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Abstract: Assisted reproductive techniques (ART) and parental nutritional status have profound
effects on embryonic/fetal and placental development, which are probably mediated via “program-
ming” of gene expression, as reflected by changes in their epigenetic landscape. Such epigenetic
changes may underlie programming of growth, development, and function of fetal organs later
in pregnancy and the offspring postnatally, and potentially lead to long-term changes in organ
structure and function in the offspring as adults. This latter concept has been termed developmental
origins of health and disease (DOHaD), or simply developmental programming, which has emerged
as a major health issue in animals and humans because it is associated with an increased risk of
non-communicable diseases in the offspring, including metabolic, behavioral, and reproductive dys-
function. In this review, we will briefly introduce the concept of developmental programming and its
relationship to epigenetics. We will then discuss evidence that ART and periconceptual maternal
and paternal nutrition may lead to epigenetic alterations very early in pregnancy, and how each
pregnancy experiences developmental programming based on signals received by and from the dam.
Lastly, we will discuss current research on strategies designed to overcome or minimize the negative
consequences or, conversely, to maximize the positive aspects of developmental programming.

Keywords: maternal nutrition; assisted reproductive techniques; developmental programming;
epigenetics; early pregnancy; reproductive function

1. Introduction—Developmental Programming

An important concept in developmental biology and medicine is that of “developmen-
tal programming,” often termed developmental origins of health and disease (DOHaD),
which is the concept that “insults” during embryonic, fetal, and postnatal life can have
long-lasting effects on the offspring. These effects result in a much greater risk of acquiring
various so-called “non-communicable diseases,” or NCDs, as infants and adults. Such
NCDs include abnormal growth and body composition, as well as behavioral, cardiovascu-
lar, endocrine, gastro-intestinal, immune system, metabolic, and reproductive dysfunction,
the latter of which is a major socioeconomic issue because of its role in infertility [1–6] The
initial observations that led to the concept of developmental programming were based
on epidemiological studies in humans. These studies suggested not only that an adverse
intrauterine environment may lead to a greater incidence of NCDs in the offspring as adults,
but also that poor maternal nutrition was “ . . . an obvious suspect [7,8].” The initial obser-
vations also noted that developmental programming was associated with “Discordance
between placental and birth weights . . . ”

Both assisted reproductive techniques (ART; e.g., embryo transfer [ET], in vitro fertil-
ization [IVF], in vitro production of embryos [IVP], and cloning), and maternal nutritional
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status (e.g., over- or underfeeding or feeding specific nutrients) have profound effects
on embryonic development during the periconceptual period (i.e., around the time of
fertilization/conception) and continuing into early pregnancy, which is the period of em-
bryonic/fetal organogenesis and placentation [1,5,6,9–11]. As discussed in several recent
reviews [12–14], paternal nutritional status, via effects on sperm gene expression and
epigenetic landscape, extracellular vesicles, and seminal plasma content, has been shown
to contribute to embryo quality and affect embryonic/fetal and placental development in
cattle [15,16], rodents [17–20], and sheep [21,22] models.

Importantly for the topic of this review, functional defects due to maternal under-
or overnutrition or ART that have been documented during the periconceptual period
include reduced embryonic development to blastocyst stage after IVF and embryo cul-
ture [23], reduced embryo–fetal growth [23,24], and altered nutrient supply to the devel-
oping fetus [25–29]. Assisted reproductive techniques also altered placental angiogene-
sis [9,30–32], global DNA methylation [24], and expression of steroid receptor mRNA and
proteins [11,33–35]. Additionally, assisted reproductive techniques and moderate maternal
nutrient restriction altered expression of gap junctions and chemokines and chemokine
receptors in placenta [36,37]; altered expression of endogenous retroviruses, interferon-tau,
and pregnancy-specific protein-B, as well as nutrient transporters, in placenta [25,27,38,39];
and altered gene expression during early development of fetal organs [40].

