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Ferroptosis is an iron-dependent mode of cell death caused
by excessive oxidative damage to lipids. Lipid peroxidation is
normally suppressed by glutathione peroxidase 4, which re-
quires reduced glutathione. Cystine is a major resource for
glutathione synthesis, especially in cancer cells. Therefore,
cystine deprivation or inhibition of cystine uptake promotes
ferroptosis in cancer cells. However, the roles of other mole-
cules involved in cysteine deprivation–induced ferroptosis are
unexplored. We report here that the expression of gamma-
glutamyltransferase 1 (GGT1), an enzyme that cleaves extra-
cellular glutathione, determines the sensitivity of glioblastoma
cells to cystine deprivation–induced ferroptosis at high cell
density (HD). In glioblastoma cells expressing GGT1, phar-
macological inhibition or deletion of GGT1 suppressed the cell
density–induced increase in intracellular glutathione levels and
cell viability under cystine deprivation, which were restored by
the addition of cysteinylglycine, the GGT product of gluta-
thione cleavage. On the other hand, cystine deprivation
induced glutathione depletion and ferroptosis in GGT1-
deficient glioblastoma cells even at an HD. Exogenous expres-
sion of GGT1 in GGT1-deficient glioblastoma cells inhibited
cystine deprivation–induced glutathione depletion and fer-
roptosis at an HD. This suggests that GGT1 plays an important
role in glioblastoma cell survival under cystine-limited and HD
conditions. We conclude that combining GGT inhibitors with
ferroptosis inducers may provide an effective therapeutic
approach for treating glioblastoma.

Glioblastoma is the most common malignant brain tumor
and has a poor prognosis (1, 2). Currently, surgical resection,
radiation therapy, and chemotherapy are usually used to treat
patients with glioblastoma. However, no effective treatment
has been established, and the 5-year survival rate is only 5%.
Therefore, it is important to find new effective therapeutic
strategies for glioblastoma.

Ferroptosis is a form of cell death caused by excessive
oxidative damage to lipids in an iron-dependent manner (3). It
is well known that inhibition of glutathione peroxidase 4, an
enzyme that directly reduces lipid peroxides, induces
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ferroptosis. The cystine/glutamate antiport system xc
− is

composed of two subunits, the light chain xCT (SLC7A11)
with catalytic activity and the heavy chain CD98 (4F2hc or
SLC3A2) with regulatory activity, and it exchanges extracel-
lular cystine and intracellular glutamate at the plasma mem-
brane (4, 5). In many cancer cells, cystine taken up by xCT is
the major source of cysteine, which is required for the syn-
thesis of reduced glutathione (GSH). As the activity of gluta-
thione peroxidase 4 requires GSH, depletion of cystine or
treatment with pharmacological inhibitors of xCT, such as
erastin, induces ferroptosis (6). Therefore, the synthesis of
GSH is important for the survival of cancer cells to avoid
excessive oxidative stress and ferroptosis.

Gamma-glutamyltransferase (GGT) is a membrane-bound
enzyme that is important for the metabolism of extracellular
glutathione (7–9). GGT can cleave the gamma-glutamyl bond
of glutathione to L-cysteinylglycine (Cys-Gly) and glutamate
extracellularly, and Cys-Gly is further degraded into cysteine
and glycine by dipeptidase and reused by being taken up into
the cell. About 13 genes of the GGT family were identified
using genomic and complementary DNA database searches
(10). Among them, GGT1 is the most studied, and its
expression increases in many human cancers, including glio-
blastoma (10, 11). Human GGT1 is autocatalytically cleaved
into large and small subunits to generate the mature active
enzyme (12, 13). Although inhibition of GGT1 was reported to
inhibit the proliferation and migration of clear cell renal cell
carcinoma cells (14), the role of GGT1 in cancer progression is
still largely unknown. In this study, we demonstrated a role of
GGT1 in ferroptosis resistance in glioblastoma cells cultured
at a high density.

