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ABSTRACT

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common
chronic hepatic disorder worldwide in both adults and children. It is well established that MASLD repre-
sents the hepatic manifestation of the metabolic syndrome whose definition includes the presence of
obesity, type 2 diabetes (T2D), dyslipidemia, hypertension and hypercoagulability. All these conditions
contribute to a chronic inflammatory status which may impact on blood brain barrier (BBB) integrity
leading to an impaired function of central nervous system (CNS).

Aim of review: Since the mechanisms underlying the brain-liver-gut axis derangement are still inconclu-
sive, the present narrative review aims to make a roundup of the most recent studies regarding the cog-
nitive decline in MASLD also highlighting possible therapeutic strategies to reach a holistic advantage for
the patients.

Key Scientific Concepts of Review: Due to its ever-growing prevalence, the MASLD-related mental dysfunc-
tion represents an enormous socio-economic burden since it largely impacts on the quality of life of
patients as well as on their working productivity. Indeed, cognitive decline in MASLD translates in low
concentration and processing speed, reduced memory, sleepiness but also anxiety and depression.
Chronic systemic inflammation, hyperammonemia, genetic background and intestinal dysbiosis possibly
contribute to the cognitive decline in MASLD patients. However, its diagnosis is still underestimated since

Abbreviations: MASLD, metabolic dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-associated steatohepatitis; HCC, hepatocellular carcinoma;
T2D, type 2 diabetes; NO, nitric oxide; RHI, reactive hyperemia index; BBB, blood brain barrier; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; IR, insulin
resistance; BMI, body mass index; GGT, gamma-glutamyltransferase; FFAs, free fatty acids; LTD, long term depression; ROS, reactive oxidative species; APOE, apolipoprotein
E; AD, Alzheimer’s disease; SNP, single nucleotide polymorphism; PDE7A, phosphodiesterase 7A; MTFR1, mitochondrial fission regulator 1; GWAS, genome wide association
studies; CRP, C-reactive protein; CNS, central nervous system; HFHC, high fat high cholesterol; SCFAs, short chain fatty acids; GABA, gamma-aminobutyric acid; LGG,
Lactobacillus rhamnosus; HSCs, hepatic stellate cells; BCAA, branched-chain amino acids.
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the leading mechanisms are multi-faceted and unexplained and do not exist standardized diagnostic
tools or cognitive test strategies. In this scenario, nutritional and lifestyle interventions as well as intesti-
nal microbiota manipulation (probiotics, fecal transplantation) may represent new approaches to coun-
teract mental impairment in these subjects.

In sum, to face the “mental aspect” of this multifactorial disease which is almost unexplored, cognitive
tools should be introduced in the management of MASLD patients.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Background ham study, MASLD patients with higher risk to develop fibrosis

The prevalence of metabolic dysfunction-associated steatotic
liver disease (MASLD) is ramped up in the past three decades thus
representing a health and socio-economic burden in about one
fourth of the world population, including both adults and children
[1]. MASLD ranges over a spectrum of liver conditions starting from
simple steatosis which is defined by triglyceride accumulation
in > 5 % of hepatocytes, in the absence of other causes of lipid over-
load (i.e., alcohol abuse). Steatosis may remain uncomplicated or
progress to metabolic dysfunction-associated steatohepatitis
(MASH) related to lobular inflammation, hepatocellular degenera-
tion and fibrosis, finally leading to cirrhosis and hepatocellular car-
cinoma (HCC) [2].

MASLD is highly intertwined with obesity, type 2 diabetes (T2D)
and other clinical conditions as dyslipidemia and hypertension
which contribute to its extra-hepatic complications including car-
diovascular and kidney diseases, vascular dysfunction, arterial
remodeling, atherosclerosis and cognitive decline [3]. Insulin resis-
tance (IR) is the shared pathogenic mechanism between obesity
and T2D, whose co-presence reaches almost 100 % of prevalence
in MASLD. Both conditions which are featured by chronic inflam-
mation due to cytokines release from adipocytes, impaired glyce-
mic control and enhanced oxidative stress have been largely
associated with mental illness, psychiatric and neurodegenerative
disorders [4]. In addition, nutritional risk factors and lifestyle
habits through a vicious cycle further potentiate the inflammatory
milieu thus amplifying the cognitive decay.