As recently reviewed [1,6,41–43], the effects of ART and nutritional status of the
parents are probably mediated via “programming” of embryonic/fetal and placental gene
expression, as reflected by changes in their epigenetic landscape [17,44]. Such epigenetic
changes may underlie developmental programming of growth, development, and function
of organs of the fetus later in pregnancy and the offspring postnatally. As discussed in
the opening paragraph, they also potentially lead to long-term changes in organ structure
and function in the offspring during infancy and continuing into adulthood, leading to
behavioral, cardiovascular, immune system, metabolic, and reproductive dysfunction.

Some of the programming effects of ART and periconceptual parental nutrition
likely depend on the epigenetic profile the oocyte or the sperm. The oocyte [10] and
sperm [14,15,17,22,45–51] both contribute mRNAs, small non-coding RNAs, and proteins
to the embryo, and these have profound influences on embryonic development before
activation of the embryonic genome [10,52–54]. In addition, both the maternal (oocyte) and
paternal (sperm) genomes can “transfer” their DNA methylation status to the embryo, and
this is influenced by ART and nutritional status [10,15].

In this review, we will discuss the evidence that ART and periconceptual maternal
and paternal nutritional status may lead to epigenetic alterations very early in pregnancy,
ultimately determining events that lead to developmental programing, both during fetal
life and postnatally. We also will discuss the effects of ART and maternal nutrition on re-
productive function in the male offspring that may lead to transgenerational programming
of development. Lastly, we will discuss current research strategies designed to overcome
or minimize the negative consequences or, conversely, to maximize the positive aspects of
developmental programming.

2. Evidence for Programming by Assisted Reproductive Techniques

Comparison of placental development in natural pregnancies and pregnancies achieved
by various ART, such as after transfer of embryos created through cloning or IVF, has
demonstrated numerous significant effects of ART on placental and fetal growth and
development, as well as offspring outcomes in several species [9,11,34]. In various ani-
mals, including mice, cattle, and sheep, impaired placental steroid metabolism, abnormal
offspring syndrome, increased duration of gestation, and altered placental vascular de-
velopment, have been reported with the use of ART [9,11,23,24,32–35]. In addition, in
sheep, use of ART significantly decreased fetal size at the third week of pregnancy and
this was accompanied by decreased placental vascularity and cell proliferation, and al-
tered expression of genes involved in epigenetic processes (e.g., 5-methyl cytosine and
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DNA methyl transferases), as well as factors involved in regulation of placental growth
(e.g., steroid hormone receptors) and angiogenesis (e.g., several angiogenic and growth
factors [24,32,33,35,55]). For early pregnancy in cows, both greater and lesser crown-rump
length have been reported for fetuses created in vitro and then transferred compared to
fetuses created in vivo [56,57].

In sheep, we, and others, have recently demonstrated that utero–placental vasculariza-
tion, expression of several angiogenic factors, receptors for progesterone and estrogen, and
DNA methyl transferases, as well as global DNA methylation and markers of growth all
were altered in the developing placenta during early pregnancy after transfer of embryos
obtained through IVF or in vitro activation (IVA; parthenotes, which have only a maternal
genome [9,24,32–35,58]). One of the very interesting observations from this work is that
even when they are derived from naturally mated ewes and transferred to recipients,
the embryos show many of the same defects as IVP embryos [9,24,32,35], implying that
improvements in embryo collection, culturing, and transfer methods are sorely needed.

These observations also suggest that changes in DNA methylation or histone modifi-
cations observed in early embryos of several species (cattle, mice, sheep) after ART [59–63]
continue during the critical period of placentation in early pregnancy. In addition, based
on observations later in pregnancy, we have suggested that these placental developmental
defects probably contribute to poor placental vascularization and function later in preg-
nancy, ultimately leading to altered fetal growth and development and the poor pregnancy
outcomes associated with ART [9,11,34].

Such epigenetic defects leading to altered placental development and gene transcrip-
tion have been observed after IVF, but especially in clones, not only in sheep but also in
cattle and mice [64]. These defects include altered transcription of imprinted genes, which
are thought to be critical for normal placental development [65,66].