Results

High cell density suppresses cystine deprivation–induced
ferroptosis in glioblastoma cells

We recently reported that cystine deprivation induces fer-
roptosis in glioblastoma cells (15). We found that this depends
on cell density. Three types of glioblastoma cell lines, A172,
T98G, and LN229, were plated at a low cell density (LD; 1 ×
104 cells/cm2) and high cell density (HD; 1 × 105 cells/cm2)
and cultured for 24 h. Then, the culture medium was collected
at 24 h after cystine depletion, and the amount of lactate
J. Biol. Chem. (2022) 298(3) 101703 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2022.101703
Delta:1_given name
Delta:1_surname
mailto:hirokato@pharm.kyoto-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2022.101703&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A role of GGT1 in ferroptosis resistance
dehydrogenase (LDH) released into the medium was measured
to quantify cell death. Depletion of cystine significantly
increased cell death in all glioblastoma cell lines at LD. In
LN229 cells, cystine deprivation also induced cell death at HD.
However, it had little effect on cell viability in A172 and T98G
cells at HD (Fig. 1A). The addition of ferroptosis inhibitors
ferrostatin-1 (Fer-1) and deferoxamine (DFO) inhibited cell
death under cystine deprivation in LN229 cells at HD (Fig. 1B).
Our previous study revealed that cystine deprivation–induced
ferroptosis involves two processes: depletion of intracellular
GSH and degradation of ferritin in glioblastoma cells (15).
Next, we examined whether the degradation of FTH1, the
heavy chain subunit of ferritin, is affected by cell density.
Western blotting of cell lysates after depletion of cystine
confirmed that the protein levels of FTH1 decreased in both
A172 and LN229 cells at LD and HD (Fig. 1C). On the other
hand, we observed a difference in the levels of intracellular
GSH between LD and HD. The intracellular GSH was depleted
15 h after cystine deprivation in three glioblastoma cell lines
cultured at LD and in LN229 cells at HD. In contrast, the GSH
levels decreased, but were not depleted, after cystine depriva-
tion in A172 and T98G cells cultured at HD (Fig. 1D).
L-buthionine sulfoximine (BSO), an inhibitor of γ-gluta-
mylcysteine synthetase, the rate-limiting enzyme of GSH
synthesis, depleted GSH and promoted cell death under
cystine deprivation in A172 and T98G cells cultured at HD
(Fig. 1, E and F). This suggests that cell density alters gluta-
thione metabolism, which plays a role in the resistance to
ferroptosis in A172 and T98G glioblastoma cells. On the other
hand, BSO treatment depleted GSH but did not induce cell
death in the presence of cystine. Our previous study suggests
that BSO did not induce ferritinophagy required for the in-
duction of ferroptosis in the presence of cystine in glioblas-
toma cells (15). Therefore, BSO promoted cell death in A172
and T98G cells at HD only in the absence of cystine.

We next examined whether the medium from HD culture
can inhibit cystine deprivation–induced cell death at LD. The
medium from A172 or T98G culture at HD (HD conditioned
medium) suppressed cystine deprivation–induced cell death in
A172 or T98G cells cultured at LD, whereas HD conditioned
medium from LN229 culture had little effect on cystine
deprivation–induced cell death in LN229 cells cultured at LD
(Fig. 1G). Therefore, factors secreted from A172 or T98G cells
at HD can alter cell viability under cystine deprivation.
Inhibition of GGT1 promotes cystine deprivation–induced
ferroptosis at HD

Glutathione is synthesized in the cytoplasm, but it is also
exported out of the cell (16). We next examined whether GGT,
an enzyme that degrades glutathione to Cys-Gly and glutamate
extracellularly, is involved in the cystine deprivation–induced
cell death at HD. OU749, an inhibitor of GGT, significantly
increased the percentage of cell death under cystine depriva-
tion in A172 and T98G cells at HD (Fig. 2A). In LN229 cells,
cystine deprivation induced cell death at HD in the presence or
the absence of OU749. The ferroptosis inhibitors Fer-1 and
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DFO inhibited OU749-induced cell death under cystine
deprivation in A172 cells at HD (Fig. 2B), suggesting that
OU749 induces ferroptotic cell death under cystine depriva-
tion at HD. In addition, OU749 depleted GSH in cystine-
deprived A172 and T98G cells cultured at HD (Fig. 2C). In
LN229 cells, cystine deprivation induced GSH depletion at HD
in the presence or the absence of OU749. We therefore hy-
pothesized that the function of GGT caused a significant dif-
ference between A172/T98G cells and LN229 cells in
ferroptosis sensitivity. Human GGT1, the most widely
expressed member of the GGT family, is autocatalytically
cleaved into large and small subunits to generate the mature
active enzyme (12, 13). We compared the expression levels of
GGT1 by Western blotting with an antibody against the small
subunit and found that GGT1 was expressed in A172 and
T98G cells. However, expression of GGT1 was undetectable in
LN229 cells (Fig. 2D). The protein levels of GGT1 in A172 and
T98G cells were unaffected when they were cultured at HD
(Fig. 2E). We next generated GGT1-deficient A172 cells using
CRISPR/Cas9-mediated deletion of GGT1 (A172 GGT1 KO 1
and 2; Fig. 2F). In A172 control KO cells, cystine deprivation
did not induce cell death when cultured at HD. However,
cystine deprivation significantly increased cell death in A172
GGT1 KO 1 and 2 cells at HD (Fig. 2G). In addition, cystine
deprivation reduced the GSH level to less than 10% in GGT1
KO 1 and 2 cells at HD, whereas it reduced the GSH level to
approximately 40% in control KO cells, which were depleted
by OU749 (Fig. 2H). This suggests that GGT1 plays an
important role in GSH metabolism and resistance to ferrop-
tosis in glioblastoma cells at HD.
Extracellular Cys-Gly suppresses cystine deprivation–induced
cell death at HD

