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ABSTRACT 

Heparanase that was cloned from and is abundant in the placenta is implicated in cell invasion, tumor 
metastasis, and angiogenesis. Recently we have demonstrated that heparanase may also affect the 
hemostatic system in a non-enzymatic manner. Heparanase was shown to up-regulate tissue factor (TF) 
expression and interact with tissue factor pathway inhibitor (TFPI) on the cell surface, leading to 
dissociation of TFPI from the cell membrane of endothelial and tumor cells, resulting in increased cell 
surface coagulation activity. More recently, we have shown that heparanase directly enhances TF 
activity, resulting in increased factor Xa production and activation of the coagulation system. Data 
indicate increased levels and possible involvement of heparanase in vascular complications in 
pregnancy. Taking into account the prometastatic and proangiogenic functions of heparanase, 
overexpression in human malignancies, and abundance in platelets and placenta, its involvement in the 
coagulation machinery is an intriguing novel arena for further research. 
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INTRODUCTION 

Cancer patients have a prothrombotic state 
because of the ability of cancer cells to activate the 
coagulation system and to interact with 
hematopoietic cells, thus tilting the balance 

 

between procoagulants and anticoagulants.1 
Overexpression of tissue factor (TF), cancer 
procoagulant—a cysteine protease that activates 
factor X—and acquired activated protein C 
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resistance,2 are thought to be the main factors for 
coagulopathy in malignant disorders. TF is a trans-
membrane receptor that is constitutively 
expressed in tumors, i.e. human leukemias, 
lymphomas, adenocarcinomas, and sarcomas.3 TF 
also plays a role in cellular signaling, contributing 
to tumor growth and metastasis.3,4 The only 
known endogenous modulator of blood coagula-
tion initiated by TF is tissue factor pathway inhib-
itor (TFPI)—a plasma Kunitz-type serine protease 
inhibitor.5,6 Growing evidence suggests the 
involvement of tumor-derived proteins, including 
heparanase, in activation of the coagulation 
system. 

HEPARANASE  

Heparanase is an endo-β-D-glucuronidase capable 
of cleaving heparan sulfate (HS) side chains at a 
limited number of sites, yielding HS fragments of 
still appreciable size (~5–7 kDa).7,8 Heparanase 
activity has long been detected in a number of cell 
types and tissues. Importantly, heparanase activity 
correlated with the metastatic potential of tumor-
derived cells, attributed to enhanced cell 
dissemination as a consequence of HS cleavage 
and remodeling of the extracellular matrix (ECM) 
barrier.9,10 Similarly, heparanase activity was 
implicated in neovascularization, inflammation, 
and autoimmunity, involving migration of 
vascular endothelial cells and activated cells of the 
immune system.9–11 A single human heparanase 
cDNA sequence was independently reported by 
several groups.12–15 Thus, unlike the large number 
of proteases that can degrade polypeptides in the 
ECM, one major heparanase appears to be used by 
cells to degrade the HS side chains of HS 
proteoglycans. Expression of heparanase is 
restricted primarily to the placenta, keratinocytes, 
platelets, and activated cells of the immune 
system, with little or no expression in connective 
tissue cells and most normal epithelia.9,10 Up-
regulated expression of heparanase was noted in 
essentially all human tumors examined, as well as 
in inflammation, wound healing, and diabetic 
nephropathy.9–11 During embryogenesis, the 
enzyme is preferentially expressed in cells of the 
developing vascular and nervous systems.16 