3. Evidence for Programming by Maternal and Paternal Nutrition

In adult women, extremes of pre-pregnancy body mass index (BMI), or, more com-
monly, BMI at the first prenatal exam, and both inadequate and excessive gestational weight
gains are widely associated with a variety of negative obstetrical outcomes [42,67–73].
While few of these clinical studies have been able to cleanly study the separate and joint
effects of initial BMI and gestational intake on pregnancy outcome, the broad consensus is
that a very high pre-pregnancy BMI and/or high gestational weight gains are associated
with an increased risk of preeclampsia, gestational diabetes, preterm and caesarian delivery,
stillbirth, fetal macrosomia, and, in some cases, fetal growth restriction. In contrast, a low
pre-pregnancy BMI and/or low gestational weight gains are commonly associated with an
increased risk of preterm delivery and fetal growth restriction.

Despite these observations in adults, there is a paucity of similar data evaluating the
effects of BMI and nutritional extremes on pregnancy outcome in pregnant adolescent girls.
Nevertheless, there is some consensus that dietary intakes of pregnant adolescents are
often lower than recommended in terms of energy and a range of micronutrients [71,74].
In addition, there also is evidence that pregnant adolescents, particularly those less than 15
years of age, are at risk of excessive gestational weight gain [75], similar in magnitude to
the weight change measured in the overnourished and rapidly growing adolescent dams
in one of our nutritional models of the pregnant adolescent ewe lamb [71]. Moreover, fetal
growth restriction has been reported in mothers who are still growing or in mothers who
have not achieved their adult height at the time of conception [76–78].

Maternal nutritional status during the periconceptual period and early pregnancy has
profound effects on embryonic/fetal and placental development. For example, maternal
under- or overnutrition during the 6 weeks preceding oocyte collection dramatically affect
the rates of IVF and subsequent development of embryos to blastocyst stage in vitro [23,79].
In addition, underfed and overfed sheep had altered serum insulin, insulin-like growth
factor-1, leptin, progesterone, and (or) estradiol concentrations, indicating they were af-
fected metabolically as well [23,80]. Other studies reported decreased rates of fertilization
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with IVF and (or) decreased rates of early embryonic development in ewes or cows fed a
low- (nutrient-restricted) or high- (ad libitum intake) energy diet during the periconceptual
period [81–85]. Conversely, others have shown that an altered plane of nutrition during the
periconceptual period had either positive or no effects on blastocyst formation and/or em-
bryo health in sheep [83,86]. Interestingly, premating nutrition altered mRNA expression in
oocytes and follicular cells, which may account for reductions in reproductive performance
of ewes fed restricted diets [87]. Maternal undernutrition and folate supplementation
during the periconceptual period also altered the methylome of sperm in the offspring [22].
In addition, maternal undernutrition reduced the proportion of embryos reaching the
blastocyst stage after IVF, but folate supplementation reversed these effects (Table 1).

Table 1. Outcomes of in vitro fertilization (IVF) using sperm from lambs born to Control, Undernour-
ished or Folic acid-Supplemented ewes.

Nutritional Treatment Oocytes (n) 2-Cell Stage Embryos (%) Blastocysts (%)

Control 178 56/178 (31.5) 26/178 (14.6)

Undernourished 186 44/186 (23.6) b 10/186 (5.4) a,b

Folic acid-supplemented 118 46/118 (39) 16/118 (13.5)
a p < 0.005 between Undernourished and Control; b p < 0.05 between Undernourished and Folic acid-
supplemented; Fisher’s exact test. Table from [22].

In cows, the effects of diet before and during the periconceptual period on oocyte
quality measured by rates of fertilization with IVF and blastocyst formation, and cell num-
ber per blastocyst, depend on body condition (i.e., adiposity) and diet composition [88,89].
High levels of food intake improved postfertilization embryonic development for animals
in low body condition, but reduced postfertilization embryonic development for animals
in good body condition [87]. In addition, hyperinsulinemic cows with good body condition
that were fed a high-energy diet produced fewer oocytes and had lower blastocyst yield
after IVF [89]. Moreover, dairy cows that were fed a high-protein and high-energy diet
exhibited altered endocrine and metabolic function and were frequently in negative energy
balance, which is associated with low fertility, perhaps due to low-quality oocytes and
embryos [90–92]. It also has been suggested that genetic factors also may contribute to
diminished oocyte and embryo quality [91,92].

