of individual ladybug species, laboratory
assays can thus explain their spatiotemporal distribution and inform strategies to enhance biological
control under conditions of global warming or extreme weather events.

Abstract: In cotton-growing regions of northwestern China, Hippodamia variegata (Goeze) and
Propylaea quatuordecimpunctata (Linnaeus) (Coleoptera: Coccinellidae) are key natural enemies of
hemipteran pests. As only H. variegata can be encountered in hot, arid production areas, the thermal
responses and climatic adaptability of both species likely differ substantially. In this study, we
assessed the survival, longevity, fecundity, prey consumption rate, and antioxidant capacity of both
species under laboratory conditions at 32–38 ◦C. The (negative) impacts of elevated temperatures
(i.e., 35 and 38 ◦C) on adult survival and reproduction were more pronounced for P. quatuordecim-
punctata than for H. variegata. Similarly, high temperatures exhibited the strongest negative impacts
on the prey consumption rates of P. quatuordecimpunctata. At elevated temperatures, superoxide
dismutase and catalase activity increased, while glutathione-S-transferases activity decreased for
both species. However, for P. quatuordecimpunctata, peroxidase activity and total antioxidant capacity
progressively declined. Antioxidant responses thus constitute a key physiological adaptation of
ladybugs to heat stress, reflecting a superior thermal tolerance of H. variegata. Our work emphasizes
how laboratory assays can explain spatiotemporal distribution patterns of individual ladybugs and
inform strategies to bolster their ensuing biological control under conditions of global warming or
extreme weather events.

Keywords: biological control; IPM; temperature stress; sustainable agriculture; climate adaptability;
antioxidant response
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1. Introduction

As poikilotherms, insects are sensitive to ambient environmental conditions. Tem-
perature hereby affects growth and development, physiology, behavior, and geographical
distribution of beneficial insects and agricultural pests alike [1–4]. Given that count-
less insect species contribute to natural biological control [5,6], it is crucial to investigate
temperature-mediated impacts on their development and ensuing population dynamics.
Ladybugs are globally important natural enemies that contribute to the regulation of multi-
ple crop pests such as mites or aphids [7,8]. Laboratory studies have shown how elevated
temperatures affect growth, development, and survival of both immature and adult stages
of various ladybug species [9–11]. Impacts are species-specific, depend upon the range of
experimental temperatures [11], and equally involve other life history parameters such as
fecundity [12,13]. Another key (temperature-dependent) variable is ladybugs’ contribution
to biological control [14]. Laboratory assays have demonstrated how temperature modu-
lates predation rates of various ladybug species and development stages as well as targets
prey items, e.g., Exochomus nigripennis (Erichson) larvae on Gossyparia spuria (Modeer) [11],
Cheilomenes sexmaculata (Fabricius) larvae and adults on Megoura japonica (Matsumura) [15],
or Micraspis discolor (Fabricius) larvae on Brevicoryne brassicae (L.) [16]. Hence, to sustain
or promote ladybug-mediated biological control in (temporally) hot production settings
or under climate change scenarios, it is essential to gain a better understanding of these
temperature-related impacts [17,18].

Elevated temperatures also result in physiological changes, e.g., involving oxidative
damage through reactive oxygen species (ROS) [19,20]. To mitigate ROS-inflicted damage,
insects deploy antioxidant defenses against different reactive chemicals using catalase
(CAT), peroxidase (POD), super-oxide dismutase (SOD) and glutathione-S-transferases
(GSTs) [21,22]. These defenses lead to an overall organismal ability to resist stress, which is
captured by total antioxidant capacity (T-AOC) [23]. In ladybugs, such as Harmonia axyridis
(Pallas) or Propylaea japonica (Thunberg), T-AOC and GST activity decreases with surging
temperatures, while SOD activity exhibits more variable effects depending upon the experi-
mental temperature regime [24,25]. Lastly, through the above physiological and behavioral
changes, temperature mediates the seasonal abundance, dispersal patterns, and geographi-
cal distribution of herbivorous insects [26] and ladybug predators alike [27–29]. This can
lead to a mismatch between predator and prey population phenology and potentially can
trigger pest outbreaks.

