
Vol. 30 ECCB 2014, pages i519–i526
BIOINFORMATICS doi:10.1093/bioinformatics/btu463

Polytomy refinement for the correction of dubious

duplications in gene trees
Manuel Lafond1,*, Cedric Chauve2,3, Riccardo Dondi4 and Nadia El-Mabrouk1,*
1Department of Computer Science, Universit�e de Montr�eal, Montr�eal, Quebec H3C 3J7, Canada, 2LaBRI, Universit�e
Bordeaux 1, Bordeaux, France, 3Department of Mathematics, Simon Fraser University, Burnaby (BC) V5A 1S6, Canada
and 4Universit�a degli Studi di Bergamo, Bergamo 24129 IT, Italy

ABSTRACT

Motivation: Large-scale methods for inferring gene trees are error-

prone. Correcting gene trees for weakly supported features often re-

sults in non-binary trees, i.e. trees with polytomies, thus raising the

natural question of refining such polytomies into binary trees. A feature

pointing toward potential errors in gene trees are duplications that are

not supported by the presence of multiple gene copies.

Results: We introduce the problem of refining polytomies in a gene

tree while minimizing the number of created non-apparent duplications

in the resulting tree. We show that this problem can be described as a

graph-theoretical optimization problem. We provide a bounded heur-

istic with guaranteed optimality for well-characterized instances. We

apply our algorithm to a set of ray-finned fish gene trees from the

Ensembl database to illustrate its ability to correct dubious

duplications.

Availability and implementation: The C++ source code for the al-

gorithms and simulations described in the article are available at

http://www-ens.iro.umontreal.ca/~lafonman/software.php.

Contact: lafonman@iro.umontreal.ca or mabrouk@iro.umontreal.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

With the increasing number of completely sequenced genomes,

the task of identifying gene counterparts in different organisms

becomes more and more important. This is usually done by clus-

tering genes sharing significant sequence similarity, constructing

gene trees and then inferring macro-evolutionary events such as

duplications, losses or transfers through reconciliation with the

phylogenetic tree of the considered taxa. The inference of accur-

ate gene trees is an important step in this pipeline. While gene

trees are traditionally constructed solely from sequence align-

ments (Guidon and Gascuel, 2003; Ronquist and Huelsenbeck,

2003; Saitou and Nei, 1987), recent methods incorporate infor-

mation from species phylogenies, gene order and other genomic

footprint (Akerborg et al., 2009;Boussau et al., 2013; Durand

et al., 2003; Rasmussen and Kellis, 2011; Sz€ollosi et al., 2013;

Thomas, 2010; Wapinski et al., 2007). A large number of gene

tree databases are now available (Datta et al., 2009;Flicek, 2012;

Huerta-Cepas et al., 2011; Mi et al., 2012; Schreiber et al., 2013).
But constructing accurate gene trees is still challenging; for

example, a significant number of nodes in the Ensembl gene

trees are labelled as ‘dubious’ (Flicek, 2012). In a recent study,

we have been able to show that �30% of 6241 Ensembl gene

trees for the genomes of the fishes Stickleback, Medaka,

Tetraodon and Zebrafish exhibit at least one gene order incon-

sistency and thus are likely to be erroneous (Lafond et al., 2013).

Moreover, owing to various reasons such as insufficient differ-

entiation between gene sequences and alignment ambiguities, it is

often difficult to support a single gene tree topology with high

confidence. Several support measures, such as bootstrap values

or Bayesian posterior probabilities, have been proposed to detect

weakly supported edges. Recently, intense efforts have been put

towards developing tools for gene tree correction (Berglund-

Sonnhammer et al., 2006; Chaudhary et al., 2011; Chen et al.,

2000; Doroftei and El-Mabrouk, 2011; Gorecki and Eulenstein,

2011a,b; Nguyen et al., 2013; Swenson et al., 2012; Wu et al.,

2012). A natural approach is to remove a weakly supported edge

and collapse its two incident vertices into one (Beiko and

Hamilton, 2006), or to remove ‘dubious’ nodes and join resulting

subtrees under a single root (Lafond et al., 2013). The resulting

tree is non-binary with polytomies (multifurcating nodes) repre-

senting unresolved parts of the tree. A natural question is then to

select a binary refinement of each polytomy based on appropri-

ate criteria. This has been the purpose of a few theoretical and

algorithmic studies conducted in the past years, most of them

based on minimizing the mutation (i.e. duplication and loss) cost

of reconciliation (Chang and Eulenstein, 2006; Lafond et al.,

2012; Vernot et al., 2009; Zheng et al., 2012).
In the present article, we consider a different reconciliation

criterion for refining a polytomy, which consists in minimizing

the number of non-apparent duplication (NAD) nodes. A dupli-

cation node x of a gene tree (according to the reconciliation with

a given species tree) is a NAD if the genome sets of its two

subtrees are disjoint. In other words, the reason x is a duplication

is not the presence of paralogs in the same genome, but rather an

inconsistency with the species tree. Such nodes have been flagged

as potential errors in different studies (Chauve and El-Mabrouk,

2009; Flicek, 2012; Scornavacca et al., 2009). In particular, they

correspond to the nodes flagged as ‘dubious’ in Ensembl gene

trees.
We introduce the polytomy refinement problem in Section 2,

and we show in Section 3 how it reduces to a clique decompos-

ition problem in a graph representing speciation and duplication

relationships between the leaves of a polytomy. We develop a

bounded heuristic in Section 4, with guaranteed optimality in

well-characterized instances. In Section 5 we exhibit a general

methodology, using our polytomy refinement algorithm, for cor-

recting NAD nodes of a gene tree. We then show in Section 6

that this approach is in agreement with the observed corrections

of Ensembl gene trees from one release to another.*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://www-ens.iro.umontreal.ca/~lafonman/software.php
mailto:lafonman@iro.umontreal.ca
mailto:mabrouk@iro.umontreal.ca
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu463/-/DC1
[
17,
27]
footprints
1
,
4
,
12
,
31
,
33,
36]
[
10
,
20,
24
,
28]
``
''
[14]
about
,
,
[22]
due
[
3,
8,
30,
37,
 32]
[2]
``
''
[21]
l
,
[
5,
23,
34,
38]
paper
[
29,
 14]
``
''
XPath error Undefined namespace prefix