PROMETASTATIC PROPERTIES OF 

HEPARANASE 

The clinical significance of the enzyme in tumor 
progression emerges from a systematic evaluation 
of heparanase expression in primary human 
tumors. Immunohistochemistry, in-situ hybridiza-
tion, RT-PCR, and real-time PCR analyses 
revealed that heparanase is up-regulated in 
essentially all human tumors examined. These 
include carcinomas of the colon,17,18 thyroid,19 
liver,20 pancreas,21,22 bladder,23,24 cervix,25 breast,26 
gastric,27,28 prostate,29 head and neck,30,31 as well 
as multiple myeloma,32 leukemia, and lymph-
oma.33 In most cases, elevated levels of 
heparanase were detected in about 50% of the 
tumor specimens, with a higher incidence in 
pancreatic (78%) and gastric (80%) carcinomas, 
and in multiple myeloma (86%). In all cases, 
normal tissue adjacent to the malignant lesion 
expressed little or no detectable levels of 
heparanase, suggesting that epithelial cells do not 
normally express the enzyme. In several 
carcinomas, most intense heparanase staining was 
localized to the invasive front of the tumor,23,28,30 
supporting a role for heparanase in cell invasion. 
Furthermore, patients that were diagnosed as 
heparanase-positive exhibited a significantly 
higher rate of local and distant metastasis as well 
as reduced postoperative survival, compared with 
patients that were diagnosed as heparanase-
negative.18,22,23,28,32 Collectively, these studies 
provide strong clinical support for the promet-
astatic function of heparanase. Interestingly, 
patient survival was noted to correlate not only 
with heparanase levels, but also with its 
localization. In addition to its presence in the 
cytoplasm, heparanase was also noted to assume 
nuclear localization, demonstrated by cell 
fractionation,34 and by immunostaining of 
cultured cells34 and tumor biopsies.27,35 Inter-
estingly, nuclear localization was correlated with 
maintained cellular differentiation35 and favorable 
outcome of patients with gastric27,35 and head and 
neck carcinomas,36 suggesting that heparanase is 
intimately involved in gene regulation. Whether 
gene transcription and maintained cellular 
differentiation is due to direct interaction of 
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heparanase with the DNA or is a consequence of 
heparanase-mediated nuclear-HS degradation is 
yet to be demonstrated. In addition, heparanase 
up-regulation in primary human tumors 
correlated in some cases with larger tumors,20,26,28 
and with enhanced microvessel density,18,20,24,32 
providing clinical support for the proangiogenic 
function of the enzyme. 

HEPARANASE POLYMORPHISMS 

Heparanase gene single nucleotide poly-
morphisms (SNPs) were characterized in Jewish 
populations of Israel.37 Four Israeli Jewish pop-
ulations (Ashkenazi, North African, Mediter-
ranean, and Near Eastern) were examined for 
seven heparanase gene SNPs. Four out of seven 
SNPs were found to be polymorphic. Population 
comparisons revealed significant differences in 
SNPs allele frequency between Near Eastern and 
each of the other three populations. Genotype and 
allele frequencies in Jewish populations were 
different from non-Jewish populations, except for 
a certain similarity to Caucasians.37 Ostrovsky et 
al. found an association of heparanase gene SNPs 
with hematological malignancies.38 Genotype 
frequency comparisons revealed a significant 
association of specific SNPs with multiple 
myeloma (MM), acute myeloid leukemia (AML), 
and acute lymphoblastic leukemia (ALL) patients. 
Examination of heparanase gene mRNA 
expression by real-time RT-PCR indicated a 
significantly lower heparanase expression level in 
ALL patients and a higher expression level in MM 
and AML patients, compared to healthy controls.38 
The findings were not verified in ALL patients 
from Northern Ireland.39 Ralph et al. reported on 
an association between a specific heparanase SNP 
and stage of ovarian cancer disease, while the 
association was not found in vascular endothelial 
growth factor (VEGF) SNPs.40 Further research is 
needed to explore the clinical relevance of 
heparanase polymorphism detection.  

INTERACTION OF HEPARANASE WITH 

HEPARINS 

Anticoagulant activities of cell surfaces have been 
predominantly attributed to HS,41,42 which is 
composed of repeating hexuronic and D-
glucosamine sulfated disaccharide units. HS has 
been shown to exert anticoagulant activities on 
cells, on ECM, and in tissues due to its catalyzing 
function for protease inhibition by antithrombin 

and subsequent complex formation.41–43 More-
over, cell surface HS can facilitate the catabolism 
of coagulation factors such as factor VIII.44 Other 
coagulation inhibitors such as TFPI also associate 
with the luminal face of the endothelial cell 
plasma membrane via HS.45 HS is also important 
constituents of the subendothelial basement 
membrane, where they cross-link various com-
ponents, e.g. laminin and collagens, thereby 
contributing to the integrity of the blood vessel 
wall.46 HS, unfractionated heparin, and other 
heparin derivatives have been investigated as 
heparanase inhibitors, and some of them exerted 
antimetastatic activity in animal models.47 Both 
the type of the polysaccharide backbone and the 
degree of sulfation seem to affect the heparanase-
inhibiting activity of sulfated polysaccharides.48,49 
However, different heparin preparations display 
significantly different antiheparanase activity,48,49 
indicating that this activity is also dependent on 
more subtle structural features. Recently, 
heparanase’s strong affinity to heparins was utilized 
in vitro to reverse heparin’s effect. Heparanase was 
shown to reverse the anticoagulant activity of 
unfractionated heparin on the coagulation 
pathway as well as on thrombin activity. In 
addition, heparanase abrogated the factor Xa 
inhibitory activity of low-molecular-weight 
heparin (LMWH). The procoagulant effects of 
heparanase were also exerted by its major 
functional heparin-binding peptide.50 

