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Abstract

Background: Marburg virus (MARYV) causes acute hemorrhagic fever that is often lethal, and no
licensed vaccines are available for preventing this deadly viral infection. The immune mechanisms
for protection against MARV are poorly understood, but previous studies suggest that both
antibodies and T cells are required. In our study, we infected BALB/c mice with plaque-purified,
nonlethal MARYV and used overlapping peptides to map H2d-restricted CD8+ T-cell epitopes.

Methods: Splenocytes from mice infected with nonlethal MARYV were harvested and stimulated
with multiple overlapping |5-mer peptide pools, and reactive CD8+ T cells were evaluated for
antigen specificity by measuring upregulation of CD44 and interferon-y expression. After
confirming positive reactivity to specific |5-mer peptides, we used extrapolated 9-mer epitopes to
evaluate the induction of cytotoxic T-cell responses and protection from lethal MARYV challenge in
BALB/c mice.

Results: We discovered a CD8+ T-cell epitope within both the MARYV glycoprotein (GP) and
nucleoprotein (NP) that triggered cytotoxic T-cell responses. These responses were also
protective when epitope-specific splenocytes were transferred into naive animals.

Conclusion: Epitope mapping of MARV GP, NP, and VP40 provides the first evidence that specific
MARV-epitope induction of cellular immune responses is sufficient to combat infection.
Establishment of CD8+ T-cell epitopes that are reactive to MARV proteins provides an important
research tool for dissecting the significance of cellular immune responses in BALB/c mice infected
with MARV.

Background organ failure, and death in humans and nonhuman pri-
Marburgvirus (MARV), a member of the Filovirus family, =~ mates. MARV is primarily transmitted through contact
causes severe hemorrhagic fever concomitant with coagu-  with infected bodily fluids or tissues of humans or ani-
lation anomalies resulting in massive vascular leakage, = mals, such as bats and nonhuman primates [1]. Other
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than supportive care, which increases the chance of sur-
vival, there is currently no cure for this deadly infection
[2,3].

Many reports have characterized filovirus-specific anti-
body responses in an effort to evaluate the host's overall
capacity to fight infection [4-9], and most vaccine studies
have relied on antibody titer measurements to predict
protection [4,7,10]. MARV-specific, plaque-reducing/neu-
tralizing antibodies alone only partially protect guinea
pigs from a MARV infection [11]. In contrast, Ebola virus
(EBOV) glycoprotein (GP)-specific monoclonal antibod-
ies can protect infected mice and guinea pigs [6,9], and
EBOV-specific antibodies passively transferred into naive
mice result in full protection and a specific de novo cellu-
lar response against the virus [9]. However, studies to date
have shown that EBOV-neutralizing antibodies are com-
pletely ineffective in rhesus macaques [5], which suggests
that other immunological mechanisms (i.e., cellular
immunity) are needed, either separately or in conjunction
with antibodies, for full protection [12].

There is little information available on the induction of
cytotoxic T-cell-mediated immunity in response to MARV
infection, and the potential role of cytotoxic lymphocytes
(CTLs) generated from MARV vaccines has not been inves-
tigated. Wang et al. [7] demonstrated that cell-mediated
immune responses are generated by an adenovirus-vector
MARV vaccine candidate; however, it is not known if such
a response is protective or if antibody responses in con-
junction with CTLs are needed for complete protection.
Several reports have shown that CTLs are the primary pro-
tective arm of the acquired immune system involved in
fighting off viral infections. Studies involving epitope-spe-
cific CTLs against West Nile virus were solely protective
when transferred into naive animals prior to viral chal-
lenge [13]. EBOV CTLs specific for an immunodominant
T-cell epitope in the viral nucleoprotein (NP) were protec-
tive when transferred into naive BALB/c mice before chal-
lenge [14]. EBOV CD8+ T-cell epitopes were mapped in
H24- and H2b-restricted cells from BALB/c and C57BL/6
mice and are currently used to determine the presence of
CD8+ T-cell responses to EBOV [15]. T-cell-deficient mice
vaccinated with Ebola virus-like particles (VLP) succumb
to lethal EBOV challenge - a response primarily mediated
by CD8+ T cells, with a lesser role for CD4+ T cells [8]. In
contrast, adoptive transfer studies of E-specific CTLs from
Japanese encephalitis virus do not protect mice without E-
specific antibodies [16]. Therefore, depending on the viral
infection, antibodies or CTLs alone may be required to
eliminate certain viral infections; however, it is likely that
MARV protective immunity requires a combination of
both.