In northwestern China, cotton is cultivated in a broad suite of climatically distinct
regions. Cotton production areas are situated in hot, arid settings (up to 40 ◦C, according
to the China Meteorological Administration, 1981~2010) but also in colder environments,
e.g., in the northern range of the Tianshan Mountains [30–32]. Equally, the cotton growing
season is typified by important geographically variable temperature increases. In the local
cotton crop, the two main predatory ladybugs, Hippodamia variegata (Goeze) and Propy-
laea quatuordecimpunctata (Linnaeus), contribute to the biological control of economical
pests, i.e., aphids, mites, and thrips [33–35]. Yet, while H. variegata is widely distributed,
P. quatuordecimpunctata is only found in northern-most (colder) areas. Whether this differ-
ence in geographical distribution is related to differences in the species’ thermal tolerance
remains to be determined.

In this study, we used laboratory assays to assess the effects of elevated temperatures
(i.e., 32–38 ◦C) on the survival, reproduction, predation ability, and antioxidant capacity of
H. variegata and P. quatuordecimpunctata. Our findings not only yielded baseline information
on the temperature-dependent development of ladybugs but also provide a theoretical
basis for the development of biological control strategies and ladybug conservation tactics.

2. Materials and Methods
2.1. Insects Sources

Individuals of H. variegata and P. quatuordecimpunctata were collected from cotton plots
(pesticide-free) of the experimental field station at Shihezi University (44.32◦ N, 85.92◦ E)
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(Shihezi, Xinjiang Uygur Autonomous Region, China) on 27 July 2019. Diagnostic keys
were used to confirm species’ identity [36]. Next, field-caught individuals were transferred
to the Langfang experimental station, Chinese Academy of Agricultural Sciences (CAAS;
39.53◦ N, 116.70◦ E) in Langfang, Hebei Province. Ladybugs were reared in a plastic
container (diameter: 8 cm; height: 11.5 cm) within a controlled climate chamber (RXZ-500D,
Ningbo Jiangnan Instrument Factory, Ningbo, China) at 32 ± 1 ◦C, 70 ± 5% RH, and 16:8 h
(L:D) photoperiod. On a daily basis, ladybugs were fed ad libitum with cotton aphids
(Aphis gossypii Glover) and the F1 progeny was used for experimentation. Cotton aphids
were also collected from cotton fields of the experimental field station at Shihezi University,
transferred to the laboratory, and subsequently reared on Cucurbita pepo L. (Xinzaoqing
seed, Tianjin City Ji Nong Seed Co., Ltd., Tianjin, China). Aphids were maintained within
(55 × 35 × 50 cm) screened cages in a greenhouse at 28–30 ◦C, 50 ± 5% RH, and 16:8 h
(L:D) photoperiod.

2.2. Experimental Temperature Range

All subsequent experimental assays were performed in the lab and carried out in
climatic chambers with temperatures of 32 (as control), 35 (medium–high temperature),
and 38 ◦C (high temperature), which mirror the locally prevailing temperatures during the
cotton growing season in northwestern China.

2.3. Adult Survival and Reproduction

F1 adults of H. variegata and P. quatuordecimpunctata < 12 h of age were removed from
the rearing colony, placed within mesh-covered plastic recipients (diameter: 8 cm; height:
11.5 cm), and fed cotton aphids ad libitum. Recipients were kept at 32 ◦C and adults
were allowed to freely oviposit. Every day, adults were transferred into a new plastic
container, and deposited eggs were left in place until hatching. Newly emerged larvae
were then transferred into new containers and fed ad libitum with cotton aphids until
pupation. Upon pupal emergence, 30 pairs of F2 adults (<12 h of age) were randomly
selected and placed in climatic chambers at 32, 35, or 38 ◦C, 70 ± 5% RH, and 16:8h (L:D)
photoperiod, respectively. All of the climatic chambers before the experiment used HOBO
instruments to ensure a constant temperament. Each pair of ladybugs was placed in Petri
dishes (diameter: 15 cm; height: 2 cm), containing a water-moistened cotton pad and a
Cucurbita pepo leaf with approximately 1000 aphids. On a daily basis, ladybug survival and
the number of deposited eggs were recorded, and the adults were moved into a new plastic
Petri dish. Observations continued until all adults died. There were three replicates for
each temperature condition (i.e., treatment) and ten pairs of ladybugs per replicate.

2.4. Adult Predation

According to Jermy et al. [37], we assessed the predation rate of H. variegata and
P. quatuordecimpunctata at the three experimental temperatures and above climatic condi-
tions (70 ± 5% RH, 14:10 (L:D) photoperiod). At the onset of the experiment, adult females
of either ladybug species (<12 h of age) were individually starved for 24 h. Next, each
individual ladybug was transferred onto an excised Cucurbita pepo leaf disc (equal to the
area of the Petri dish), placed on a layer of 1% agarose (to slow water loss) within a Petri
dish (diameter: 15 cm; height: 2 cm). Experimental areas contained different numbers
of A. gossypii prey, i.e., 50, 100, 150, 200, 250, 300, or 350 individuals of 4th instar aphids.
At each experimental temperature, a total of five ladybug adults (i.e., replicates) were
individually exposed to a given number of prey items for 24 h. Next, we recorded the
number of aphids consumed by each ladybug adult.