2 THE POLYTOMY REFINEMENT PROBLEM

Phylogenies and reconciliations. A phylogeny is a rooted tree that

represents the evolutionary relationships of a set of elements

(such as species, genes, . . .) represented by its nodes: internal

nodes are ancestors, leaves are extant elements and edges repre-

sent direct descents between parents and children. We consider

two kinds of phylogenies: species trees and gene trees. A species

tree S describes the evolution of a set of related species, from a

common ancestor (the root of the tree), through the mechanism

of speciation. For our purpose, species are identified with gen-

omes, and genomes are simply sets of genes. As for a gene tree, it

describes the evolution of a set of genes, through the evolution-

ary mechanisms of speciation and duplication. Therefore, each

gene g, extant or ancestral, belongs to a species denoted by s(g).

The set of genes in a gene tree is called a gene family. A leaf-label

corresponds to a genome in a species tree, and to a gene belong-

ing to a genome in a gene tree.
Given a phylogeny T, we denote by l(T) the leaf-set and by

V(T) the node-set of T. Given a node x of T, we denote by l(x)

and call the clade of x, the leaf-set of the subtree of T rooted at x.

We call an ancestor of x any node y on the path from the root of

T to the parent of x. In this case we write y5x. Two nodes x, y

are unrelated if none is an ancestor of the other. For a leaf subset

X of T, lcaTðXÞ, the lowest common ancestor (LCA) of X in T,

denotes the farthest node from the root of T, which is an an-

cestor of all the elements of X. In this article, species trees are

assumed to be binary: each internal node has two children,

representing its direct descendants (see S in Fig. 1). For an in-

ternal node x of a binary tree, we denote by x‘ and xr the two

children of x.

DEFINITION 1. (Reconciliation) A reconciliation between a binary

gene tree G and a species tree S consists in mapping each internal

or leaf node x of G (representing respect. an ancestral or extant

gene) to the species s(x) corresponding to the LCA in of the set

fsðlÞ; for all l 2 lðxÞg. Every internal node x of G is labelled by an

event E(x) verifying: EðxÞ= Speciation (S) if s(x) is different

from sðx‘Þ and sðxrÞ, and EðxÞ= Duplication otherwise.

We define two types of duplication nodes of a gene tree G. A

Non-Apparent-Duplication (NAD) is a duplication node x of G

such that [x2lðx‘Þx
� �

\ [y2lðxrÞy
� �

=;. A duplication that is not an

NAD is an apparent duplication (AD) node, i.e. a node with the

left and right subtrees sharing a common leaf-label. Therefore,

any internal node x of G is of type S, AD or NAD.
The gene trees we consider might be non-binary. We call polyt-

omy a gene tree with a non-binary root (see F in Fig. 1).

DEFINITION 2. (Binary refinement) A tree HT is a refinement of a

tree T if and only if the two trees have the same leaf-set and T can

be obtained from HT by contracting some edges. When HT refines

T, each node of T can be mapped to a unique node of HT so that the

ancestral relationship is preserved. HT is a binary refinement of T

if and only if HT is binary and is a refinement of T.

In this article, as only binary refinements are considered, we

omit the term binary from now.
Problem statement. The general problem we address is the fol-

lowing: Given a non-binary gene tree G and a species tree S, find

a refinement of G containing theminimumnumber ofNADswith

respect toS. Such a refinement ofG is called aminimum refinement

of G w.r.t. S.
Hence, we aim at refining each non-binary node of G. We first

show that each such non-binary node of G can be refined inde-

pendently of the other non-binary nodes.

THEOREM 1. Let fGi; for 1 � i � ng be the set of subtrees of G

rooted at the n children fxi; for 1 � i � ng of the root of G. Let

HminðGi;SÞ be a minimum refinement of Gi w.r.t. S. Let G
0 be the

tree obtained from G by replacing each Gi by HminðGi;SÞ. Then a

minimum refinement of G is a minimum refinement of G0.

It follows from Theorem 1 that a minimum refinement of G

can be obtained by a depth-first procedure iteratively solving

each polytomy Gx, for each internal node x of G.

In the rest of this paper, we consider G as a polytomy, and we

denote by F the forest fG1;G2; . . .Gng obtained from G by

removing the root. For simplicity, we make no difference be-

tween a tree Gi of F and its root. In particular, sðGiÞ corresponds

to sðrootðGiÞÞ, where rootðGiÞ is the root of Gi (Fig. 1). We are

now ready to define the main optimization problem we consider.
Minimum NAD polytomy refinement (MinNADref) problem:

Input: A polytomy G and a species tree S;
Output: In the set HðGÞ of all refinements of G, a refinement H

with the minimum number of NAD nodes. Such a refinement is

called a solution to the MinNADref problem.