Based on the previous studies performed with EBOV and
the extensive studies carried out on MARV with respect to
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antibody-mediated protection, it seemed highly likely
that cellular immunity contributes to the host's protective
immune response against MARV. To determine the
importance of T-cell responses during MARV infection, we
infected mice with a nonlethal MARV Ravn isolate [17]
and approximately 2 weeks later harvested splenocytes
from convalescent mice. The identification of CTL
epitopes from GP, NP, and VP40 was based on the upreg-
ulation of CD44 and interferon-y (IFNy) production in
CD8+ T cells from this cell population following stimula-
tion with synthetic 15-mer peptides representing the
entire translated GP, NP, and VP40 proteins. To explore
whether peptide-stimulated MARV convalescent spleno-
cytes could protect naive mice from MARV challenge, we
used a recently developed BALB/c mouse model in which
MARV infection causes 100% lethality [17]. We found
that several MARV-specific CTL epitopes, which were com-
mon to strains Ravn, Ci67, and Musoke, provided signifi-
cant protection against lethal MARV Ravn challenge in
naive mice. Overall, the discovery of epitope-specific
CD8+ T-cell populations that can confer protection
against MARV highlights the importance of cell-mediated
immunity in the BALB/c mouse model.

Results

Preliminary screen of MARY epitopes using overlapping
peptide pools

We used overlapping peptide pools to simplify mapping
of reactive 15-mers. Each peptide pool, which contained
thirteen 15-mer peptides, contained a new nonoverlap-
ping 15-mer at each increment. Reactivity to two separate
peptide pools, which contained only one overlapping
duplicate peptide, prompted testing for reactivity to the
individual 15-mer peptide. From the initial screen in mice
previously infected with the nonlethal, wild-type strain of
MARV-Ravn, we found eighteen 15-mer epitopes from
GP, six from NP, and two from VP40 that stimulated
splenocytes from MARV-infected mice to secrete IFNy
(data not shown). After retesting with individual 15-mer
peptides, twelve 15-mer epitopes induced MARV-specific
splenocytes to secrete IFNYy at levels greater than 2% above
background (see Table 1 and Figure 1). Background, in
this case, was determined to be the amount (typically less
than 0.5%) of IFNy secreted from CD8+ T cells after stim-
ulation with an irrelevant EBOV NP peptide. Figure 1
shows data (one of two duplicated samples) from gated
CD8+ T cells derived from the spleen of BALB/c mice pre-
viously infected with nonlethal MARV. In all cases a small
fraction of the activated CD44+ cell population demon-
strated secretion of [FNy after peptide stimulation. Table 1
presents the mean amounts of [FNy secreted from stimu-
lated CD8+ T-cell populations minus the mean back-
ground from CD8+ splenocytes stimulated with an
irrelevant peptide from EBOV NP (experiments per-
formed in duplicate).
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MARV-specific splenocytes were stimulated with the following |15-mer peptides: VP44, NP144, NP150, NP 157,
GP2, GP3, GP19, GP21, GP84, GP132, GP133, and GP134. After stimulation, intracellular levels of IFNy were meas-
ured in gated CD8+ T cells with high CD44 surface expression. Each of the |5-mers induced splenocytes, from previously
MARY infected animals, to produce varying amounts of IFNy. The negative control (irrelevant peptide, EBOV NP12), which
was the same in Figure | and 2, did not stimulate MARY specific splenocytes to produce IFNy and the positive control (PMA +

ionomycin) did induced IFNy production.