HEPARANASE AS A CO-FACTOR TO TF 

ACTIVITY 

Tissue factor is constitutively expressed in various 
cell types, including pericytes adjacent to the 
vessel wall, but absent from the blood cell and 
endothelial cell surface. This localization is crucial 
for hemostasis since it prevents a direct contact 
between TF and the circulating blood. Immuno-
histochemical studies revealed that many tumors 
express high levels of TF, including leukemia 
cells,51 raising the possibility of a TF role in the 
pathogenesis of cancer.1 We have demonstrated 
that heparanase overexpression in human 
leukemia, glioma, and breast carcinoma cells 
results in a marked increase in TF levels verified by 
immunoblot and real-time PCR analyses.52 
Likewise, TF was induced by exogenous addition of 
recombinant heparanase to tumor cells and 
primary endothelial cells, induction that was 
mediated by p38 phosphorylation and correlated 
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with enhanced procoagulant activity. TF induction 
was further confirmed in heparanase-
overexpressing transgenic mice and, moreover, 
correlated with heparanase expression levels in 
leukemia patients.52 Lately, heparanase was found 
to exert also non-enzymatic activities, inde-
pendent of its involvement in ECM degradation 
and alterations in the extracellular micro-
environment.53 For example, inactive heparanase 
enhances Akt signaling and stimulates PI3K- and 
p38-dependent endothelial cell migration and 
invasion.54 It also promotes VEGF expression via 
the Src pathway.55 Up-regulation of TF adds 
another example of the multiple non-enzymatic 
functions of heparanase. Recently, we have 
demonstrated that heparanase may serve as a co-
factor of TF, suggesting that heparanase is directly 
involved in activation of the coagulation cascade.56 
The findings were supported by experiments 
indicating that heparanase increases the level of 
factor Xa in the presence of TF/VIIa and the effect 
is enzymatically independent. The newly 
generated Xa had the same molecular weight as 
Xa cleaved by TF/VIIa and was active as depicted 
by increased conversion of prothrombin to 
thrombin. Increased Xa generation in the 
presence of heparanase was shown to be relevant 
in the clinical setting. Thus, apart from the ability 
of heparanase to increase Xa levels in normal 
human plasma, a statistically significant positive 
correlation was found in patients with acute 
leukemia and healthy donors between the plasma 
levels of heparanase and Xa.56  

HEPARANASE AND TFPI 

TFPI is a plasma Kunitz-type serine protease 
inhibitor and the only known endogenous 
modulator of blood coagulation initiated by TF.5,6 
TFPI concentration in plasma is increased in 
patients with acute myocardial infarction.57,58 
There are also reports on the plasma levels of TFPI 
in relation to disseminated intravascular coag-
ulation59 and to other diseases, such as diabetes 
mellitus,60 renal diseases,61 and cancer.62,63 
Recently we demonstrated that exogenous addi-
tion or overexpression of heparanase by trans-
fected cells resulted in release of TFPI from the 
cell surface and its accumulation in the cell culture 
medium.64 Importantly, the in-vitro studies were 
supported by elevation of TFPI levels in the 
plasma of transgenic mice overexpressing 
heparanase. Moreover, increased levels of TFPI 
have been noted in the plasma of cancer 
patients,62,63 reflecting, possibly, induction of 
heparanase expression and elevation of its plasma 
levels revealed by a newly developed ELISA 
assay.65 In human umbilical vein endothelial cell 
(HUVEC) and tumor-derived cell lines, release of 
TFPI from the cell surface correlated with 
enhanced TF-mediated coagulation. This effect 
was evident already 30 min following heparanase 
addition and prior to the induction of TF52 or TFPI 
expression. Thus, heparanase enhances local 
coagulation activity by two independent 
mechanisms: induction of TF expression52 and 
TFPI dissociation from the cell surface. Both 

 

Figure 1. A model of the interaction between heparanase (Hepa), TF, and TFPI. 

Heparanase interacts with TF resulting in increased generation of factor Xa and enhancement of the coagulation 

system. Heparanase also up-regulates TF expression and releases TFPI from the cell surface, rendering the cell 

surface highly procoagulant. TFPI and heparanase may circulate as a complex in the plasma. 
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functions require secretion of heparanase, but not 
its enzymatic activity. The underlying mechanism 
is apparently release of TFPI due to its physical 
interaction with the secreted heparanase, as 
clearly evident by co-immunoprecipitation 
experiments,64 reflecting a functional interaction 
between heparanase and a membrane protein. 