GGT1 cleaves extracellular glutathione to produce Cys-Gly
and glutamate (16, 17). Therefore, we next examined whether
Cys-Gly restored cell viability in A172 cells treated with
OU749. The addition of Cys-Gly to the medium suppressed
OU749-induced cell death in A172 cells under cystine depri-
vation at HD. Cys-Gly also suppressed cystine deprivation–
induced cell death in LN229 cells at HD in the absence or
the presence of OU749 (Fig. 3A). High concentration of
glutamate inhibits xCT-mediated cystine uptake (4, 18, 19).
However, addition of glutamate at the same concentration of
Cys-Gly (100 μM) had little effect on the cell viability (Fig. 3B).
We confirmed the effect of extracellular glutamate on cystine
uptake in A172 cells. The xCT inhibitor sulfasalazine (SSZ)
completely suppressed cystine uptake in A172 cells, but
glutamate treatment at 100 μM did not (Fig. 3C), suggesting
that a higher concentration of extracellular glutamate is
required for inhibition of cystine import through xCT. On the
other hand, the addition of GSH had little effect on OU749-
induced cell death in A172 cells under cystine deprivation at
HD or on cystine deprivation–induced cell death in
LN229 cells at HD in the absence or the presence of OU749
(Fig. 3D). We used A172 GGT1 KO 1 cells to confirm the
effect of Cys-Gly on cell viability. In A172 GGT1 KO 1 cells



Figure 1. HD suppresses cystine deprivation–induced ferroptosis in glioblastoma cells. A, A172, T98G, and LN229 cells were cultured at LD (1 ×
104 cells/cm2) or HD (1 × 105 cells/cm2) for 24 h and placed in cystine-free medium with or without cystine (200 μM) for 24 h. B, A172 and T98G cells were
cultured at HD for 24 h and treated with DFO (100 μM) or Fer-1 (1 μM) in cystine-free medium for 24 h. Cell death was quantified using an LDH release assay.
Cells treated with 0.1% Tween-20 were used to calculate 100% cell death. Error bars represent SD (n = 3). ***p < 0.001; calculated by one-way ANOVA with
Tukey’s post hoc test. C, immunoblot analysis of A172 and LN229 cells cultured at LD or HD for 24 h and placed in cystine-free medium with or without
cystine (200 μM) for 15 h. D, A172, T98G, and LN229 cells were cultured at LD or HD for 24 h and placed in cystine-free medium with or without cystine
(200 μM) for 15 h. E, A172 and T98G cells were cultured at HD for 24 h and placed in cystine-free medium with or without cystine (200 μM) or treated with or
without BSO (100 μM) for 15 h. Intracellular GSH levels relative to control (+cystine) are shown. Error bars represent SD (n = 3). F, A172 and T98G cells were
cultured at HD for 24 h and placed in cystine-free medium with or without cystine (200 μM) or treated with or without BSO (100 μM) for 24 h. G, A172, T98G,
and LN229 cells cultured at LD were placed in the conditioned medium collected from the cells cultured at HD in cystine-free medium with or without
cystine (200 μM) for 24 h. Cell death was quantified using an LDH release assay. Cells treated with 0.1% Tween-20 were used to calculate 100% cell death.
Error bars represent SD (n = 3). ***p < 0.001; calculated by one-way ANOVA with Tukey’s post hoc test. BSO, L-buthionine sulfoximine; DFO, oxamine; Fer-1,
ferrostatin-1; GSH, reduced glutathione; HD, high cell density; LD, low cell density; LDH, lactate dehydrogenase.
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Figure 2. Inhibition of GGT1 promotes cystine deprivation–induced ferroptosis at HD. A, A172, T98G, and LN229 cells were cultured at HD for 24 h and
placed in cystine-free medium with or without cystine (200 μM) and OU749 (250 μM) for 24 h. B, A172 and LN229 cells were cultured at HD for 24 h and
placed in cystine-free medium with or without OU749 (250 μM), DFO (100 μM), and Fer-1 (1 μM) for 24 h. Quantification of cell death was performed using
an LDH release assay. Cells treated with 0.1% Tween-20 were used to calculate 100% cell death. Error bars represent SD (n = 3). ***p < 0.001; calculated by
one-way ANOVA with Tukey’s post hoc test. C, A172, T98G, and LN229 cells were cultured at HD for 24 h and placed in cystine-free medium with or without
cystine (200 μM) and OU749 (250 μM) for 15 h. Intracellular GSH levels relative to control (+cystine) are shown. Error bars represent SD (n = 3).
D, immunoblot analysis of A172, T98G, and LN229 cell lysates. E, immunoblot analysis of A172 and T98G cell lysates cultured at LD or HD for 24 h.
F, immunoblot analysis of A172 control KO, GGT1 KO 1, and GGT1 KO 2 cell lysates. G, A172 control KO and GGT1 KO (1 and 2) cells were cultured at HD for
24 h and placed in cystine-free medium with or without cystine (200 μM) for 24 h. Cell death was quantified using an LDH release assay. Error bars represent