3 A GRAPH-THEORETICAL CHARACTERIZATION

We show (Theorem 2) that theMinNADref Problem reduces to a

clique decomposition problem on a graph that represents the

impact, in terms ofNADcreation, of joining pairs of trees fromF .
The join graph of a polytomy. We first define a graph R based

on the notion of join. A join is an unordered pair fG1;G2g where

G1;G2 2 F . The join operation j on fG1;G2g consists in joining

the roots of G1 and G2 under a common parent; we denote by

(a) ((a,f),(g,h)) (g)

(h,l)

(b,e) (i,m)

(d)

((c,d),(j,k))

(k)

F :

((a , f),(g ,h))((c ,d),(j,k)) (a)(d)(g) (k) (b , e) (i , m) (h , l)

R ::

a b c d e f g h i j k l m
(a) (d) (g) (k)

(b,e) (i,m)
(h,l)

((a,f),(g,h))
((c,d),(j,k))

S :

n

H ::

((a , f),(g , h))((c ,d),(j , k))

(a)(d)(g) (k)
(b , e) (i , m) (h , l)

Fig. 1. A forest F , a species tree S and the corresponding graph R. Each

gene tree G of F is attached to its corresponding node s(G) in S. In R,

joins of type AD are represented by green lines. All other lines are the

joins of type S. Non-trivial AD-components (AD-components containing

at least two nodes) are represented by green ovals. Red lines in R repre-

sent a vertex-disjoint clique W of RS. Here, RAD [W has a single con-

nected component, which leads to the binary refinement H of F with no

NAD. After the joins of W are applied (red edges in H), the speciation-

free forest can be joined with four joins AD (green vertices in H)

i520

M.Lafond et al.

which
,
a
paper
which
,
paper

G1;2 the resulting join tree. We call the join type of j=fG1;G2g,

and denote by jtðG1;G2Þ, the reconciliation label of the node

created by joining G1 and G2 (i.e. the root of G1;2), where

jtðG1;G2Þ 2 fS;AD;NADg, respectively, for speciation, AD

and NAD, w.r.t. the species tree S.
We denote by R=ðV;EÞ the join graph of F , defined as the

unoriented complete graph on the set of vertices V=F , where

each edge (join) is labelled by the corresponding join type

(Fig. 1). We denote by RS and RAD the subgraphs of R defined

by the edges of type, respectively, S and AD. We call a connected

component of RAD an AD-component.
Let F0 be the new forest obtained by replacing the two trees G1

and G2 of F by the join tree G1;2. The rules given below, follow-

ing directly from the definition of speciation and duplication in

reconciliation, are used to update the join type jtðG1;2;TÞ for any
T 2 FnfG1;G2g.
Ruleset 1

(1) If jtðG1;TÞ=AD or jtðG2;TÞ=AD, then jtðG1;2;TÞ=AD;

(2) Otherwise, if jtðG1;TÞ=NAD or jtðG2;TÞ=NAD, then

jtðG1;2;TÞ=NAD;

(3) Otherwise, if lca(T) is not a descendant of lcaðG1;2Þ, then

jtðG1;2;TÞ=S;

(4) Otherwise, jtðG1;2;TÞ=NAD.

Clique decomposition of the join graph. Let a join sequence

J=ðJ1; J2; . . . ; JjJjÞ be an ordered list of joins. We denote by

FðJ; iÞ the forest obtained after applying the first i joins of J,

starting with F . Note that FðJ; 0Þ=F , and that Ji 2 J is a join

on FðJ; i� 1Þ. Let J denote the set of all possible join se-

quences of size jF j � 1. Clearly, applying all joins of a sequence

J 2 J yields a single binary tree, and there exists a gene tree H

2 HðGÞ with d NADs if and only if there exists a join sequence

J 2 J with d joins of type NAD. We refine this property by

showing that there is a solution to the MinNADref problem

where all duplication nodes are ancestral to all speciation nodes

(see the treeH of Fig. 1 for an example). The proof (not shown)

makes abundant use of Ruleset 1.

LEMMA 1. There exists a binary refinement H 2 HðGÞ with d

NADs if and only if there exists a join sequence J 2 J with d

joins of type NAD such that, if Ji 2 J is the first join not of type

S in J, then all following joins Jj, for j4i, are of type AD or NAD.

We define a speciation tree as a gene tree in which every internal

node is a speciation node. We deduce from the previous

lemma that we can obtain a solutionH to the MinNADref prob-

lem by creating a forest of speciation trees first, then successively

joining them with joins of type AD or NAD. As the nodes of R

corresponding to the leaves of a given speciation subtree ofH are

pairwise joined by speciation edges, they form a clique in RS (in

Fig. 1 the cliques in red are selected and the corresponding joins

are applied to compute refinement H). The next theorem makes

the link between the number of NADs ofH and the cliques of RS.

For a set W of vertex-disjoint cliques of RS, we denote by

RAD [W the graph defined by the union of the edges of RAD

and W.

THEOREM 2. A solution to the MinNADref Problem has d NADs

if and only if, among all graphs RAD [W where W is a set of

vertex-disjoint cliques of RS, at least one has d+ 1 connected com-

ponents and none has less than d+ 1 connected components.