Elevated levels of heparanase may be 
generated locally upon degranulation of 
neutrophils, mast cells, and platelets,66 further 
facilitating blood coagulation at the site of platelet 
activation. The hemostatic function of heparanase, 
executed by inducing TF expression and releasing 
TFPI from the endothelial cell surface, provides a 
mechanism by which heparanase contributes to 
tumor complication, in addition to its established 
proangiogenic and prometastatic activities.67,68  

A MODEL FOR INTERACTION BETWEEN 

HEPARANASE, TF, AND TFPI 

Platelets and tumor cells have abundant amounts 
of heparanase.53 Activation of the coagulation 
system, including platelet activation, occurs in 
malignant and angiogenic processes.69 
Heparanase is directly involved in activation of the 
coagulation system by enhancing factor Xa 
production in the presence of the TF/VIIa 
complex. Additionally, heparanase released from 
activated platelets and tumor cells induce up-
regulation of TF in the cells. Heparanase-
mediated release of TFPI from the cell surface, 
together with its induction of TF, renders the cell 
surface highly procoagulant. Heparanase may also 
form complexes with TFPI and circulate in the 
plasma, possibly binding to endothelial cells and 
other intravascular components, i.e. platelets and 
microparticles. These aspects are depicted in 
Figure 1. 

Pregnancy causes an acquired hypercoagulable 
state, and women with a prior tendency to 
thrombosis may present with clinical symptoms of 
placental vascular complications. Maternal 
thrombophilia can be associated with placental 
vascular events, although 30%–50% of vascular 
gestational pathologies cannot be accounted for by 
the currently available tests for thrombophilia.70 
Thus, an understanding of the hemostasis in the 
placenta, especially the dominant factors that 
regulate the delicate hemostatic balance 
throughout pregnancy, is essential. Heparanase is 
abundant in the placenta and was originally cloned 

from placenta tissue. Additionally, estrogen was 
found to up-regulate heparanase gene expression 
in human endometrium71 and breast cancer.72 
Recently, we investigated the role of heparanase in 
the placenta, focusing on its effect on TF, TFPI, 
TFPI-2, and VEGF-A.73,74 In these two studies 
placenta samples of women with recurrent 
abortions and thrombophilia (weeks 6–10) were 
compared to control cases of pregnancy 
terminations and placentas of normal vaginal 
deliveries, and intrauterine growth-restricted 
(IUGR) babies were compared to control cases of 
elective cesarean sections, applying real-time RT-
PCR and immunostaining. Sections obtained from 
miscarriages and vaginal and IUGR deliveries 
revealed increased (2–3-fold) levels of 
heparanase, VEGF-A, and TFPI-2 compared to 
placentas from controls in maternal as well as in 
fetal placenta elements. A possible common 
denominator of the cases is vascular insufficiency: 
in vaginal deliveries lasting intermittently for a 
few hours; in miscarriages and IUGR babies it 
may represent a prolonged state. As heparanase 
directly activates the coagulation system,56 
increased heparanase found in the placentas may 
contribute to placental vascular complications as 
summarized in Figure 2.  

 

Figure 2. Heparanase, TFPI-2, and VEGF-A are 

elevated in placentas with vascular insufficiency. 

A schematic summary of two studies73,74 implying 

elevated levels of heparanase, TFPI-2, and VEGF-A in 

placentas of women with recurrent fetal losses, IUGR 

deliveries, and normal vaginal deliveries. In these 

three conditions vascular insufficiency occurs. As 

heparanase has a procoagulant role, it potentially can 

contribute to thrombosis in these placentas. 
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CONCLUSIONS 

Heparanase was recently revealed as an important 
modulator of blood coagulation. The elevation of 
heparanase levels in human tumors, together with 
the prothrombotic state of most neoplasms, 
suggests possible clinical relevance of the 
procoagulant function of heparanase. In addition 
its increased levels in pregnancy vascular compli-
cations accentuate heparanase significance in 
other proangiogenic states. In order to augment 
the understanding of heparanase we lately 
developed an assay to evaluate heparanase pro-
coagulant activity in the plasma,75 enabling further 
extensive research in the field. Targeting domains 
of heparanase that mediate its enzymatic activity-
dependent and independent functions may prove 
beneficial for patients with proangiogenic and 
prothrombotic conditions. 
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