A role of GGT1 in ferroptosis resistance

4 J. Biol. Chem. (2022) 298(3) 101703



A role of GGT1 in ferroptosis resistance
cultured at HD, cystine deprivation induced cell death in the
presence and absence of OU749, which was greatly inhibited
by Cys-Gly (Fig. 3E). Like parental cells, OU749 increased cell
death in cystine-deprived A172 control cells at HD, which was
suppressed by Cys-Gly. The addition of GSH did not affect cell
viability in cystine-deprived A172 GGT1 KO 1 and control KO
cells at HD (Fig. 3F). We next examined the effects of extra-
cellular Cys-Gly on the intracellular GSH levels in A172 and
LN229 cells. Cystine deprivation together with OU749
depleted intracellular GSH in A172 cells at HD. The addition
of Cys-Gly significantly increased the intracellular GSH level,
whereas the addition of GSH did not (Fig. 3G). Similarly, Cys-
Gly but not GSH increased the intracellular GSH level in
cystine-deprived LN229 cells and A172 GGT1 KO 1 cells at
HD (Fig. 3, G and H). In A172 control KO cells, the addition of
GSH also increased the intracellular GSH level in the absence
of OU749. This suggests that GGT1-mediated formation of
Cys-Gly suppresses cystine deprivation–induced cell death in
glioblastoma cells at HD.

Serine is a major donor of one-carbon metabolism and used
for an alternative pathway of glutathione synthesis (20). To
examine whether de novo serine synthesis is involved in the
maintenance of GSH levels under cystine deprivation at HD,
we used NCT-503, a specific inhibitor of phosphoglycerate
dehydrogenase. Phosphoglycerate dehydrogenase is the
enzyme that catalyzes the first step of serine synthesis from the
glycolytic intermediate 3-phosphoglycerate. Treatment with
NCT-503 slightly decreased the GSH levels in A172 and
T98G cells at HD in the presence and absence of cystine, and
they were depleted by adding OU749 (Fig. 3I). This suggests
that de novo serine synthesis from the glycolytic intermediate
plays a role in an alternative pathway for GSH synthesis in
glioblastoma cells.
GGT1 regulates the degradation of extracellular glutathione
at HD

To examine whether GGT1 regulates extracellular gluta-
thione levels in glioblastoma cells, we next measured the
amounts of the oxidized glutathione (GSSG) and GSH forms
of glutathione in the medium. The levels of GSH in the me-
dium were low in A172 and LN229 cells at both LD and HD
with or without cystine (Fig. 4A). Thus, most glutathione in the
medium was present in the oxidized form, and it was not
affected by cystine deprivation or OU749 treatment (Fig. 4B).
The extracellular concentrations of GSSG were high at HD,
and they were reduced by cystine deprivation (Fig. 4A). OU749
restored the extracellular glutathione to the level in the pres-
ence of cystine in A172 cells at HD, but it had no effect on the
extracellular glutathione levels in A172 cells at LD or in
LN229 cells at LD and HD (Fig. 4C). The level of extracellular
glutathione was also high in cystine-deprived A172 GGT1 KO
1 cells (Fig. 4D). This suggests that GGT1 promotes the
SD (n = 3). ***p < 0.001; ns; calculated by one-way ANOVA with Tukey’s post h
for 24 h and placed in cystine-free medium with or without cystine (200 μM
(+cystine) are shown. Error bars represent SD (n = 3). DFO, deferoxamine; Fe
thione; HD, high cell density; LDH, lactate dehydrogenase; ns, not significant.
degradation of extracellular glutathione in cystine-deprived
glioblastoma cells cultured at HD. The intracellular cysteine
levels were not significantly different between LD and HD in
A172 and LN229 cells (Fig. 4E). In addition, the level of
secreted glutathione per cell is similar between LD and HD in
A172 cells (LD, 2.71 × 10−14 mol per cell; HD, 2.14 × 10−14 mol
per cell).