In line with the aforementioned, it has been reported that up to
70 % of MASLD patients show depression, problems with the mem-
ory, confusion and low concentration which largely impact on their
quality of life [5]. In a cross-sectional study of 4,472 adults aged
20-59 years who participated in the Third National Health and
Nutritional Examination Survey, a lower cognitive performance
has been demonstrated in patients with MASLD independently of
cardiovascular disease and other risk factors [6]. In the Framing-
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exhibited signs of impaired function reasoning compared to those
with low risk although overall MASLD was not associated with cog-
nitive dysfunction [7]. By using NHANES data from 2011 to 2014,
Weinstein and colleagues found that individuals with both MASLD
and T2D showed lower cognitive performance in terms of process-
ing speed, sustained attention and working memory than individ-
uals with neither [8].

Youssef and colleagues examined the association of depression
and anxiety with the severity of MASLD in 567 biopsied patients.
They found that the former was related to more severe hepatic bal-
looning at logistic regression models [9]. An inverse correlation
between ballooning degree and reactive hyperemia index (RHI)
and a lower mini-mental state examination have been found in a
study which enrolled 80 patients with biopsy-proven MASLD and
83 controls without fatty liver disease. RHI score reflects nitric
oxide (NO) bioavailability thus indicating a measurement of
endothelial vasodilator function thus possibly predicting cardio-
vascular outcomes. The authors suggested a reduced cognitive per-
formance in MASLD patients with higher arterial stiffness [10].
Furthermore, another study reported that MASLD is associated
with a smaller total cerebral brain volume, indicating a possible
link between hepatic steatosis and brain aging [11].

However, the association between MASLD and cognitive
impairment is still controversial, mainly due to different types of
diagnostic tools or cognitive test strategies exploited and the
underlying mechanisms are only conceivable. Moreover, limited
time of follow-up and small sample size further mislead data inter-
pretation. Finally, since MASLD is closely entangled with obesity
and IR, it is challenging to dissect the contribution of liver damage
per se in precipitating cognitive function.

Therefore, the present narrative review aims to provide a
roundup of the literature concerning the connection between
metabolic disturbances and cognitive function which is
emerging as a further note to face in the management of MASLD
patients.
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The metabolic importance of adipose tissue depots in determining
cognitive decline

Given the worldwide spreading of overweight among all-age
groups, cognitive impairment linked to obesity and its comorbidi-
ties, including MASLD, may represent a serious health concern.
This notion gains even more value if we consider the aging of the
global population and the lack of available preventive strategies
for the cognitive deterioration.

Although it has been largely described that increased body fat
depots may contribute to several metabolic alterations, thus fos-
tering the risks of metabolic syndrome, T2D, cardiovascular dis-
eases and so on, less is known regarding their impact on the
cognitive sphere.

Depending on the location of fat storages, adipose tissue is
mainly subdivided into subcutaneous and visceral adipose tissues
(SAT and VAT). The latter is primarily connected to a higher pro-
inflammatory milieu, oxidative stress, unfavorable metabolic and
vascular outcomes, compared to SAT. Accordingly, it has been
established that the low-grade systemic inflammation, IR and
endothelial dysfunctions contribute to trigger a more prone neu-
roinflammatory environment in obese individuals in which VAT
expansion occurs.

Previous studies reported that adiposity and body mass index
(BMI) inversely correlated with lower executive performance
[12], working memory, learning [13] and verbal fluency [14] in
both adults and children [15]. More in deeply, Moh and colleagues
demonstrated that the expanded VAT (>100 cm?) influenced the
delayed memory, cognitive and language scores, in 677 Asian
patients affected by T2D, thus pointing out that visceral adiposity
may participate in the pathogenesis of cognitive dysfunctions
[16]. Similarly, a cross-sectional study conducted in 9,189 adults
between 30 and 75 years of age demonstrated that excessive
VAT increased was a risk factor for reduced cognitive scores, inde-
pendently of educational levels, cardiovascular risk factors and
vascular brain injuries [17].

In keeping with these observations, it has been reported that
the presence of ectopic fat correlated with an increased risk of
developing a cognitive impairment, whereas SAT might exert a
protective role [18]. Indeed, specific regional lipid depots lead to
abnormal adipokine secretion penetrating the blood-brain barrier
(BBB) and driving brain injuries thus leading to different neurobi-
ological modifications and ultimately to various cognitive-related
outcomes and dementia [19]. Moreover, sex differences in regional
fat distribution should be considered and the evaluation of BMI
alone does not account for this discrepancy. In particular, women
are characterized by high SAT storages compared to men, thus less
affecting cognition [19].

Notably, given that MASLD often occurs in the co-presence of
other metabolic risk factors, it is difficult to dissect the impact of
liver steatosis and steatohepatitis from that of other components
of the metabolic syndrome, which are associated with declines in
mental skills [20,21]. For instance, IR has been outlined as causa-
tive of poor function in multiple cognitive domains and global
brain atrophy [21], while in elderly, T2D 2.4-fold increases the risk
of developing dementia [22], neuropathy and retinopathy, due to
vascular abnormalities, oxidative damage and synaptic failure.