We then used HLA binding predictions to determine the
probable MHC-class I bound 9-mer sequence from each
confirmed 15-mer [16]. This program predicted the aver-
age half time of disassociation for peptide/MHC class I
molecules. Nine-mers, selected by computer predictions
for H2d-restricted mice haplotype, were used to stimulate
MARV-specific splenocytes. We found that 9-mer epitopes
from GP2, GP3, GP19, GP21, GP84, GP132, GP133,

GP134, NP144, NP150, NP157, and VP44 induced IFNy
secretion (greater than 1%) from CD44+ and CD8+ splen-
ocytes. Data from one of two sets of MARV-specific CD8+
splenocytes stimulated with 9-mer peptides is shown in
Figure 2. As expected, the 9-mer-stimulated splenocytes
demonstrated a similar response, with respect to IFNy
secretion, as the 15-mer-stimulated splenocytes shown in
Figure 1.
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Table I: Selection of MARYV epitopes
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Peptide Pool? + Peptide from Poolb |5-mer Sequence % CD8 IFNyc 9-mer Peptide Motif Resultsd % CD8 IFN <
GPI-13 GP2 FLISLILIQGTKNLP 2.85 ILIQGTKNL 2.83
GPI-14 GP3 ILIQGTKNLPILEIA 5.09 QGTKNLPIL 3.46
GP2-17 GP19 TCYNISVTDPSGKSL 2.34 VTDPSGKSL 1.68
GP2-19 GP21 SGKSLLLDPPTNIRD 2.6 LLLDPPTNI 1.72
GP7-17 GP84 SPPPTPSSTAQHLVY 3.1 TPSSTAQHL 2.93
GPI11-13 GP132 GILLLLSIAVLIALS 8.36 LLLSIAVLI 8.94
GPI1-14 GPI33 LSIAVLIALSCICRI 2.96 LSIAVLIAL 1.18
GPI1-15 GP134 LIALSCICRIFTKY] 2.73 IALSCICRI 4.12
NP1-20 NP144 AINSGIDLGDLLEGG 2.88 NSGIDLGDL 4.13
NP2-13 NP150 KFNTSPVAKYLRDAG 2.53 NTSPVAKYL 4.71
NP2-20 NPI57 EPHYSPLILALKTLE 3.48 HYSPLILAL 2.79
VP6-12 VP44 QHKNPNNGPLLAISG 3.17 KNPNNGPLL 2.38

*Tested in adoptive transfer studies
aPools of peptides were each number represents a new |5-mer peptide

bSelected |5-mer peptides capable of restimulating splenocytes of MARV-infected mice

cMean IFNYy levels from two experiments minus mean background
49 mers derived from HLA binding predictions

MARYV 9-mer epitopes induce lytic function

Several of the 9-mer epitopes that produced IFNy
responses in greater than 2% of CD8+ splenocytes were
tested for induction of lytic function in CTL responder
cells derived from MARV VLP-vaccinated mice. MARV
VLP-vaccinated mice were used in this surrogate system
under biosafety level 2 conditions because of the lack of
appropriate equipment for reading 5!Cr assays in our
biosafety level 4 laboratory. MARV CTL assays were per-
formed with peptide-pulsed PB1 target cells and MARV
VLP-vaccinated mice splenocytes as effectors, which were
restimulated in the presence of a specific peptide. Sponta-
neous background (chromium release in assays using
nonpulsed target cells) was subtracted from total lysis in
each sample being tested. We found that the strongest
IFNy inducing peptide also demonstrated strong T-cell
lytic function. Table 2 shows the results of these CTL
assays.