As described previously, the medium from A172 HD cul-
tures inhibited cystine deprivation–induced cell death at LD.
When A172 cells were cultured at HD in the presence of
OU749, the medium did not inhibit cystine deprivation–
induced cell death at LD. However, the addition of Cys-Gly
to the medium from OU749-treated HD cultures restored
cell viability of A172 cells at LD (Fig. 4F). In addition, the ef-
fects of Cys-Gly on cell viability were concentration dependent
in both A172 and LN229 cells at HD (Fig. 4G). Thus, gluta-
thione and its metabolite Cys-Gly are factors in the medium
from A172 cells at HD that alter cell viability under cystine
deprivation.

Exogenous expression of GGT1 increases cell viability under
cystine deprivation at HD

The expression of GGT1 was undetectable in LN229 cells.
Therefore, we generated LN229 cells that stably expressed
GGT1 (LN229 GGT1; Fig. 5A) and examined whether they
acquire resistance to ferroptosis at HD. In control LN229 cells
expressing the empty vector (LN229 control), cystine depri-
vation induced cell death at LD and HD. On the other hand,
cystine deprivation did not induce cell death in LN229 GGT1
cells at HD, although it induced cell death at LD (Fig. 5B).
Treatment with the GGT inhibitor OU749 restored cell death
in LN229 GGT1 cells at HD (Fig. 5C). Intracellular GSH was
depleted under cystine deprivation in LN229 control cells
cultured at HD, whereas the GSH level decreased, but was not
depleted, after cystine deprivation in LN229 GGT1 cells
cultured at HD (Fig. 5D). OU749 depleted GSH in cystine-
deprived LN229 GGT1 cells cultured at HD (Fig. 5E),
suggesting that exogenous expression of GGT1 increases
glioblastoma cell viability under cystine deprivation at HD.

Discussion

The survival of cancer cells depends on their ability to adapt
to environmental conditions. In this study, we found that
GGT1, an enzyme responsible for the extracellular degrada-
tion of glutathione, plays a major role in the survival of glio-
blastoma cells under cystine-deficient conditions.
Glioblastoma cells with high expression of GGT1 can survive
under cystine deprivation conditions when they are cultured at
HD. This is due in part to higher intracellular GSH levels even
without cystine in the medium. Indeed, inhibition of GGT1
activity by the GGT inhibitor OU749 or CRISPR-mediated
deletion or inhibition of GSH synthesis induced the
oc test. H, A172 control KO and GGT1 KO (1 and 2) cells were cultured at HD
) and OU749 (250 μM) for 15 h. Intracellular GSH levels relative to control
r-1, ferrostatin-1; GGT1, gamma-glutamyltransferase 1; GSH, reduced gluta-
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Figure 3. Extracellular cysteinylglycine (Cys-Gly) suppresses cystine deprivation–induced cell death at HD. A and B, A172 and LN229 cells were
cultured at HD for 24 h and placed in cystine-free medium with or without cystine (200 μM), OU749 (250 μM), Cys-Gly (100 μM), and glutamate (Glu, 100 μM)
for 24 h. Cell death was quantified using an LDH release assay. Error bars represent SD (n = 3). ***p < 0.001; ns; calculated by one-way ANOVA with Tukey’s
post hoc test. C, fluorescence assay of cystine uptake in A172 and LN229 cells treated with SSZ (250 μM) or glutamate (Glu, 100 μM). Error bars represent SD
(n = 3). ns; calculated by one-way ANOVA with Tukey’s post hoc test. D, A172 and LN229 cells were cultured at HD for 24 h and placed in cystine-free
medium with or without cystine (200 μM), OU749 (250 μM), Cys-Gly (100 μM), and GSH (100 μM) for 24 h. E and F, A172 control KO and GGT1 KO
1 cells were cultured at HD for 24 h and placed in cystine-free medium with or without cystine (200 μM), OU749 (250 μM), Cys-Gly (100 μM), and GSH
(100 μM) for 24 h. Cell death was quantified using an LDH release assay. Error bars represent SD (n = 3). ***p < 0.001; ns; calculated by one-way ANOVA with
Tukey’s post hoc test. G, A172 and LN229 cells were cultured at HD for 24 h and placed in cystine-free medium with or without cystine (200 μM), OU749
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depletion of intracellular GSH and increased cell death in
cystine-deprived glioblastoma cells at HD. The medium from
HD cultures of glioblastoma cells contained a high concen-
tration of glutathione, which is converted to Cys-Gly and
glutamate by GGT1. The addition of Cys-Gly to the medium
restored GSH levels and cell viability in the presence of OU749
or in GGT1-deficient cells. Furthermore, ectopic expression of
GGT1 in GGT1-deficient cells increased cell viability under
cystine deprivation conditions at HD. Taken together, our
study suggests that the higher expression of GGT1 is
responsible for resistance to cystine deprivation–induced fer-
roptosis in glioblastoma cells at HD. Glutathione is exported to
the extracellular space and converted to Cys-Gly through
GGT, and Cys-Gly is then converted to cysteine through
dipeptidase. Extracellular cysteine is reoxidized to cystine,
which is taken up into cells via xCT and reused for synthesis of
GSH (21). Thus, glutathione cycling, which depends on GGT,
helps glioblastoma cells to maintain intracellular GSH pool for
ferroptosis protection during cystine starvation conditions
(Fig. 5F). Therefore, cystine depletion together with the inhi-
bition of GGT activity may be an attractive therapeutic strat-
egy for glioblastoma. On the other hand, Cys-Gly inhibits
cystine deprivation–induced cell death in a concentration-
dependent manner, suggesting that higher concentrations of
glutathione and its metabolite Cys-Gly in the extracellular
space are required for suppression of ferroptosis under cystine
deprivation conditions. The more cells seeded in the dish, the
more glutathione secreted from cells into medium, resulting in
higher extracellular glutathione concentrations in medium.
Therefore, we need to study this in the context of HD.