The proof of Theorem 2 is constructive. Given an optimal set

W of vertex-disjoint cliques of RS, it leads to an optimal refine-

ment H. Unfortunately, it can be shown that, given an arbitrary

graph with two edge colours AD and S, finding if there exists a

set W yielding a given number of connected components is an

NP-hard problem (proof not shown). However, R is constrained

by the structure of a species tree, which restricts the space of

possible join graphs. An arbitrary complete graph R with edges

labelled on the alphabet {S, AD, NAD} is said to be valid if there

exists a species tree and a polytomy whose join graph is R. We

characterize below the valid graphs in terms of forbidden

induced subgraphs. The proof is partially based on well-known

results on P4-free graphs (Corneil et al. 1985).

THEOREM 3. A graph R is valid if and only if RS is fP4; 2K2g-free,

meaning that no four vertices of RS induce a path of length 4, nor

two vertex-disjoint edges.

Although we have not been able to find an exact polynomial-

time algorithm for the MinNADref problem, this very con-

strained structure of the R graph yields a bounded heuristic for

this problem with good theoretical properties described in the

next section.

REMARK 1. The P4-free property, which was already introduced in

relation with reconciliations in (Hellmuth et al., 2013), is of special

interest, as many NP-hard problems on graphs have been shown to

admit polynomial time solutions when restricted to this class of

graphs. Unfortunately we can prove that, given an arbitrary P4-

free graph on which we add AD edges, finding an optimal W is still

NP-hard (proof not shown). However, the added 2K2-free restric-

tion imposes a rigid structure on the graph at hand, and we con-

jecture that there exists a polynomial time algorithm to find an

optimal W.

4 A BOUNDED HEURISTIC

We first describe a general approach based on the notion of

useful speciations, followed by a refinement of this approach

with guaranteed optimality criteria.

DEFINITION 3. Let J=ðJ1; . . . ; JjJjÞ be a join sequence. A join Ji=

fG1;G2g of J is a useful speciation if jtðG1;G2Þ=S and G1, G2 are

in two different AD-components of the R graph obtained after

applying the J1; . . . ; Ji�1 joins.

Hence, if R has c AD-components, finding a zero NAD solu-

tion becomes the problem of finding a join sequence with c� 1

useful speciations. For example, the graph R in Figure 1 has five

AD-components (three trivial and two non-trivial), and thus the

four useful speciations represented by the red lines lead to a 0

NAD solution (the binary tree H). In the general case, the prob-

lem we face is to select as many useful speciations as possible, as

the resulting AD-components will have to be connected by NAD

joins. If we define a speciation-free forest as a forest F such that

no edge of its join graph R is a speciation edge, following Lemma

1, we would like to first compute a set of useful speciations that

i521

Polytomy refinement

,
apparent duplication
non-apparent duplication
;
[9]
that
[19]
5
3
2
4

results in a speciation-free forest whose join-graph has the least

number of AD-components.

DEFINITION 4. A lowest useful speciation is a useful speciation

edge fG1;G2g of RS such that sðG1;2Þ is not the ancestor of any

sðGi;jÞ, for fGi;Gjg being another useful speciation edge of RS.

Lowest useful speciations fit naturally in the context of

bottom-up algorithms where speciations edges that correspond

to lower vertices of S are selected before speciations edges cor-

responding to ancestral species. The theorem below shows that

proceeding along these lines ensures that the resulting join se-

quence contains at least half of the optimal number of useful

speciation.

THEOREM 4. Let s be the maximum number of useful speciations

leading to a solution to the MinNADref problem. Then any algo-

rithm that creates a speciation-free forest through lowest useful

speciations makes at least ds=2e useful speciations.

This theorem implicitly defines a heuristic with approximation

ratio 2 on the number of useful speciations that visits S in

a bottom-up way, making useful speciations (which would

thus be lowest useful speciations) whenever such an edge is

available.
We now describe an improved version of this general heuristic

principle. A detailed example is given in Figure 2. The main idea

is to consider a bottom-up traversal of the species tree S, and

for each visited vertex s, to find a useful set of speciation edges

by finding a matching in a bipartite graph. More precisely,

for a node s 2 VðSÞ, we consider the complete bipartite graph

B=ðX [Y; fxyjx 2 X; y 2 YgÞ such that the left (respectively

right) subset X (respectively Y) contains all the trees Gi of

F where sðGiÞ is on the left (respectively right) subtree of s.

Consider the two partitions ADX and ADY of X and Y, respect-

ively, into AD-components. The key step of our heuristic is to

find a matching M � EðBÞ of useful speciations between ADX

and ADY, called a useful matching. For example, in Figure 2,

the bipartite graph and matching illustrated for Step 3 corres-

pond to node l and that of Step 4 to node m of S.
Notice that not all edges of B correspond to useful

speciations. Indeed it is possible that for some x 2 X and some

y 2 Y, although {x, y} is a speciation edge, x and y are in the

same AD-component of R due to another tree z not in B such

that {x, z} and {z, y} are AD-edges. For example in Figure 1,

although fðaÞ; ðgÞg is a join of type S, the trees (a) and (g) are in

the same AD-component ofR due to the tree ðða; fÞ; ðg; hÞÞ. For a
vertex x of X (respectively y of Y), denote by AD(x) (respectively

AD(y)) the component of ADX (respectively ADY) containing x

(respectively y). We indicate the fact that AD(x) and AD(y)

belong to the same AD-component in R by adding two

dummy genes b1 in AD(x) and b2 in AD(y), and a bridge fb1; b2g
in EðBÞ. Such bridges will be included in every matching, prevent-

ing to include non-useful speciation edges.