Maternal undernutrition during the periconceptual period in sheep results in altered
fetal growth trajectory, altered fetal hypothalamic–pituitary–adrenal axis development,
accelerated maturation of fetal adrenal glands, altered fetal pancreatic development, altered
insulin signaling, and altered amino acid metabolism, all associated with an increased
rate of premature birth and high rates of postnatal mortality [93–96]. How maternal un-
derfeeding during the periconceptual period affects offspring growth and development
is unknown. Overall, the available data indicate that the maternal diet during the peri-
conceptual period alters the epigenetic status of the oocyte or early embryo [97], leading
to short-term (e.g., effects on oocyte quality and thus the rates of fertilization and early
embryonic development) and/or long-term (e.g., effects on offspring development and
timing of birth, and thus developmental programming) effects. Recently, Sinclair and
Singh [97] suggested that specific maternal dietary components such as vitamin B12 and
methionine fed to ewes during the periconceptual period affect DNA methylation, insulin
resistance, and blood pressure in the offspring.

Data from human and rodent models clearly show that developmental programming
effects arise from paternal contributions. Authors reviewing 45 publications reporting data
from rodent models presented overwhelming evidence that developmental programming
extends to the F2 generation and beyond, with several of the papers reviewed presenting
evidence of a paternal contribution to developmental programming [98]. Paternal diet
has been shown to affect growth, metabolism, and reproductive traits in the offspring of
rodents and sheep, potentially across multiple generations [12,14,17–21]. Messages carried
in a father’s semen after exposure to alcohol, drugs, or an obese state result in altered
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development of their children [99,100]. The impacts of sire obesity can be long lasting, with
effects on post-pubertal semen development in male offspring and the negative effects
further exacerbated when offspring also received a high-fat diet [101].

At least some of the programming effects of paternal nutrition may involve epigenetic
alterations in the father’s sperm [15,16,21,102]. Small non-coding RNAs are implicated in
paternal programming by targeting maternal RNAs, or by entering the nucleus to directly
alter transcriptional programming of the embryo [103]. Injecting purified sperm RNAs
from male mice exposed to high-fat diets into normal zygotes resulted in offspring with
impaired glucose tolerance and elevated blood glucose and insulin levels [50]. Injection
of sperm microRNAs into wildtype oocytes resulted in metabolic and behavioral changes
in the offspring [104]. When microRNA from stressed males was injected into fertilized
oocytes of control females, emotional response and microRNA in the hippocampus (the
emotional control center of the brain) were altered in the offspring [105].

In rodent models, fat and protein content of paternal diets have altered gene expression
and function of key metabolic tissues in the offspring (liver and muscle; [12,20]) and feeding
elevated concentrations of methyl donors (Choline, Betaine, Vit B6, Folate, and Vit B12)
to boars resulted in offspring with differential methylation patterns in liver and muscle
and altered body composition (reduced backfat and greater percentage of shoulder) [106].
Targeted feeding of rumen-protected methionine to rams resulted in changes in sperm
methylation and was associated with altered weight at puberty and scrotal circumference
of the offspring [21]. Diet of bulls during the early postpubertal period (1 year of age)
affected sperm characteristics and concentrations of minerals and metabolites in seminal
plasma [107,108], and a model of divergent nutrition in mature bulls providing either
global nutrient restriction or excess resulted in differential expression of 769 transcripts
in their sperm, including genes related to de novo methylation and histone to protamine
transition [109].

4. Strategies to Improve Embryo Development and Pregnancy Outcomes
4.1. Reproductive Fluids

Coy and colleagues have shown that oviductal fluid, as well as specific proteins
secreted by the oviduct, improve the rates of fertilization and embryonic development
in vitro and in vivo, resulting in greater pregnancy rates and improved pregnancy out-
comes with ART [110–113]. This technology holds great potential to overcome poor fertility
and also to maximize the impact of elite genetic stock, and thus to dramatically improve
the efficiency of livestock production. Whether maternal diet affects oviductal gene or
protein expression, and whether such effects influence the ability of oviductal secretions to
improve fertilization, embryonic development, or pregnancy outcomes has received little
attention. However, we recently showed that restricted dietary intake does not affect pro-
tein expression of a major protein secreted by the oviduct in beef cows, namely oviductal
glycoprotein 1 (OVGP1; [114]).