2.5. Antioxidant Responses

A pair of adults (<12 h of age) of either ladybug species was placed within a Petri dish
(diameter: 15 cm; height: 2 cm) and subjected to 24 h on the experimental temperatures,
i.e., 32, 35, and 38 ◦C. Next, live, healthy adults were chosen, quickly immersed in liquid
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nitrogen, and then they were stored in an −80 ◦C refrigerator until further laboratory
testing. Next, frozen individuals were placed within extraction buffer solution (EBS) at
a ratio of 1 ml EBS for each 0.1 g of body tissue. Samples were placed in a cold mor-
tar, homogenized with liquid nitrogen, and crude extracts were centrifuged at 4 ◦C and
10,000× g for 10 min. The supernatant was then centrifuged under the above conditions to
determine the antioxidant capacity. Three replicates were used for each ladybug species at
each temperature treatment.

The activity levels of the different antioxidant enzymes (i.e., SOD, CAT, POD, and GSTs)
were determined using commercial assay kits (Beijing Solarbio Science & Technology Co.,
Ltd., Beijing, China) following the manufacturer’s instructions. Absorbance was recorded
using a UV–Visible Spectrophotometer (UNICO Instrument Co., Ltd., Shanghai, China),
with the activity of SOD detected at 560, CAT at 240, POD at 470, and GSTs at 340 nm. The
T-AOC activities were determined using commercial assay kits (Beijing Solarbio Science
& Technology Co., Ltd., Beijing, China) following the manufacturer’s instructions, with
recordings made at 593 nm. Lastly, protein concentration was measured using the Easy II
Protein Quantitative Kit (BCA) (TransGen Biotech, Beijing, China) with readings made at
562 nm.

2.6. Data Analysis

Functional responses were described using a two-stage analysis [38]. Based upon the
relationship between initial prey density and the actual number of consumed prey, the type
of functional response curve was first determined following the formula below:

Na/N0 = exp(P0 + P1N0 + P2N0
2 + P3N0

3)/1 + exp(P0 + P1N0 + P2N0
2 + P3N0

3)

where Na is the number of consumed prey items, N0 is the initial prey number, and P0
(intercept), P1 (linear), P2 (quadratic), and P3 (cubic) are coefficients estimated through
the maximum likelihood method. Next, the shape of the functional response curve (e.g.,
type II or III) was determined as per De Clercq et al. [39]. While the prey consumption rate
exhibits a curvilinear increase for type II functional responses, a sigmoid curve is recorded
for type III responses. The related equations are described by:

Na = aNT/(1 + aNTh) (type II)

Na = (d + bN)NT/[1 + cN + (d + bN)NTh] (type III)

where Na is the number of prey, N is prey density, a is attack rate, Th is prey handling
time, T is the time available for the predator to find the prey (1 d), and b, c, and d are
constants [38].

One-way analysis of variance (ANOVA) was used to analyze the effect of temperature
on adult longevity, fecundity, and antioxidant titers of ladybugs. Tukey’s test was used to
determine differences between different temperatures for the same ladybug (p < 0.05), and
the differences between different ladybugs at the same temperature were analyzed by the
Student’s t-test (p < 0.05). Survival curves of both species were analyzed by the Kaplan–
Meier log-rank test. All statistical analyses were conducted using SPSS 25.0 software and
the R programming language version 2.0.1, while charts were generated using SigmaPlot
12.5 and OriginPro 9.0.

3. Results
3.1. Adult Survival and Reproduction

Survival of H. variegata and P. quatuordecimpunctata adults was affected by temperature
(log-rank test: χ2 = 64.82, df = 2, p < 0.001; χ2 = 102.69, df = 2, p < 0.001, respectively;
Figure 1A,B). At all temperatures, H. variegata attained the highest survival (log-rank test:
32 ◦C: χ2 = 77.77, df = 1, p < 0.001; 35 ◦C: χ2 = 43.12, df = 1, p < 0.001; 38 ◦C: χ2 = 36.36,
df = 1, p < 0.001). At 38 ◦C, P. quatuordecimpunctata survival declined significantly on the
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3rd day compared to other temperatures (Tukey’s test: F2, 6 = 252.33, p < 0.001) (Figure 1B).
Hence, elevated temperatures negatively impacted P. quatuordecimpunctata more than that
of H. variegata.
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Figure 1. Survival curves of adult Hippodamia variegata (A) and Propylaea quatuordecimpunctata (B) at
different temperatures. (C) Adult longevity of both species. Survival statistics were calculated using
the Kaplan–Meier survival curve and compared using the log-rank test (individuals = 60, *** p < 0.001).
For each species, different letters above the bars indicate statistically significant differences (ANOVA;
Tukey’s post hoc test; p < 0.05).