Intriguingly, Xu and colleagues pointed out the tempo-occipital
cortex, cerebellum and regions involved in sensorimotor and
reward systems, as vulnerable targets for cognitive failure also in
lean patients with liver disease [23]. However, the differences
between non-obese and obese MASLD need to be further
investigated.
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Cognitive deterioration in MASLD: A matter that remains to be
debated

The available evidence on non-cirrhotic MASLD related to
cognitive anomalies are often conflicting. A very recent cross-
sectional study among 180 patients who underwent bariatric
surgery defined that nearly half of them exhibited measurable cog-
nitive impairments, regarding short-time memory and executive
functions [24]. However, the authors concluded that these abnor-
malities were not associated with the presence of MASLD or MASH.
Similarly, a cross-sectional analysis within the Rotterdam Study
revealed that non-invasively assessed MASLD and fibrosis were
not associated with the increased risk of dementia and cognitive
impairment [25]. Conversely, a Swedish population-based study
on a total of 2,898 patients with MASLD and 28,357 matched con-
trols showed a modest trend for association of MASLD with the
rate of dementia [26]. Hence, larger studies conducted in biopsy-
proven MASLD patients, in which neuroimaging data are available
are required.

A cross-sectional study conducted in 320 biopsied patients
demonstrated that severe steatosis and ballooning were related
to higher memory defects, due to volume loss in left hippocampus
[27]. Likewise, elevated gamma-glutamyltransferase (GGT) levels
were associated with structural changes of total brain and grey
matter volumes and with hemodynamic cerebral markers within
the population-based Rotterdam Study across 3,493 patients,
[28], thus sustaining the previously described pro-oxidant and
pro-inflammatory nature of GGT. In line with these findings, also
Filipovi¢ and coworker observed a total tissue volume reduction
involving both white and gray matter in MASLD patients [29]. In
addition, it has demonstrated that patients with biopsy-proven
MASLD have a blunted cerebral perfusion in left semioval center
and posterior cingulate cortex which may contribute to cerebral
atherosclerosis [30].

A meta-analysis across 7 studies, including 891,562 individuals
from 6 countries, proved that the presence of MASLD increases the
risk of cognitive impairment [31]. Similarly, Yu and colleagues cor-
roborated the relationship between MASLD, and cognitive func-
tions based on the database of NHANES III, including 5,662
participants. This correlation is even stronger in those individuals
with a significant liver stiffness, moderate-severe steatosis, or
hyperglycemia mainly due to adipokine and cytokine imbalances
[32]. The association between liver damage, brain subcortical
changes and all causes of incident dementia, including vascular
and neurodegenerative ones, has been further corroborated by a
very recent prospective cohort study among 431,699 adults with
MASLD [33].

In particular, Younossi and collaborators demonstrated that
MASH significantly impact on the quality of life of patients,
whereby inducing fatigue and a considerable physical and mental
health deterioration [2]. In this context, skeletal-muscle disorders
(i.e., myosteatosis and sarcopenia) as well as severe hypovita-
minosis could also be important contributing factors to induce a
state of mental clouding and sickness [34,35].

Conversely, a sustained physical activity, a balanced diet and
adherence to Mediterranean diet seem to ameliorate memory,
attention, quality of life, depression and anxiety and prevent sev-
eral brain disorders including ischemic stroke, mild cognitive
impairment, dementia and Alzheimer’s disease (AD) [36]. The rela-
tionship between physical exercise and fine motor skills has been
further confirmed also by Weinstein and collaborators in subjects
with MASLD, suggesting that it may constitute not only a preven-
tive option for MASLD, but also for cognitive deterioration [37].
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Alongside, Mediterranean diet, vitamins, flavonoids and long chain
-3 fatty acids supplementation were associated with an improve-
ment of fatigue symptoms and with beneficial effects on cognitive
functions [38,39].

How genetics links metabolic alterations and cognitive impairment

The association between lipid levels, inflammation, and cogni-
tive impairment is complex. Lipid metabolism is related to inflam-
matory markers and apolipoprotein E (APOE) is a component of
circulating lipoproteins and a ligand for cholesterol transport
[52]. APOE protein is emerged as the almost exclusive lipid trans-
porter in the CNS, but it participates in several biological processes
including lipoprotein metabolism, inflammation, cell growth and
neuroprotection. ApoE knock out mice are characterized by synap-
tic loss, cognitive dysfunction and elevated plasma lipid levels that
can affect brain function. In addition, changes in cholesterol meta-
bolism occur simultaneously in the liver and brain and may be con-
sidered possible biomarkers of the both tissues aging [53].