MARYV 9-mer epitopes protect against MARYV challenge

To show that epitope-specific splenocytes could be
responsible for an effective T-cell response against MARV
in BALB/c mice, we adoptively transferred epitope-specific
lymphocytes to naive mice and challenged them with
lethal MARV [17]. Splenocytes were harvested from con-
valescent mice previously infected with nonlethal MARYV,
stimulated with GP2, GP3, GP21, GP84, GP132, GP133,
GP134, NP144, NP150, NP157, or VP44 for 7 days, and
then transferred into naive mice before being challenged
with lethal MARV. We determined that adoptively trans-
ferred splenocytes stimulated with the MARV GP132 9
mer completely protected naive mice from lethal MARV
(100% protection, p < 0.05) (Figure 3A). NP144 was sig-
nificantly protective even though some deaths were

recorded (80% protective, p < 0.05) (Figure 3B). Moderate
levels of protection were afforded by the T cells stimulated
with the GP2 (50%), GP134 (40%), NP150 (20%), and
VP44 (30%); however, these levels were not significantly
protective when compared to levels in mice given un-
stimulated splenocytes (Figure 3). We also tested NP157,
GP21, GP84, and GP133 9-mer-stimulated splenocytes in
the mouse-MARYV adoptive transfer model. We found that
none of these offered protection and that the mice dem-
onstrated similar survival rates as those of the control
group (see Table 2). In addition, splenocytes stimulated
with GP132 or NP144 and then transferred to naive mice
did not protect against mouse adapted EBOV challenge
(see Table 3).

Discussion

Collectively, the data presented here demonstrate that
MARV CTL epitopes are present in BALB/c mice and are
important during viral elimination. We discovered two
CD8+ T cell epitopes for MARV that are conserved among
all published strains of the virus. This information can be
used for diagnostic assays aimed at determining CD8+ T-
cell responses to vaccines or confirmation of a CTL
response to infection. In this communication we have
shown that both 15-mer and 9-mer GP132 and NP144
peptides stimulated splenocytes as evidenced by upregula-
tion of CD44 expression and secretion of IFNy (Figure 1
and 2). Nine-mer NP144- and GP132-stimulated spleno-
cytes also demonstrated killing activity by lysing corre-
sponding peptide-pulsed target cells. In addition to
cytokine production and lytic activity, NP144- and
GP132-stimulated splenocytes protected naive mice from
lethal MARYV infection after adoptive transfer (see Table 2
and Figure 3A and 3B).
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9-mer peptides, derived from the original 15-mer peptides based on HLA binding predictions, were used to
stimulate MARV-specific splenocytes. IFNy levels were measured in gated CD8+ T-cell populations with high CD44 sur-
face expression. Each 9-mer stimulated CD8+ T cells to produce varying amounts of IFNy; whereas, the negative control

(EBOV NPI2) stimulated splenocytes produced minimal IFNYy.

Overall, GP132-stimulated splenocytes consistently gen-
erated higher IFNy levels and lytic activity than NP144-
stimulated cells and, likewise, protected naive mice from
lethal MARV more effectively (see Table 2 and Figure 3A
and 3B). Strong lytic function by CTLs is required for
EBOV protection [18], and this is likely true for MARV as
well. It is worth mentioning that GP134, NP150, and

VP44 all had lower lytic function and were likewise less
protective; however, NP144 had lower lytic function than
GP2 and GP3 but was more protective in the adoptive
transfer experiment. Similar to other viral infections, the
data support that lytic function is a good indicator of a
protective T-cell epitope; however, this may not be the
only indicator [19]. Compared to GP132, NP144 is not an
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Table 2: Functional immunological properties from MARYV epitopes
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Name and Location 9-mer Sequence

% Lysis on CTL Assay®

Adoptive Transfer % Survivalb

VP44 KNPNNGPLL 6

NP144 NSGIDLGDL 16
NP150 NTSPVAKYL 15

NP157 HYSPLILAL Not done
GP2 ILIQGTKNL 17

GP3 QGTKNLPIL 20

GP21 LLLDPPTNI Not done
GP84 TPSSTAQHL Not done
GP132 LLLSIAVLI 40

GP133 LSIAVLIAL Not done
GP134 IALSCICRI 6

PBS N/A 2

40
80
20
10
50
20
0
0
100
20
40
10

2% of cells lysed when compared to Triton-X-treated targets

bSurvival after transfer of epitope-specific splenocytes and challenge with lethal PFU (~1000) of MARYV, n = 10 BALB/c mice/group

immunodominant epitope. Subdominant epitopes to
viral proteins may have unpredictable effects on the host
response to a virus. A subdominate epitope from the res-
piratory syncytial virus M2 protein, for instance, still
cleared virus and prevented weight loss [20]. From the
data presented in this manuscript, it appears that MARV
requires immunodominant epitopes for clearance and
full protection.