An instance P of the problem associated with a vertex s of S is

denoted by P=ðX;Y;ADX;ADY;BÞ where X, Y, ADX, ADY are

defined as above and B is the set of bridges induced by R. The

graph corresponding to P, i.e. the complete bipartite graph on

sides X and Y to which we added the bridge edges B, is denoted

by BðPÞ. The whole method is summarized in Algorithm 1

MinNADref(F ;S) and illustrated on a simple example in

Figure 2.

Algorithm 1: MinNADrefðF ;SÞ.

for each node s of S in a bottom-up traversal of S do

Let P=ðX;Y;ADX;ADY;BÞ be the problem instance corresponding

to s;

Find a useful matching M of BðPÞ of maximum size (Algorithm

MaxMatching below);

Apply each speciation of M, and update F

end for

For each connected component C of RAD, join the trees of C under AD

Nodes;

If there is more than one tree remaining, join them under NAD nodes.

Finding a useful matching of maximum size can be done in

polynomial time by Algorithm 2. For an instance

P=ðX;Y;ADX;ADY;BÞ, the algorithm progressively increments

the set M of speciation edges, eventually leading to a useful

matching of maximum size. At a given step, let GP;M be the

graph with vertices X [Y and edges EP;M=EAD [M, where

EAD is the set of AD edges of R connecting vertices of X [Y.

Components ADXi
2 ADX and ADYj

2 ADY are linked if there is

a path in GP;M linking a vertex of ADXi
to a vertex of ADYj

, and

not linked otherwise.

Algorithm 2:MaxMatchingðX;Y;XX;ADY;BÞ.

D=;; M=B;

while D 6¼ X [Y do

Find C 2 ADX [ADY of maximum cardinality with vertices not

included in D, if any; assume w.l.o.g. C=ADXi
2 ADX;

Fig. 2. A species tree S and a forest F of binary trees forming the

polytomy. The trees of F are placed on S according to their LCA. The

i, k, l and m nodes of S are annotated with the forest obtained after

running Algorithm 2 on these nodes. Their corresponding complete bi-

partite matching instances are illustrated at the bottom. AD joins are

represented by dotted lines, useful matching are represented by plain

lines (we omit drawing all the other edges of the complete bipartite

graphs). Note that there is a bridge induced by M between (F, K) and I

at step 4. In the fourth step, we obtain a single connected component,

which allows, in a final step, to connect all the subtrees by AD nodes

(final tree is on the top of the figure)

i522

M.Lafond et al.

prior to
,
that
.
.
.
due
due
.
(
.
)
.
.
,

for each x 2 C that is not incident to an edge in M do

if there is an y 2 Y such that AD(y) is not linked to C then

Find such y with AD(y) of maximum cardinality;

Addtheverticesxandy toDandaddthe speciationedge{x,y} toM;

end if

end for

Add remaining vertices of C to D;

end while

THEOREM 5. Given an instance P=ðX;Y;ADX;ADY;BÞ,
Algorithm 1 finds a useful matching M of maximum size.

Algorithm 1 is a heuristic, as it may fail to give the optimal

solution (refinement with minimum number of NADs), as in

Figure 1 for example. In this example, a bottom-up approach

would greedily speciate a and d, which cannot lead to the optimal

solution. However, we prove in Theorem 6 that if transitivity

holds for the duplication join type, then Algorithm 1 is an

exact algorithm for the MinNADref problem. The example of

Figure 1 does not satisfy this property, as fðaÞ; ðða; fÞ; ðg; hÞÞg is a
join of duplication type (AD), fðða; fÞ; ðg; hÞÞ; ðgÞg is a join of

duplication type but fðaÞ; ðgÞg is a join of speciation type.

THEOREM 6. (1) Let s be the maximum number of useful speci-

ations leading to a solution to the MinNADref problem. Then,

Algorithm 1 makes at least ds=2e useful speciations. (2) If, for

every node s of S the instance P corresponding to s has no bridges,

then Algorithm 1 outputs a refinement of the input polytomy with

the maximum number of useful speciations.

The following corollary provides an alternative formulation of

the optimality result given by the above theorem.

COROLLARY. Algorithm 1 exactly solves the MinNADref problem

for an input ðF ;SÞ such that each AD-component of the corres-

ponding graph R is free from S edges (i.e. there is no S edge

between any two vertices of a given AD-component).

5 GENE TREE CORRECTION

The polytomy refinement problem is motivated by the problem

of correcting gene trees. Duplication nodes can be untrusted for

many reasons, one of them being the fact that they are NADs,

pointing to disagreements with the species tree that are not due

to the presence of duplicated genes. Different observations tend

to support the hypothesis that NAD nodes may point at errone-

ous parts of a gene tree (Chauve and El-Mabrouk, 2009;

Swenson et al., 2012). For example, the Ensembl Compara gene

trees (Vilella et al., 2009) have all their NAD nodes labelled as

‘dubious’. In (Chauve and El-Mabrouk, 2009), using simulated

datasets based on the species tree of 12 Drosophila species given

in (Hahn et al., 2007) and a birth-and-death process, starting

from a single ancestral gene, and with different gene gain/loss

rates, it has been found that 95% of gene duplications lead to an

AD vertex. Although suspected to be erroneous, some NAD

nodes may still be correct, due to a high number of losses.

However, in the context of reconciliation, the additional

damage caused by an erroneous NAD node is the fact that it

significantly increases the real rearrangement cost of the tree

(Swenson et al., 2012). Therefore, tools for modifying gene

trees according to NADs are required. We show now how
Algorithm 1 can be used in this context.