The longevity of H. variegata and P. quatuordecimpunctata were equally affected by
temperature (Tukey’s test: F2, 6 = 38.28, p < 0.001; F2, 6 = 29.51, p = 0.001, respectively). For
H. variegata, only an initial rise in temperature to 35 ◦C, lowered longevity (t-test: t = 8.76,
df = 1, p = 0.001) (Figure 1C), while further temperature increases also lowered the longevity
of P. quatuordecimpunctata, declining from 10.96 (32 ◦C) to 7.72 d (35 ◦C) to 3.83 d at 38 ◦C,
respectively (t-test: 32–35 ◦C: t = 3.40, df = 1, p = 0.027; 35–38 ◦C: t = 7.06, df = 1, p = 0.002)
(Figure 1C).

Elevated temperature equally affected age-specific and total fecundity of both ladybug
species (Figure 2A,B). For H. variegata, oviposition rates dropped from 450.77 to 332.19
to 107.38 eggs per female as temperatures rose from 32 over 35 to 38 ◦C (Tukey’s test:
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F2, 6 = 50.21, p < 0.001). Peak oviposition shifted from day 6 at 32 ◦C and on day 4 at 35
and 38 ◦C. For P. quatuordecimpunctata, total oviposition was significantly lower than H.
variegata at all temperatures. Oviposition rates of P. quatuordecimpunctata declined from
19.19 (32 ◦C) to 8.27 (35 ◦C) to 0 at 38 ◦C, respectively (Tukey’s test: F2, 6 = 20.70, p = 0.002).
For all temperatures, peak oviposition was recorded on day 5 (Figure 2).

Insects 2022, 13, 306 6 of 12 
 

 

Elevated temperature equally affected age-specific and total fecundity of both lady-
bug species (Figure 2A,B). For H. variegata, oviposition rates dropped from 450.77 to 332.19 
to 107.38 eggs per female as temperatures rose from 32 over 35 to 38 °C (Tukey’s test: F2, 6 
= 50.21, p < 0.001). Peak oviposition shifted from day 6 at 32 °C and on day 4 at 35 and 38 
°C. For P. quatuordecimpunctata, total oviposition was significantly lower than H. variegata 
at all temperatures. Oviposition rates of P. quatuordecimpunctata declined from 19.19 (32 
°C) to 8.27 (35 °C) to 0 at 38 °C, respectively (Tukey’s test: F2, 6 = 20.70, p = 0.002). For all 
temperatures, peak oviposition was recorded on day 5 (Figure 2). 

 
Figure 2. Age-specific fecundity of adult Hippodamia variegata (A) and Propylaea quatuordecimpunctata 
(B) at different temperatures. (C) Fecundity of both species. For each species, different letters above 
the bars indicate statistically significant differences among temperatures (ANOVA; Tukey’s post 
hoc test; p < 0.05). 

3.2. Functional Response 
Across temperature regimes, H. variegata and P. quatuordecimpunctata exhibited a 

Type II functional response with a steadily declining proportion of prey consumed at 
higher prey density (Table 1; Figure 3). The maximum daily predation of H. variegata (1000 
aphids) and attack rate (a: 1.12) was highest at 35 °C. Conversely, daily predation of P. 

Figure 2. Age-specific fecundity of adult Hippodamia variegata (A) and Propylaea quatuordecimpunctata
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test; p < 0.05).

3.2. Functional Response

Across temperature regimes, H. variegata and P. quatuordecimpunctata exhibited a
Type II functional response with a steadily declining proportion of prey consumed at
higher prey density (Table 1; Figure 3). The maximum daily predation of H. variegata
(1000 aphids) and attack rate (a: 1.12) was highest at 35 ◦C. Conversely, daily predation
of P. quatuordecimpunctata did not differ between temperature regimes, while a values
gradually decreased with higher temperatures (Table 1).
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Table 1. Functional response parameters, as obtained through logistic regression, of adult female
Hippodamia variegata and Propylaea quatuordecimpunctata reared on 4th instar Aphis gossypii under
different temperature regimes. P1 is the linear coefficients of the logistic regression analysis equation;
Tem is the experimental temperature; a is the instantaneous searching rate; Th is the handling time.
The exact structure of the functional response models is described in the text.