MHC-class I presentation of viral peptides is essential for
CD8+ T-cell activation, proliferation, and killing. MHC
class I presentation of EBOV and MARV epitopes has not
been extensively investigated. It has been shown that
blood-derived cells upregulate MHC class II (i.e., HLA-
DR) during an EBOV infection, but there are no published
reports of MHC class I upregulation or downregulation in
blood-derived monocytes, tissue macrophages, or den-
dritic cells, which are the primary target cells during EBOV
or MARV infection [21]. However, Harcourt ef al. demon-
strated that MHC class I is downregulated in EBOV-
infected human umbilical vein endothelial cells [22]. In
contrast, MARV VLPs upregulate MHC class I on mono-
cytes and dendritic cells, but infection of these cell types
with live EBOV or MARV does not produce such an effect
(unpublished observation) [23,24]. Incidentally, it also
has been shown that overexpression of EBOV GP caused
downregulation of MHC class I in 293T cells [25]. There is
likely a small amount of antigen processing and presenta-
tion on MHC class I before cellular dysfunction; therefore,
minuscule amounts of processed antigen on MHC class I,
some of which would be the GP132 epitope, may be all
that is needed for CD8+ T cell recognition and killing.
Viral subversion mechanisms, such as downregulation of
MHC class I and co-stimulatory molecules dampen pri-
mary immune responses but are less effective during sec-
ondary or mature immune responses, such as the case
when previously stimulated MARV-specific splenocytes
are transferred into naive animals. In fact, it has been

shown that mature CD8+ T cells require far less co-stimu-
lation to kill a specific target [26].

The GP132 epitope is located in the transmembrane por-
tion of the GP(2) domain. In a concurrent GP vaccine
study, guinea pigs were vaccinated with a MARV GP(2)-
based vaccine and all survived MARV challenge, despite
low preinfection antibody titers (data not shown). This
suggests that good CTL responses are generated from
epitopes contained in the GP(2) portion of the MARV GP.
The mucin-like domain of GP has been reported to have
toxic effects on cells, and its removal from GP-based vac-
cines is being explored. There have also been several vac-
cine strategies that have relied on fusion between the
receptor-binding domains (RBD) of GP(1) and GP(2)
[27-29]. The majority of 9 mers tested in this study stimu-
lated MARV-specific splenocytes and those shown to pro-
tect animals were in the RBD domain, which suggests that
this domain is advantageous for antibody and cell-medi-
ated protection. In addition, epitopes GP2, GP3, GP133,
GP134 (also located within the RBD domain) stimulated
IFNy production but were not protective. It is possible that
these, as well as NP157 and NP150, were not immunodo-
minant and would thus require greater numbers of effec-
tor cells to afford protection from a lethal MARV
challenge.

Our results showed that MARV epitopes can be good diag-
nostic indicators of an active cellular immune response to
MARV in BALB/c mice. Several concurrent vaccine plat-
forms under investigation most likely rely on CD8+ T-cell-
mediated immunity to protect against MARV including
the adenovirus-GP [7], the replicon-GP [4], the VSV-GP
[30], and VLP-based vaccines [31-33]. Vaccines tested in
BALB/c mice can be evaluated by ascertaining reactivity to
MARY epitopes that are known to be protective in BALB/c
mouse model prior to challenge with our novel mouse-
adapted MARV-Ravn [17].
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A, Survival rates for mice receiving NP and VP40 9-
mer-stimulated splenocytes prior to lethal MARYV chal-
lenge. NP[44-stimulated splenocytes offered significant protec-
tion (8/10; p < 0.05) against lethal MARYV challenge when
compared to nonstimulated splenocytes when transferred into
naive mice (1/10). NP150-, NP157-, and VP44-stimulated
MARYV-specific splenocytes did not significantly protect naive
mice from lethal MARY challenge. B, Splenocytes from previ-
ously MARV-infected mice were stimulated with 9-mer peptides
and transferred into naive animals prior to lethal MARY infec-
tion. Survival rates were monitored up to 12 days postinfection.
Naive BALB/c mice receiving GP|32-stimulated splenocytes
were fully protected from lethal MARYV (10/10; p < 0.05). GP2-,
GP3-, GP21-, GP84-, GPI133-, and GPI34-stimulated and trans-
ferred splenocytes did not individually protect naive mice from
lethal MARY challenge when compared to mice receiving non-
stimulated splenocytes from mice previously infected with non-
lethal MARY (1/10).