In (Lafond et al., 2013), a method for correcting untrusted
duplication nodes has been developed. The correction of a du-

plication node x relies on pushing x by multifurcation, which

transforms x into a speciation node with two children being

the roots of two polytomies. Figure 3 recalls the pushing by multi-
furcation procedure. These polytomies are then refined by using

an algorithm developed in (Lafond et al., 2012), which optimizes

the mutation cost of reconciliation.
In the context of correcting NADs, we use the same general

methodology, but now using AlgorithmMinNADref for refining

polytomies. Removing all NADs of a gene tree can then be done
by iteratively applying the above methodology on the highest

NAD node of the tree (the closest to the root).

6 RESULTS

Simulated data. Simulations are performed as follows. For a

given integer n, we generate a species tree S with a random

number of leaves between 0:5n and 3n. We then generate a
forest F=ðG1; . . . ;GnÞ of cherries by randomly picking, for

each cherry Gi 2 F , one node si 2 S and two leaves, one from

each of the two subtrees rooted at si. Any leaf of S is used at

most once (possibly by adding leafs to S if required), leading to a
set of cherries related through joins of type S or NAD. Then, for

each pair fGi;Gjg with join type NAD, we relate them through

AD with probability 1/2 (or do nothing with probability 1/2), by

adding a duplicated leaf.
For each pair ðS;FÞ, we compared the number of NADs

found by Algorithm MinNADref with the minimum number
of NADs returned by an exact algorithm exploring all possible

binary trees that can be constructed from F . We generated a

thousand random S and F for each n � 4. We stopped at

n=14, as the brute-force algorithm is too time-costly beyond
this point. Over all the explored datasets simulated as described

above, Algorithm MinNADref was able to output an optimal

solution, i.e. a refinement with the minimum number of NADs.

Therefore, the examples on which the heuristic fails seem to be
rare, and the algorithm performs well on polytomies of reason-

able size.
We then wanted to assess how the NAD minimization criter-

ion differs from the rearrangement cost minimization criterion.

We generated 960 random instances with forests of sizes ranging

between 5 and 100 (10 instances for each 5 � n � 100). We

a b c d

S :G :

a1 c3c2 b1 d2d1

x

c1 b2 a1 b1 b2 c1 c3c2 d2d1

G* :s

sl sr

Fig. 3. A gene tree G and a species tree S, from which we obtain G� by

pushing x by multifurcation. Here, x is a NAD, and is pushed by taking

the forest of maximal subtrees of G that only have genes from species in

the sl subtree (green), then another forest for the sr subtree (red) in the

same manner. Both these forests are joined under a polytomy, which are

then joined under a common parent, so the root of G� is a speciation

i523

Polytomy refinement

,
[
7,
30
]
[35]
``
''
[7]
-
[18]
due
[30]
[21]
[23]
,

compared the output of Algorithm MinNADref with that of

Algorithm MinDLref, given in (Lafond et al., 2012), which com-

putes refinement minimizing the duplication+loss (DL) cost of

reconciliation with the species tree. Both algorithms gave the

exact same refinement for only 12 instances (1.25%). As ex-

pected, Algorithm MinNADref always yielded a refined tree

with a lower or equal number of NADs than the tree given by

AlgorithmMinDLref, but always had a higher or equal DL-cost.

However, in many cases, minimizing the DL-score did not min-

imize the number of NADs, as in 377 instances (39.3%),

Algorithm MinNADref yielded strictly less NADs than

Algorithm MinDLref.

Ensembl Gene Trees.
Next we tested the relevance of the proposed gene tree correc-

tion methodology, by exploring how Ensembl gene trees are cor-

rected from one release to another. As the Ensembl general

protocol for reconstructing gene trees does not change between

releases, the observed modifications on gene trees are more likely

due to modifications on gene sequences.

We used the Ensembl Genome Browser to collect all available

gene trees containing genes from the monophyletic group of ray-

finned fishes (Actinopterygii), and filtered each tree to preserve

only genes from the taxa of interest (ray-finned fish genomes).

We selected from both Releases 74 (the present one) and 70 the

1096 gene trees that are present in both with exactly the same set

of genes from the monophyletic group of fishes, and with less

NAD nodes in Release 74. We wanted to see to what extent our

general principle of correcting an NAD by transforming it to a

speciation node is observed by comparing Rel.70 to Rel.74. Such

a transformation requires to preserve the clade of the corrected

NAD node x of the initial tree, meaning that l(x) should also be

the leaf-set of a subtree in the corrected tree. For490% of these

trees (993 trees), the highest NAD node clade was preserved in

Rel.74. Moreover, among all such nodes that were corrected, i.e.

were not NAD nodes in Rel.74 (641 trees), almost all were trans-

formed into speciation nodes (630 trees), which strongly supports

our correction paradigm.

To evaluate our methodology for correcting NADs, we

applied it to the highest NAD node of each of the 1096 afore-

mentioned trees of Rel.70. Figure 4 illustrates a comparison be-

tween the corrected trees (Rel.70C, C standing for ‘Corrected’)

obtained by our methodology and those of Rel. 74. Pairwise

comparisons are based on the normalized Robinson–Foulds

(RF) distance (number of identical clades divided by the total

number of clades). The yellow curve shows a good correlation

betweenRel.70C andRel.74, with�65% exhibiting480% similar

clades between Rel.70C andRel.74. If we reduce the set of trees to

those for which the highest NAD node is also transformed to a

speciation node in Rel.74 (630 trees), the correlation is even better

(blue curve of Fig. 4), with 44% of trees being identical (277 over

630 trees) and �80% exhibiting 480% similar clades between

Rel.70C and Rel.74. Now, to specifically evaluate Algorithm

MinNADref, we further restricted the set of trees to those

giving rise to a non-trivial polytomy (i.e. polytomy of degree42)