Species Tem P1 ± SE Na = aTN0/(1 + aThN0) R2 a Th (d) a/Th Nmax

H. variegata
32 ◦C −0.0205 ± 0.0024 Na = 1.013N0/(1 + 0.002N0) 0.98 1.01 0.002 507 500
35 ◦C −0.0822 ± 0.0039 Na = 1.115N0/(1 + 0.001N0) 0.98 1.12 0.001 1115 1000
38 ◦C −0.0121 ± 0.0022 Na = 0.965N0/(1 + 0.002N0) 0.96 0.97 0.002 483 500

P. quatuordec-
impunctata

32 ◦C −0.0418 ± 0.0038 Na = 0.843N0/(1 + 0.003N0) 0.98 0.84 0.004 211 250
35 ◦C −0.0969 ± 0.0028 Na = 0.739N0/(1 + 0.003N0) 0.98 0.74 0.004 185 250
38 ◦C −0.0488 ± 0.0026 Na = 0.543N0/(1 + 0.002N0) 0.94 0.54 0.004 136 250
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3.3. Antioxidant Responses

For H. variegata adults held under the three temperatures for 24 h, SOD activity
increased at higher temperatures (Tukey’s test: F2, 6 = 102.27, p < 0.001; Figure 4). Sim-
ilarly, SOD activity of P. quatuordecimpunctata adults progressively increased with tem-
perature (Tukey’s test: F2, 6 = 40.54, p < 0.001) (Figure 4A). CAT activity of H. variegata
and P. quatuordecimpunctata adults also increased steadily with temperature (Tukey’s test:
F2, 6 = 162.45, p < 0.001; F2, 6 = 6.56, p = 0.031, respectively) (Figure 4B). POD activity of H.
variegata increased at 35 ◦C but then decreased by 82.6% at 38 ◦C (Tukey’s test: F2, 6 = 141.97,
p < 0.001). Meanwhile, for P. quatuordecimpunctata, POD activity progressively decreased
at higher temperatures (Tukey’s test: F2, 6 = 106.66, p < 0.001) (Figure 4C). For both la-
dybug species, GSTs activity consistently declined at higher temperatures (Tukey’s test:
F2, 6 = 58.38, p < 0.001; F2, 6 = 35.91, p < 0.001) (Figure 4D). The T-AOC activity levels in
the two ladybug adults were significantly affected by treatment temperatures. While the
T-AOC activity of H. variegata increased with temperature (Tukey’s test: F2, 6 = 131.26,
p < 0.001), it only declined at 38 ◦C for P. quatuordecimpunctata (Tukey’s test: F2, 6 = 9.94,
p = 0.012) (Figure 4E). Lastly, heat stress negatively affected protein concentration in both
ladybug species (Tukey’s test: F2, 6 = 457.49, p < 0.001; F2, 6 = 80.78, p < 0.001) (Figure 4F).
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4. Discussion

Elevated temperatures affect various life history, behavioral, and physiological param-
eters of natural enemies, such as ladybugs [40], and thereby impact biological control to
varying (and often unpredictable) extents. These impacts are species-specific and shaped
by the exact range of experimental temperatures. For example, while survival of Adalia
bipunctata (L.), Hippodamia variegata (Goeze), Coccinella undecimpunctata aegyptica (Reiche),
and Oenopia conglobata contaminata (Menetries) is negatively affected at 32.5 ◦C [41], this
does not apply for Exochomus nigripennis (Erichson), suggesting that thermotolerance of
E. nigripennis is stronger. In this study, we demonstrated how heat stress affects adult
survival, longevity, reproduction, predation rate, and the antioxidant capacity of H. var-
iegata and P. quatuordecimpunctata. Even though both ladybug species exhibited lower
survival, longevity, and fecundity under warmer conditions, this decrease—especially un-
der a high temperature bracket—was more pronounced for P. quatuordecimpunctata. Hence,
P. quatuordecimpunctata exhibited markedly lower thermal tolerance, which is in accordance
with its geographical distribution patterns in northwestern China. These findings are in
line with earlier work in which cold hardiness [42] and thermal tolerance are identified as
key determinants of ladybug distribution [29,43]. Evidently, these functional traits deter-
mine the extent to which either ladybug species will perform under specific agro-climatic
conditions [44], particularly in the harsh environments of northwestern China.