Materials and methods

Infection of BALB/c mice with nonlethal or lethal MARY
virus

Six-week-old BALB/c mice obtained from Charles River
(Wilmington, MA) were injected intraperitonealy with
~1000 plaque-forming units (PFU) of a nonlethal MARV
Ravn isolate. The virus had been blind-passaged 17-20

http://www.virologyj.com/content/6/1/132

Table 3: Specificity of MARYV epitope specific splenocytes

Stimulus® Challenge agentb % Survival
NP144 EBOV 10
GP132 EBOV 0

PBS EBOV 10

22 mg/ml of peptide was used to stimulate MARV-specific splenocytes
bEach mouse was challenged with 1000 PFU of lethal EBOV, n = 10
BALB/c mice/group

times from mouse liver homogenates and did not produce
clinical signs of disease when inoculated into naive BALB/
¢ mice. Mice were monitored for approximately 14 days
before euthanasia and splenectomy. For lethal challenges,
we used a later passage of lethal, mouse-adapted MARV
Ravn that caused death 7-10 days after infection. Mouse
adaptation was accomplished by serially passaging virus
through the livers of SCID mice [34] and then BALB/c
mice to obtain a lethal, mouse-adapted virus. The lethal,
mouse-adapted MARV Ravn isolate was purified by
plaque selection and then selected for its virulence
towards BALB/c and C57BL/6 mice [17]. The pathogene-
sis of the mouse-adapted MARV Ravn was similar to the
pathogenesis of guinea pig and nonhuman primate mod-
els with high viral titers in the blood, liver, lymphoid, and
other organs; alterations in blood chemistries including
markers of liver and kidney function; as well as loss of
platelets and lymphocytes in the circulation [17].

Stimulation of MARV-specific splenocytes with peptide
pools, single 15 mers, and single 9 mers

Splenectomies were performed 14 days after infection
with nonlethal MARV [17]. Spleens from all mice were
pooled, homogenized, and washed through a 50-um
nylon filter. Cells were incubated in 0.144 M ammonium
chloride lysis buffer to remove residual red blood cells.
After a final wash in PBS, splenocytes were resuspended in
RPMI/EHAA (Invitrogen, Carlsbad, CA) supplemented
with 10% fetal bovine serum (FBS) (Hyclone Labs, Logan,
urT), 2 ul of B-ME/500 ml (Sigma, St. Louis, MO), 10 mg/
ml of brefeldin A, and 1 unit/ml of thIL-2 in a 96-well U-
bottom plate. Fifteen-mer and 9-mer MARV peptide sets
were synthesized by Mimotope (Clayton, Victoria, Aus-
tralia) and maintained in dimethylsulfoxide. The collec-
tion of all 15-mer peptides represented the entire
translated GP, NP, and VP40 proteins. Nine-mer peptides
were selected from each 15-mer peptide using HLA bind-
ing predictions for H24 developed by Parker et al. [35].
One pg of either overlapping 15-mer peptide pools, indi-
vidual 15-mer peptides, or individual 9-mer peptides were
added to each well containing 1 x 10° splenocytes and
incubated for 5 h at 37°C in 5% CO,. An EBOV 15-mer
peptide designated NP12 with no sequence homology to
MARYV NP peptides was used as a negative control. Posi-
tive controls included splenocytes stimulated with 100 ng
of PMA and 1 pg of ionomycin.
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Analysis of splenocytes by flow cytometry