4.2. Supplementation

Targeted dietary supplementation of nutritionally compromised parents also is an
important strategy being pursued by several groups of investigators. For example, Bazer
et al. [115] have suggested that dietary supplementation of specific dietary amino acids
that are present in uterine secretions (histotroph) could improve embryonic development.
Such amino acids include serine and methionine, both of which are involved in one-carbon
metabolism, as well as arginine, lysine, and histidine, which are targets of methylation
when incorporated into histones. Arginine also improves feto-placental development in
rodents [116–118], sheep [119–123], swine [124–127], and humans [128–130], potentially
due to its involvement in generation of nitric oxide and polyamines [115,131].

The placenta transports amino acids from the maternal circulation and histotroph
across the trophoblast/chorion via amino acid transporters ([115]. The cationic amino
acid transporters (SLC7A1, A2, and A3) are expressed in uterine luminal and glandular
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epithelia and also in trophoblasts, and expression of two of these is stimulated by treatment
of ewes with progesterone (SLC7A1 and A2) or, in the case of SLC7A2, by administration
of interferon-tau (a conceptus product [132]). Expression of SLC1A5, a neutral amino
acid transporter, in uterine luminal and glandular epithelia also is stimulated by both
progesterone and interferon-tau treatment [133]. Progesterone treatment also increases the
concentrations of fructose in uterine luminal fluid (histotroph; [134]).

Recently, our research group has shown not only that hexose and amino acid trans-
porters are expressed in bovine utero-placental tissues, but also that expression of several
of these transporters is influenced by maternal dietary restriction during early pregnancy
(days 16 to 50 after mating [25,27,135–137]). In addition, maternal dietary intake affects the
concentrations of hexoses (glucose and fructose) and several amino acids in allantoic and
amniotic fluids, as well as homocysteine in maternal blood (Figure 1 [1]), all of which imply
a profound effect of maternal dietary intake on maternal and embryo/fetal metabolism,
including 1-carbon metabolism.

Another promising strategy is dietary supplementation with vitamins and minerals.
In a recent series of studies, we have shown that providing a dietary vitamin–mineral
supplements to beef heifers before mating and continuing for the first trimester of preg-
nancy affected maternal hormonal and mineral status, fetal organ weight, concentrations
of amino acids in fetal fluids, abundance of fat soluble vitamins in fetal liver, placental
nutrient transporter expression, and placental gene expression [28,29,135–141].
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Figure 1. Comparison of (A) glucose concentrations in allantoic and amniotic fluid, (B) glutamine
concentrations in allantoic and amniotic fluid, (C) methionine concentrations in allantoic fluid, and
(D) homocysteine concentrations in maternal serum of heifers receiving control or restricted dietary
treatment from the day of mating (d 0) until d 50 of gestation. Treatments provided for 0.5 kg
of gain/hd daily vs. −0.08 kg of gain/hd daily between d 0 and d 50 of gestation for control vs.
restricted heifers, respectively. Figure from Caton et al. [1]. a,b and y,z for (A,B) bars significantly
different, with p-value as indicated; a,b for (C,D), bars differ significantly (p < 0.10).

Targeted nutritional supplementation of one-carbon micronutrients to either the par-
ents or cultured embryos is another strategy to “rescue” compromised embryos. This
approach is based on in vivo and in vitro studies and the fact that the early embryo un-
dergoes dramatic changes in methylation of the majority of its genes [17,142–149]. For
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example, in zebrafish, a parental diet deficient in one-carbon micronutrients altered oocyte
production and one-carbon metabolism in the parents, as well as embryonic gene expres-
sion of pathways involved in the one-carbon cycle and lipid transport [150]. In dairy cows,
maternal methionine supplementation caused significant changes in the transcriptome of
the preimplantation embryos [151]. Recently, we have shown that supplementation of one-
carbon metabolites during culture of bovine embryonic tracheal fibroblasts improves their
mitochondrial respiration and growth rates and alters their DNA methylation status [26].