When given access to A. gossypii prey under varying temperatures, both preda-
tory ladybugs exhibited a type II functional response [45,46], as also observed for other
species [47,48]. Yet, even while functional response curves remain unaltered, predation
rates can be subject to change under increasing temperature. For example, Harmonia axyridis
(Pallas) predation rates of Acyrthosiphon pisum (Harris) nymphs increased temperature over
15–35 ◦C [49]. The consumption of Harmonia dimidiata (Fab.) to Myzus persicae (Sulzer)
decreased with the increase in temperature (24–32 ◦C) [50]. In this study, the predation of H.
variegata to A. gossypii was the highest at 35 ◦C, but the predation of P. quatuordecimpunctata
to A. gossypii decreased when the temperature increased from 32 to 35 ◦C. Temperature-
mediated differences in predation rates are highly species-dependent, with H. variegata
consistently consuming more A. gossypii than P. quatuordecimpunctata. Yet, extrapolating
these laboratory-based observations of individual predator–prey couplets to field condi-
tions is challenging [51], as both predator and prey act within intricate, dynamic food
webs in which a multitude of consumptive and non-consumptive effects (e.g., intra-specific
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competition and intraguild predation) dictate the ultimate outcomes [52–55]. Several of
the above effects are further modulated by field-, farm-, or landscape-scale heterogene-
ity [56,57]. Hence, semi-field trials, manipulative experiments, and observational assays
under “real-world” conditions are key to reliably predicting temperature effects on ladybug
fitness or biological control.

Elevated temperatures can trigger antioxidant defenses in order to eliminate free
radicals and protect the insect from thermal stress [58,59]. These antioxidant defenses
are species-specific and modulated by a suite of temperature-dependent enzymes. While
the activity of SOD, CAT, and GSTs in P. japonica increases at 39 ◦C, that of POD enzyme
was only enhanced at 41 ◦C [24]. For larvae of Mythimna separata (Walker), the SOD,
CAT, and GSTs activities were significantly raised by thermal stress (i.e., 30, 35, 40, and
45 ◦C) [60]. Chen et al. [61] found that the survival rate of Ophraella communa LeSage
female adults was significantly higher than that of male adults under high temperature
(i.e., 40, 42, and 44 ◦C) stress, and the activity of antioxidant enzymes in female adults was
also higher than male adults [62]. The high survival rate of O. communa females may be
closely related to the high antioxidative enzyme activity of females under heat stress. Our
work showed variable responses of four antioxidant enzymes to increasing temperature.
As SOD and CAT enzyme activity increased at higher temperatures, these compounds
likely play a key role in the thermal tolerance of H. variegata and P. quatuordecimpunctata.
While the activity of POD in H. variegate increased at 35 ◦C, that of POD enzyme of P.
quatuordecimpunctata was reduced at 35 ◦C. Meanwhile, species-specific differences were
observed in (temperature-related) T-AOC activity. In H. variegata, a heightened T-AOC
activity at elevated temperatures could mirror a superior antioxidant capacity (and lowered
likelihood of oxidative damage) than P. quatuordecimpunctata. These physiological patterns
possibly explain the above differences in life history traits and represent the proximate
causes of H. variegata spatiotemporal distribution.

By thus pairing (laboratory-based) life history assays with targeted recordings of
antioxidant activity, our work unveils the superior thermal tolerance (and climate-adaptive
capacity) of H. variegata. In a similar way as heat-shock proteins mediate cold hardiness and
overwinter survival in coccinellids [63], the physiological adaptations to heat stress involve
a suite of antioxidant enzymes. Thus, antioxidant readings can help to generate inferences
regarding (coarse-grained) occurrence, seasonal abundance, and geographical distribution
of individual ladybug species. However, considering how field- or landscape-level habitat
modification can create more suitable micro-climatic niches, raise in-field survival rates, and
thereby alter ladybug community composition [64], field-scale observational and empirical
studies remain indispensable. Our experiment was performed in a constant temperature
indoor environment, but the temperature of the natural was variable. Future assessments
equally need to account for (climate-induced) impacts on target pests, co-occurring natural
enemies, and alternating temperature. Yet, irrespective of its shortcomings, our work helps
to advance (ladybug-mediated) biological control as a core constituent of climate-resilient
farming systems.