Cancer cells contain high levels of GSH, which supports
cell proliferation, metastasis, and stress resistance. In addition
to its role as an antioxidant, GSH is involved in the main-
tenance of cysteine pools because an excess amount of
intracellular cysteine is toxic to cells (22–24). GGT functions
in the recycling of cysteine from GSH, and several studies
reported that cancer cells overexpressing GGT utilize extra-
cellular GSH as a source of intracellular cysteine and GSH
(17, 25–27). Indeed, deletion of GGT1 expression in glio-
blastoma cells led to the depletion of intracellular GSH under
cystine deprivation, suggesting that glioblastoma cells utilize
extracellular glutathione for the maintenance of intracellular
GSH when they are unable to obtain extracellular cystine. It
was also reported that GGT1 is highly expressed in numerous
cancers, including glioblastoma (10, 11). In particular, GGT1
is detected in exosomes from cancer cells, and serum exo-
somal GGT activity was reported to be a useful biomarker for
several types of cancer (28, 29). Therefore, it is important for
future studies to investigate whether GGT1 in exosomes from
HD glioblastoma cells plays a role in the resistance to
ferroptosis.
(250 μM), Cys-Gly (100 μM), and GSH (100 μM) for 15 h. H, A172 control KO a
medium with or without cystine (200 μM), Cys-Gly (100 μM), and GSH (100
placed in cystine-free medium with or without cystine (200 μM), NCT-503 (25 μ
(+cystine) are shown. Error bars represent SD (n = 3). ***p < 0.001; calc
glutamyltransferase 1; GSH, reduced glutathione; HD, hugh cell density; LDH,
It is well known that cellular conditions affect cell viability.
In particular, contact inhibition and HD culture affect cell
survival and proliferation. One of the key mechanisms con-
trolling contact inhibition is the Hippo signaling pathway.
When cells are seeded at HD, the Hippo signaling pathway is
activated, causing the transfer of Yes-associated protein
(YAP)/transcriptional coactivator with PDZ-binding motif
(TAZ) from the nucleus to the cytosol and their inactivation,
and cell proliferation is stopped (30–32). Cancer cells lose
contact inhibition and induce dysregulated proliferation.
However, cell density has also been reported to affect cancer
cell viability. For example, HD causes drug resistance and in-
creases cell viability of many cancer cells, including glioblas-
toma (33–35). HD culture also protects cancer cells from
glucose deprivation–induced cell death (36). On the other
hand, recent studies reported that the activation of YAP and
TAZ increases the expression of genes involved in ferroptosis,
such as ACSL4, and increases cancer cell susceptibility to
ferroptosis. HD-induced activation of the Hippo pathway in-
activates YAP/TAZ, leading to resistance to ferroptosis
(37–39). The expression of GGT1 in glioblastoma cells was
unaffected when cultured at HD, suggesting that GGT1-
mediated resistance to ferroptosis at HD is independent of
the Hippo pathway. Further studies are needed to clarify the
relationship between glutathione metabolism and the Hippo
pathway in ferroptosis resistance in cancer cells.