However, dietary supplementation of 1-carbon metabolites may also have detrimental
effects [17,19]. For example, male mice fed folate-deficient diets had altered DNA methyla-
tion in their sperm; in addition, their offspring exhibited differential gene expression in
their placentas as well as increased incidence of birth defects, including craniofacial and
musculoskeletal malformations [17].

5. Conclusions and Future Directions

It seems clear that both ART and parental nutritional status, and probably a host of
other “stressors” as well (e.g., parental age; environmental conditions, including tempera-
ture/humidity, elevation, and contaminants; relational or economic stress, etc.) can affect
developmental competence of gametes and embryos [3–6,9,11,42,43,152]. It also seems
clear that the periconceptual period is particularly important in terms of programming
of embryonic and feto-placental development [1,85,93,95,153]. Thus, research on factors
that affect gametes, including those during IVP of embryos, such as reproductive fluids or
culture media supplements, should receive much more emphasis in the future. In addition,
research to improve embryo culture, storage, and transfer methods should also be an area
of emphasis.

Recent models by our group have gone beyond the extremes of dietary restriction
and excess, and focused on a range of experimental conditions that are normally found in
production scenarios. Differences in offspring outcomes, nutrients found in fetal tissues and
fluids, and gene expression in placenta and fetal organs were observed in these models of
moderate dietary alterations in maternal nutrient supply [28,29,137–141], which indicates
to us that developmental programming may be present in a much larger proportion of
pregnancies than given credence to in the literature.

We, therefore, propose that there is a continuum of developmental programming
and that each pregnancy is uniquely programmed; with alterations in epigenetic signals
generated in response to dietary environmental factors, stress, and other signals experi-
enced by the dam. Related to this, an area that should receive much more attention in the
future is management and therapeutic strategies to take advantage of the positive effects of
developmental programming. This idea is based on the suggestion that developmental pro-
gramming ultimately is adaptive and should improve the fitness of the individual [154,155].
In keeping with this focus, our studies of maternal nutritional status during the first 50
days of pregnancy in cattle have shown that the majority of genes in the fetal liver, muscles,
and the brain were upregulated in fetuses from nutrient-restricted dams. We, therefore,
suggested that upregulation of genes may represent an adaptive, rather than a negative,
response to maternal nutrient restriction [40]. Consistent with this observation, cattle
and other ruminants (deer, goats, sheep, etc.) that graze rangelands or other “extensive,”
pasture-based systems are often nutrient restricted during early pregnancy [156–159]. Thus,
they are well adapted to yearly cycles of low forage quality and availability and, therefore,
to severe, short-term fluctuations in body weight and condition.

This idea of adaptive versus maladaptive responses to maternal malnutrition also
has relevance to humans, as low caloric intake and malnutrition, usually associated with
poverty, are experienced by many pregnant women worldwide, with severe consequences
for pregnancy outcomes. Such consequences include low and very low birth weights, high
rates of postnatal morbidity and mortality, and long-term consequences for health and
productivity of the offspring, including stunting and wasting [67,160–164]. Thus, a much
better understanding is needed of whether changes in expression of fetal and placental
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genes are adaptive, and therefore beneficial, or maladaptive, and therefore detrimental, to
the offspring in both the short and long term.

Lastly, research on potential solutions to the negative consequences associated with
programming of embryonic development has shown great promise. For example, the
recent studies in which media were supplemented with oviductal or uterine luminal fluids
have shown improvements in survival and development of embryos produced in vitro.
Similarly, providing targeted dietary supplements to nutritionally compromised parents
has shown improved developmental outcomes of offspring, including their reproductive
function, thereby impacting subsequent generations. More work should be done, however,
on supplementation of embryo culture media with various nutrients and hormones, and
supplementing nutrients that provide substrates for key epigenetic processes. Due to their
potential long-term benefits across generations and across species, we believe these efforts
should continue and even be expanded.
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