5. Conclusions

In this study, we investigated the effects of different temperatures (32, 35, and 38 ◦C)
on the survival, reproduction, predation, and antioxidant capacity of adult ladybugs. Our
findings show how the negative impacts (on survival and reproduction) are species-specific
and particularly pronounced for P. quatuordecimpunctata. Temperature-mediated effects are
also mirrored in species’ contribution to biological control: H. variegata’s prey consumption
rate was highest at 35 ◦C, while that of P. quatuordecimpunctata steadily decreased at higher
temperatures. The above life history and biological control impacts are also reflected in
the antioxidant capacity of both ladybug species, with SOD, CAT, POD, GSTs, T-AOC, and
protein content all affected by temperature. Thus, laboratory assays can help to explain
spatiotemporal distribution patterns of individual ladybugs and inform strategies to bolster
biological control under conditions of global warming or extreme weather events.



Insects 2022, 13, 306 10 of 12

Author Contributions: Conceptualization, Y.L., Y.Y. and K.A.G.W.; Data curation, Q.Y.; Formal
analysis, Q.Y. and J.L.; Funding acquisition, Y.L.; Investigation, Q.Y.; Methodology, Y.L.; Project
administration, Y.L.; Resources, Y.L.; Software, Y.L.; Supervision, Y.L. and Y.Y.; Validation, Y.L.;
Visualization, Y.L.; Writing—original draft, Q.Y. and J.L.; Writing—review and editing, Y.L. and
K.A.G.W. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Natural Science Funds of China (No. U2003212)
and the China Agriculture Research System (CARS-15-21).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data analyzed in this study are included in this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, S.Z.; Cao, Z.; Zhang, F.; Liu, T.X. Exposing eggs to high temperatures affects the development, survival, and reproduction

of Harmonia axyridis. J. Therm. Biol. 2014, 39, 40–44. [CrossRef]
2. Knapp, M. Emergence of sexual size dimorphism and stage-specific effects of elevated temperature on growth rate and develop-

ment rate in Harmonia axyridis. Physiol. Entomol. 2014, 39, 341–347. [CrossRef]
3. Barahona-Segovia, R.M.; Grez, A.A.; Bozinovic, F. Testing the hypothesis of greater eurythermality in invasive than in native

ladybird species: From physiological performance to life-history strategies. Ecol. Entomol. 2016, 41, 182–191. [CrossRef]
4. Wang, S.Y.; Liang, N.N.; Tang, R.; Liu, Y.H.; Liu, T.X. Brief heat stress negatively affects the population fitness and host feeding of

Aphelinus asychis (Hymenoptera: Aphelinidae) parasitizing Myzus persicae (Hemiptera: Aphididae). Environ. Entomol. 2016, 45,
719–725. [CrossRef] [PubMed]

5. Wyckhuys, K.A.G.; Lu, Y.H.; Morales, H.; Vazquez, L.L.; Legaspi, J.C.; Eliopoulos, P.A.; Hernandez, L.M. Current status and
potential of conservation biological control for agriculture in the developing world. Biol. Control 2013, 65, 152–167. [CrossRef]

6. Wyckhuys, K.A.G.; Lu, Y.H.; Zhou, W.W.; Cock, M.J.W.; Naranjo, S.E.; Fereti, A.; Williams, F.E.; Furlong, M.J. Ecological pest
control fortifies agricultural growth in Asia-Pacific economies. Nat. Ecol. Evol. 2020, 4, 1522–1530. [CrossRef]

7. Obrycki, J.J.; Harwood, J.D.; Kring, T.J.; O’Neil, R.J. Aphidophagy by Coccinellidae: Application of biological control in
agroecosystems. Biol. Control 2009, 51, 244–254. [CrossRef]

8. Biddinger, D.J.; Weber, D.C.; Hull, L.A. Coccinellidae as predators of mites: Stethorini in biological control. Biol. Control 2009, 51,
268–283. [CrossRef]

9. Asghari, F.; Samie, M.A.; Mahdian, K.; Basirat, M.; Izadi, H. Effects of temperature on some biological characteristics of Hippodamia
variegata (Goeze) reared on common pistachio psylla Agonoscena pistaciae Burckhardt and Lauterer and on Angoumois grain moth,
Sitotroga crealella Olivier, under laboratory conditions. Iran. J. Plant Protect. Sci. 2011, 42, 137–149.