Experimental procedures

Plasmids and reagents

The expression plasmid pCXN2 vector was a generous gift
from Dr J. Miyazaki (Osaka University). The coding sequence
of human GGT1 was amplified from HeLa cells by reverse
transcription–PCR and subcloned into pCXN2. The single-
guide RNAs (sgRNAs) targeting human GGT1 sequence (#1,
50-actgcgggacggtggctctg-3’; #2, 50-ctgcttggcatccgcggcca-30)
were cloned into the sgRNA expression vector
peSpCAS9(1.1)-2xsgRNA (Addgene; plasmid no.: 80768).
Cystine-free medium was prepared as described previously
(15). Inhibitors and amino acid compounds were used at the
following concentrations: BSO, 100 μM; DFO, 100 μM (Santa
Cruz Biotechnology); Fer-1, 1 μM; SSZ, 250 μM; Cys-Gly,
100 μM; glutamate, 100 μM (Sigma–Aldrich); OU749,
250 μM; NCT-503, 25 μM (Cayman); and GSH (Nacalai
Tesque, Inc), 100 μM.

Cell culture and transfection

A172 and T98G cell lines were provided by the RIKEN
BioResource Research Center through the National Bio-
Resource Project of the Ministry of Education, Culture,
Sports, Science and Technology of Japan (T98G, RCB1954;
nd GGT1 KO cells were cultured at HD for 24 h and placed in cystine-free
μM) for 15 h. I, A172 and T98G cells were cultured at HD for 24 h and
M), and OU749 (250 μM) for 15 h. Intracellular GSH levels relative to control
ulated by one-way ANOVA with Tukey’s post hoc test. GGT1, gamma-
lactate dehydrogenase; ns, not significant; SSZ, sulfasalazine.
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Figure 4. GGT1 regulates the degradation of extracellular glutathione at HD. A, A172 and LN229 cells were cultured at LD or HD for 24 h and placed in
cystine-free medium with or without cystine (200 μM) for 15 h. The concentrations of GSH and GSSG in the medium were measured. B, A172 and
LN229 cells were cultured at LD or HD for 24 h and placed in cystine-free medium with or without cystine (200 μM) and OU749 (250 μM) for 15 h. The ratio
of GSSG to total glutathione in the medium was measured. C, A172 and LN229 cells were cultured at LD or HD for 24 h and placed in cystine-free medium
with or without cystine (200 μM) and OU749 (250 μM) for 15 h. Total glutathione levels relative to control (+cystine) in the medium are shown. D, A172
control KO and GGT1 KO 1 cells were cultured at HD for 24 h and placed in cystine-free medium with or without cystine (200 μM) for 15 h. Total glutathione
levels relative to control (+cystine) in the medium are shown. E, cytosolic cysteine levels in A172 and LN229 cells at LD and HD. F, A172 cells cultured at LD
were placed in the conditioned medium collected from the cells cultured at HD in cystine-free medium with or without cystine (200 μM), OU749 (250 μM),
and Cys-Gly (100 μM) for 24 h. G, A172 and LN229 cells were cultured at HD for 24 h and placed in cystine-free medium with or without OU749 (250 μM) and
the indicated concentrations of Cys-Gly for 24 h. Cell death was quantified using an LDH release assay. Cells treated with 0.1% Tween-20 were used to
calculate 100% cell death. Error bars represent SD (n = 3). ***p < 0.001; ns; calculated by one-way ANOVA with Tukey’s post hoc test. Cys-Gly, l-cys-
teinylglycine; GGT1, gamma-glutamyltransferase 1; GSH, reduced glutathione; GSSG, oxidizedione; HD, high cell density; LD, low cell density; LDH, lactate
dehydrogenase; ns, not significant.
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Figure 5. Exogenous expression of GGT1 increases cell viability under cystine deprivation at HD. A, immunoblot analysis of LN229 control and GGT1
cell lysates. B and C, LN229 control and GGT1 cells were cultured at LD or HD for 24 h and placed in cystine-free medium with or without cystine (200 μM)
and OU749 (250 μM) for 24 h. Cell death was quantified using an LDH release assay. Cells treated with 0.1% Tween-20 were used to calculate 100% cell
death. D and E, LN229 control and GGT1 cells were cultured at LD or HD for 24 h and placed in cystine-free medium with or without cystine (200 μM) and
OU749 (250 μM) for 15 h. Intracellular GSH levels relative to control (+cystine) are shown. Error bars represent SD (n = 3). ***p < 0.001; ns; calculated by one-
way ANOVA with Tukey’s post hoc test. F, model of GGT1-mediated resistance to ferroptosis under cystine deprivation conditions. GGT1, gamma-
glutamyltransferase 1; GSH, reduced glutathione; HD, high cell density; LD, low cell density; LDH, lactate dehydrogenase; ns, not significant.
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A172, RCB2530). LN229 cell line was obtained from American
Type Culture Collection (no.: CRL-2611). Cells were cultured
in Dulbecco’s modified Eagle’s medium containing 10% fetal
bovine serum, 4 mM glutamine, 100 units/ml penicillin, and
0.1 mg/ml streptomycin under humidified air with 5% CO2 at
37 �C. Transfection was performed using Lipofectamine 2000
(Life Technologies). To generate A172 GGT1 KO cells, we
used the CRISPR/Cas9-mediated homology-independent
knock-in system (40). A172 cells seeded in dishes of 60 mm
(250,000 cells/dish) were transfected with peSpCAS9(1.1)-
2xsgRNA containing sgRNA targeting human GGT1 and
pDonor-tBFP-NLS-Neo (Addgene; plasmid no.: 80766). To
generate LN229 GGT1 cells, cells seeded in dishes of 60 mm
(250,000 cells/dish) were transfected with pCXN2-GGT1. Two
days after transfection, cells were collected and seeded onto
dishes of 100 mm with medium containing 300 μg/ml of G418
(Wako) to remove untransfected cells. About 10 days after
selection, colonies grown from single cells were isolated. These
clones were expanded and screened by immunoblotting using
anti-GGT1 antibody.