Stimulated splenocytes were centrifuged at 300 x g for 5
min, and cell pellets were resuspended in FACS buffer
(PBS supplemented with 1% FBS, 0.1% sodium azide,
and 10 mg/ml brefeldin A) containing either mouse anti-
CD44-FITC or CD8-PerCP (BD Biosciences, San Jose, CA)
diluted 1:100 and incubated for 30 min at 4°C. Washed
splenocytes were fixed with buffered 1% paraformalde-
hyde and incubated for 15 min. Splenocytes were perme-
ablized by adding FACS buffer and 0.5% saponin
(permeablization buffer). Anti-mouse IFNy (BD Bio-
sciences, San Jose, CA) diluted 1:50 in permeablization
buffer was added and incubated for 30 min. Splenocytes
were fixed in 10% neutral buffered formalin and analyzed
on a BD FACSCalibur system (BD Biosciences, Franklin
Lakes, NJ). At the time of acquisition, the signal from
EBOV NP12 (AEQGLIQYPTAWQSV)-stimulated spleno-
cytes was used to determine the level of background in the
experiment. A total of 10,000 splenocytes were counted.
On average, 8-12% were CD8+ T cells that were gated to
discriminate between levels of CD44 expression and IFNy
producing cells.

CTL assays for prediction of lytic epitopes

PB-1 target cells were pulsed with 2 ug/ml of 9-mer pep-
tides and incubated for 24 h. On the day of the assay,
pulsed PB-1 target cells were labeled with 5!Cr for 1 h.
Effector cells were obtained from BALB/c mice 7 days after
boosting with MARV VLPs. Briefly, mice were vaccinated
with 100 pg of MARV VLPs (2 pg of QS21 per mouse) and
boosted with 100 pg of MARV VLPs (2 pg of QS21) 2
weeks later. Effector cells, which were obtained 7 days
after the MARV VLP boost, were added to the labeled, pep-
tide-pulsed target PB-1 target cells and incubated for 4 h.
Fifty ul of supernatant was transferred onto a filtered luma
plate for analysis on a gamma counter.

Adoptive transfer of stimulated splenocytes into BALBI/c
mice

Splenocytes removed from mice infected with nonlethal
MARV were restimulated with 2 pg/ml of 9-mer peptide
and incubated for 7 days at 37°C in 5% CO,. Recom-
binant human interleukin (IL)-2 and supernatant from
concanavalin A-stimulated cells was added to the medium
(EHAA/RPMI) on day 2. On day 7, stimulated splenocytes
were purified using ficoll. Approximately 5 x 10¢ 9-mer-
stimulated splenocytes were transferred to each mouse in
designated groups. As a control, some mice were given the
same number of saline-stimulated splenocytes from mice
previously infected with nonlethal MARV. Cell transfer
preceded infection by approximately 3 h where each
mouse was infected with 1000 PFU of lethal mouse-
adapted MARV or EBOV [17,36]. Research was conducted
in compliance with the Animal Welfare Act, federal stat-
utes and regulations relating to animals and experiments

http://www.virologyj.com/content/6/1/132

involving animals, and adhered to principles stated in the
Guide for the Care and Use of Laboratory Animals
(National Research Council, 1996). The facility where this
research was conducted was fully accredited by the Associ-
ation for Assessment and Accreditation of Laboratory Ani-
mal Care International.

Statistical analysis

Data collected from the animal survival studies were dis-
played on a Kaplan-Meyer plot. Statistical significance was
determined by comparing each experimental group to the
negative control group. Significance, when compared to
the negative control group, was determined using log-
rank tests with stepdown Bonferroni adjustment. All
groups whose difference fell above the 95% confidence
interval were considered significant. All statistical analysis
was done using SAS software (SAS Institute Inc Cary, NC).
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