10. Solangi, G.S.; Karamaouna, F.; Kontodimas, D.; Milonas, P.; Lohar, M.K.; Abro, G.H.; Mahmood, R. Effect of high temperatures on
survival and longevity of the predator Cryptolaemus montrouzieri Mulsant. Phytoparasitica 2013, 41, 213–219. [CrossRef]

11. Ardakani, H.R.; Samih, M.A.; Ravan, S.; Mokhtari, A. Effect of temperature on the development and predatory potential of
Exochomus nigripennis (Erichson) (Col.: Coccinellidae) fed on Gossyparia spuria (Modeer) (Hem.: Eriococcidae). Int. J. Trop. Insect.
2020, 40, 723–728. [CrossRef]

12. Huang, Z.; Ren, S.; Musa, P.D. Effects of temperature on development, survival, longevity, and fecundity of the Bemisia tabaci
Gennadius (Homoptera: Aleyrodidae) predator, Axinoscymnus cardilobus (Coleoptera: Coccinellidae). Biol. Control 2008, 46,
209–215. [CrossRef]

13. Papanikolaou, N.E.; Milonas, P.G.; Kontodimas, D.C.; Demiris, N.; Matsinos, Y.G. Temperature-Dependent development, survival,
longevity, and fecundity of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). Ann. Entomol. Soc. Am. 2013, 106, 228–234.
[CrossRef]

14. Huffaker, C.B.; Messenger, P.S.; Debach, P. The Natural Enemy Component in Natural Control and the Theory of Biological Control;
Plenum Press: New York, NY, USA, 1971.

15. Wang, S.; Tan, X.L.; Guo, X.J.; Zhang, F. Effect of temperature and photoperiod on the development, reproduction, and predation
of the predatory ladybird Cheilomenes sexmaculata (Coleoptera: Coccinellidae). J. Econ. Entomol. 2013, 106, 2621–2629. [CrossRef]

16. Hong, B.M.; Binh, T.T.T.; Hang, V.T.T. Effect of temperature on the life cycle and predatory capacity of ladybird beetle Micraspis
discolor Fabricius (Coleoptera: Coccinellidae). Acad. J. Biol. 2013, 35, 37–42. [CrossRef]

17. Pessoa, L.G.A.; Freitas, S.D.; Loureiro, E. Effect of temperature variation on Chrysoperla raimundoi Freitas & Penny (Neuroptera:
Chrysopidae) embryonic and post-embryonic development. Arq. Inst. Biol. 2009, 76, 239–244.

18. Sloggett, J.J. Aphidophagous ladybirds (Coleoptera: Coccinellidae) and climate change: A review. Insect Conserv. Diver. 2021, 14,
709–722. [CrossRef]

19. Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science 1998, 281, 1309–1312. [CrossRef]

http://doi.org/10.1016/j.jtherbio.2013.11.007
http://doi.org/10.1111/phen.12079
http://doi.org/10.1111/een.12287
http://doi.org/10.1093/ee/nvw016
http://www.ncbi.nlm.nih.gov/pubmed/26994135
http://doi.org/10.1016/j.biocontrol.2012.11.010
http://doi.org/10.1038/s41559-020-01294-y
http://doi.org/10.1016/j.biocontrol.2009.05.009
http://doi.org/10.1016/j.biocontrol.2009.05.014
http://doi.org/10.1007/s12600-012-0281-x
http://doi.org/10.1007/s42690-020-00122-x
http://doi.org/10.1016/j.biocontrol.2008.04.004
http://doi.org/10.1603/AN12104
http://doi.org/10.1603/EC13095
http://doi.org/10.15625/0866-7160/v35n1.2936
http://doi.org/10.1111/icad.12527
http://doi.org/10.1126/science.281.5381.1309


Insects 2022, 13, 306 11 of 12

20. Cui, Y.D.; Du, Y.Z.; Lu, M.X.; Qiang, C.K. Antioxidant responses of Chilo suppressalis (Lepidoptera: Pyralidae) larvae exposed to
thermal stress. J. Therm. Biol. 2011, 36, 292–297. [CrossRef]

21. Mathew, A.; Morimoto, R.I. Role of the heat shock response in the life and death of proteins. Ann. N. Y. Acad. Sci. 1998, 851,
99–111. [CrossRef]

22. Lopez-Martinez, G.; Elnitsky, M.A.; Benoit, J.B.; Lee, R.E.; Denlinger, D.L. High resistance to oxidative damage in the Antarctic
midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock
proteins. Insect Biochem. Mol. 2008, 38, 796–804. [CrossRef] [PubMed]

23. Ghiselli, A.; Serafini, M.; Natella, F.; Scaccinia, C. Total antioxidant capacity as a tool to assess redox status: Critical view and
experimental data. Free Radic. Biol. Med. 2000, 29, 1106–1114. [CrossRef]

24. Zhang, S.; Fu, W.Y.; Li, N.; Zhang, F.; Liu, T.X. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to
high temperature stress. J. Insect Physiol. 2015, 73, 47–52. [CrossRef] [PubMed]
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