Cell death experiments

Cystine deprivation was performed as described previously
(15). Cell death was measured using the MTX LDH kit
(Kyokuto Pharmaceutical Industries) according to the manu-
facturer’s instructions. The absorbance was measured at
595 nm using a microplate reader (Tecan Genesis). Cells
treated with 0.1% Tween 20 represented 100% cell death.

Measurement of glutathione

The amount of intracellular GSH was measured using the
GSH-Glo Glutathione Assay (Promega) according to the
manufacturer’s instructions. The luminescence was measured
using a microplate reader (Tecan Genesis). A black 96-well
plate was used to prevent light from leaking into the adja-
cent wells. The amounts of extracellular total and GSSG were
measured using the GSH–GSSG Glutathione Assay
(Promega).

Measurement of intracellular cysteine

Cells cultured in 48-well plates at LD or HD were collected
with PBS. After centrifugation, the cells were suspended in
H2O and disrupted by ultrasonication on ice with TOMY
Handy Sonic (model UR-20P) at the amplitude of 20% for
1 min. The cytosolic cysteine was measured using the cysteine
assay kit (MAK255; Sigma–Aldrich) according to the manu-
facturer’s instructions. The fluorescence was measured using
the Tecan microplate reader. A black 96-well plate was used to
prevent light from leaking into the adjacent wells. Protein
concentration was measured using the Protein Assay BCA Kit
(Nacalai Tesque, Inc).

Measurement of cystine uptake

Cystine uptake was measured using the Cystine uptake assay
kit (Dojindo Laboratories) according to the manufacturer’s
instructions (41). The fluorescence was measured using the
10 J. Biol. Chem. (2022) 298(3) 101703
Tecan microplate reader. A black 96-well plate was used to
prevent light from leaking into the adjacent wells.

Immunoblotting and antibodies

Cells were lysed with Laemmli sample buffer and analyzed
by immunoblotting as described previously (15). Signals
were captured by Amersham Imager 600 (GE Healthcare
Life Sciences). The following antibodies were used in this
study: GGT1/2 (sc-393706; Santa Cruz Biotechnology);
FTH1 (4393; Cell Signaling Technology); anti-α-tubulin
antibody (T5168; Sigma–Aldrich); secondary antibodies
conjugated to horseradish peroxidase against mouse immu-
noglobulin G (P0447; DAKO) and rabbit immunoglobulin G
(P0448; DAKO).

Data analysis

Data were analyzed using ANOVA and Tukey’s honest
significant difference post hoc test. p < 0.05 was considered
significant. Statistical analysis was performed using Kaleida-
Graph (Synergy Software).

Data availability

All data are contained within the article.
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