after the pushing by multifurcation, which leads to a set of 117

trees. Overall, the results for these trees (red curve in Fig. 4) are

close to those observed for all trees (yellow curve) detailed above.
We then wanted to evaluate our correction of the 117 afore-

mentioned trees compared with trees in Rel.74. Figure 5 provides

an evaluation of the corrected trees (yellow curve) compared with

those in Rel. 74 (blue curve) based on the normalized RF dis-

tance with the initial trees in Rel.70. Overall, the initial tree is

closer to our correction than to the one of Rel.74. Therefore,

even though gene trees of Rel.74 are likely to have stronger stat-

istical support with respect to the gene sequences provided in

Rel.74, our correction removes NADs while respecting as

much as possible the given tree topology. Finally, we considered

the reconciliation mutation cost as another evaluation criterion.

Among the 117 trees of Rel.70C, 30 are identical to the corres-

ponding trees in Rel. 74, and 60% have a lower mutation cost,

which tend to support our correction compared with the tree in

Rel.74. As for the 40% remaining trees, half of them have more

NADs than the corresponding tree in Rel.74, which suggests that

applying our correction to all NAD, instead of just the highest

one, would help to obtain better results.

Fig. 4. Normalized RF-distance between corrected gene trees (by modi-

fication of the highest NAD) from Rel. 70 and corresponding gene trees

in Rel. 74. Blue curve: transformation of the highest NAD into a speci-

ation. Red curve: trees with a non-trivial polytomy after pushing by

multifurcation. Yellow curve: all trees

&
'

Fig. 5. Normalized RF-distance between corrected trees (yellow curve)

and Rel. 74 trees (blue curve) and original Rel. 70 trees

i524

M.Lafond et al.

[
23]
more than
,
In order
``
''
-
about
more than
about
more than
in order
,
very
to
to
st
to

Finally, we evaluated the effect of NAD correction on the tree
likelihood. For this purpose, we selected the 1891 Ensembl Rel.74

gene trees of the considered monophyletic group containing at

least one NAD, and we corrected each NAD individually. The

sequences were aligned using ClustalW (Larkin et al., 2007) and

the likelihood values were computed with PhyML (Guidon et al.,

2003). For a tree T and a NAD node x, denote by Tx the tree
obtained after correcting x. For each T and each x, we computed

the log-likelihood ratio LðxÞ=logLHðTÞ=logLHðTxÞ. Among the

4454 NAD nodes found in the considered set of trees, 95.4% of

the L(x) ratios were between 0.98 and 1.02. Although the cor-

rection algorithm is not expected to outperform the Ensembl

protocol in terms of likelihood as it ignores sequences, we

found that the likelihood of the tree has been improved
(L(x)41) after correction for 43.9% of the NAD nodes.

Moreover, 1180 (62.4%) trees contained at least one NAD

node improving the likelihood.

7 CONCLUSION

The present work is dedicated to the polytomy refinement prob-

lem. While the mutation cost of reconciliation has been used pre-

viously as an optimization criterion for choosing an appropriate

binary tree, here we use an alternative criterion, which is the mini-

mization of NADs. The tractability of the MinNADref Problem

remains open, as is the problem to select, among all possible so-

lutions, those leading to a minimum reconciliation cost. Although
developing a gene tree correction tool is not the purpose of this

article, we show how our algorithm for polytomy refinement can

be used in this context, by developing a simple algorithm allowing

to correct a single NAD. This algorithm has been applied to trees

of a previous Ensembl release, and the corrected trees have been

compared with the trees of the current Ensembl release. A good
correlation between the two sets of trees is observed, which tends

to support our correction paradigm. While minimizing NADs

cannot be a sufficient criterion for gene tree correction, it should

rather be seen as one among others, such as statistical (Wu et al.,

2012), syntenic (Lafond et al., 2013) or based on reconciliation

with the species tree (Chaudhary et al., 2011; Lafond et al., 2013;
Swenson et al., 2010), that can be integrated in a methodological

framework for gene tree correction.

Funding: N.E.-M. and M.L. are supported by ‘Fonds de
recherche du Qu�ebec—Nature et technologies’ (FRQNT). C.C.

and N.E.-M. are supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC). R.D. is sup-

ported by the MIUR PRIN 2010–2011 grant ‘Automi e

Linguaggi Formali: Aspetti Matematici e Applicativi’, code

H41J12000190001.

Conflict of interest: none declared.

REFERENCES

Akerborg,O. et al. (2009) Simultaneous bayesian gene tree reconstruction and rec-

onciliation analysis. Proc. Natl Acad. Sci. USA, 106, 5714–5719.

Beiko,R.G. and Hamilton,N. (2006) Phylogenetic identification of lateral genetic

transfer events. BMC Evol. Biol., 6, 15.

Berglund-Sonnhammer,A.C. et al. (2006) Liberles. Optimal gene trees from se-

quences and species trees using a soft interpretation of parsimony. J. Mol.

Evol., 63, 240–250.

Boussau,B. et al. (2012) Genome-scale coestimation of species and gene trees.

Genome Res., 23, 323–330.

Chang,W.C. and Eulenstein,O. (2006) Reconciling gene trees with apparent poly-

tomies. In: COCOON 2006. Lecture Notes in Computer Science. Vol. 4112,

Springer, Taiwan, pp. 235–244.

Chaudhary,R. et al. (2011) Efficient error correction algorithms for gene tree rec-

onciliation based on duplication, duplication and loss, and deep coalescence.

BMC Bioinformatics, 13 (Suppl.10), S11.

Chauve,C. and El-Mabrouk,N. (2009) New perspectives on gene family evolution:

losses in reconciliation and a link with supertrees. RECOMB 2009. Lecture

Notes in Computer Science. Vol. 5541, Springer, USA, pp. 46–58.

Chen,K. et al. (2000) Notung: dating gene duplications using gene family trees.

J. Comp. Biol., 7, 429–447.

Corneil,D.G. et al. (1985) A linear recognition algorithm for cographs. SIAM

J. Comput., 14, 926–934.

Datta,R.S. et al. (2009) Berkeley phog: phylofacts orthology group prediction web

server. Nucleic Acids Res., 37, W84–W89.

Doroftei,A. and El-Mabrouk,N. (2011) Removing noise from gene trees. WABI

2011. Lecture Notes in Bioinformatics. Vol. 6833, Springer, Germany, pp. 76-

91.

Durand,D. et al. (2006) A hybrid micro-macroevolutionary approach to gene tree

reconstruction. J. Comput. Biol., 13, 320–335.

Larkin,M.A. et al. (2007) Clustalw and clustalx version 2. Bioinformatics, 23,

2947–2948.

Flicek,P. (2012) Ensembl 2012. Nucleic Acids Res., 40, D84–D90.

Gorecki,P. and Eulenstein,O. (2011a) Algorithms: simultaneous error-correction

and rooting for gene tree reconciliation and the gene duplication problem.

BMC Bioinformatics, 13 (Suppl. 10), S14.

Gorecki,P. and Eulenstein,O. (2011b) A linear-time algorithm for error-corrected

reconciliation of unrooted gene trees. ISBRA 2011. Lecture Notes in

Bioinformatics. Vol. 6674, Springer, China, pp. 148–159.

Guidon,S. and Gascuel,O. (2003) A simple, fast and accurate algorithm to estimate

large phylogenies by maximum likelihood. Syst. Biol., 52, 696–704.

Hahn,M.W. et al. (2007) Gene family evolution across 12 drosophilia genomes.

PLoS Genet., 3, e197.

Hellmuth,M. et al. (2013) Orthology relations, symbolic ultrametrics, and cographs.

J. Math. Biol., 66, 399–420.

Huerta-Cepas,J. et al. (2011) Phylomedb v3.0: an expanding repository of genome-

wide collections of trees, alignments and phylogeny-based ozrthology and par-

alogy predictions. Nucleic Acids Res., 39, D556–D560, 2011.

Lafond,M. et al. (2012) Gene tree correction guided by orthology. BMC

Bioinformatics, 14 (Suppl. 15), S5.

Lafond,M. et al. (2013) Models and algorithms for genome evolution. In: Error

Detection and Correction of Gene Trees. Springer, Canada. 2013.

Lafond,M. et al. (2012) An optimal reconciliation algorithm for gene trees with

polytomies. WABI 2012. Lecture Notes in Computer Science. Vol. 7534.

pp. 106–122.

Mi,H. et al. (2012) Panther in 2013: modeling the evolution of gene function, and

other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res., 41,

D377–D386.

Rasmussen,M.D. and Kellis,M. (2011) A bayesian approach for fast and accurate

gene tree reconstruction. Mol. Biol. Evol., 28, 273–290.

Ronquist,F. and Huelsenbeck,J.P. (2003) MrBayes3: Bayesian phylogenetic infer-

ence under mixed models. Bioinformatics, 19, 1572–1574.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for re-

constructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

Schreiber,F. et al. (2013) Treefam v9: a new website, more species and orthology-on-

the-fly. Nucleic Acids Res, 42, D922–D925.

Scornavacca,C. et al. (2009) From gene trees to species trees through a supertree

approach. LATA 2009. Lecture Notes in Computer Science. Vol. 5457. pp.

702–714.

Swenson,K.M. et al. (2012) Gene tree correction for reconciliation and species tree

inference. Algorithms Mol. Biol., 7, 31.

Sz€ollosi,G.J. et al. (2013) Efficient exploration of the space of reconciled gene trees.

Syst. Biol., 62, 901–912.

Nguyen,T.H. et al. (2013) Reconciliation and local gene tree rearrangement can be

of mutual profit. Algorithms Mol. Biol., 8, 12.

Thomas,P.D. (2010) GIGA: a simple, efficient algorithm for gene tree inference in

the genomic age. BMC Bioinformatics, 11, 312.

Vernot,B. et al. (2008) Reconciliation with non-binary species trees. J. Comput.

Biol., 15, 981–1006.

i525

Polytomy refinement

[13]
[17]
a total of
non-apparent duplications (
)
paper
to
[37]
[21]
[
6,
22,
30]
l-
abrouk
 Lafond
``
 -
''
hauve
l
Mabrouk
Dondi
-
``
''

Vilella,A.J. et al. (2009) EnsemblCompara genetrees: complete, duplication-aware

phylogenetic trees in vertebrates. Genome Res., 19, 327–335.

Wapinski,I. et al. (2007) Automatic genome-wide reconstruction of phylogenetic

gene trees. Bioinformatics, 23, i549–i558.

Wu,Y-C. et al. (2012) Treefix: statistically informed gene tree error correction using

species trees. Syst. Biol., 62, 110–120.

Zheng,Y. et al. (2012) Reconciliation of gene and species trees with polytomieseprint

arXiv:1201.3995.

i526

M.Lafond et al.