It has been demonstrated that APOE €4 allele carriers have a
higher risk to develop both vascular dementia and AD compared
to noncarriers [54]. A possible explanation may be linked to choles-
terol distribution throughout the tissues. Indeed, preclinical stud-
ies indicated that during aging, cholesterol is primarily
accumulated into the liver, while it decreases in brain. In addition,
APOE plays a pivotal role in cholesterol trafficking from astrocytes
to neurons [53]. Moreover, it has been demonstrated that gut
microbiota modulation improves the cardio-metabolic profile in
ApoE-deficient mice and it has been shown an association between
APOE4 genotype and gut microbiome profiles in both humans and
mice models. Overall, the authors concluded that gut microbiome
should be addressed as a potential target to mitigate the deleteri-
ous impact of the APOE4 allele on cognitive decline [55].

Genome-wide association studies (GWAS) demonstrated a
strong association between variants affecting the rate of age-
related cognitive decline and APOE. Moreover, it has emerged that
the rs10808746 variant in the APOE gene affects the expression of
phosphodiesterase 7A (PDE7A) and mitochondrial fission regulator
1 (MTFR1) which are adjacent genes and potential regulators of
inflammation and oxidative stress [56,57].

Lutz et al. examined pleiotropic genetic effects on cognitive
impairment conditioned on genetic variants associated with sys-
temic inflammation and with plasma lipids by exploiting data
obtained from the Health and Retirement Study which is a repre-
sentative sample of older Americans. They showed that single
nucleotide polymorphisms (SNPs) related to cognitive impairment
were also associated with C-reactive protein (CRP), low-density
lipoproteins and total cholesterol, and they were located in genes
or in the proximity of genes involved in multiple pathological pro-
cesses including cholesterol metabolism, inflammation and mito-
chondrial transport [58].

In the attempt to define whether genetic loci associated with
metabolic traits also impact on cognitive impairment, Hebebrand
and colleagues performed a lookup analysis of variations which
reached a significance in GWAS related to metabolism in those
focused on cognitive defects. The authors found that about 5 %-
10 % of the 216 regions which were relevant for the regulation of
blood/urine metabolites possibly played a role also in mental dis-
orders [59].

Finally, a Mendelian randomization analysis revealed that
genetic traits related to insomnia were associated with MASLD,
ALT levels and percent of liver fat whereas those which are linked
to snoring and dozing were associated with steatosis grade thus
suggesting a relation between the steatotic phenotype and sleep
traits [60]. Therefore, not only obstructive sleep apnea is associated
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with MASLD but also sleep duration and state (i.e., insomnia)
should be considered in the management of the disease.

The liver — Brain axis: The hepatic homeostasis may influence mental
performances

Brain cognitive functions include a series of processes which
allow to receive, integrate, elaborate and store external informa-
tion. All these processes require a high amount of energy and
ATP production in brain mitochondria [21]. Mounting evidence
supports the notion that MASLD may foster low cognitive functions
along with brain structural changes. Nonetheless, the mechanisms
underlying these associations remain to be fully clarified and they
may possibly encompass several processes including inflammation
and oxidative stress, due to Kupffer cells and macrophages activa-
tion in the liver with the consequent release of pro-inflammatory
cytokines, which may bypass BBB [40]. All these events together
with obstructive sleep apnea, glycemic, hemodynamic and coagu-
lation disturbances trigger microglial cells activation, brain mito-
chondrial disorders, neuronal degeneration and cognitive
impairment [41]. Chronic microglial cells activation amplifies neu-
roinflammatory conditions by recruiting activated monocytes into
the brain, driving the impairment of axons and myelin sheaths and
neurotoxic effects [42].

Several preclinical and clinical studies supported the evidence
of cognitive dysfunctions and neuroinflammation during the MASH
outbreak. Accordingly, Balzano and collaborators detected an ele-
vated activation of microglia and astrocytes, lymphocyte infiltra-
tion, loss of Purkinje and granular neurons and microangiopathy
in patients affected by MASH, compared to controls by analyzing
post-mortem biopsies of hippocampus [43]. Furthermore, a two-
sample Mendelian Randomization analysis, across 33,992 partici-
pants, supported a causal relationship between MASLD and alter-
ations in cortical structures, particularly in the pars orbitalis
gyrus. More in details, genetically predisposed patients with
MASLD displayed a thinning of cortical thickness in this region
[44].

Specifically, cognitive declines observed in patients with
MASLD include defects in psychomotor and processing speed, sus-
tained attention, and visuospatial functions [8], together with low
memory performances [6], reduced executive functions, abstract
reasoning [7] and depression-like behavior [5]. Likewise, evidence
gathered from 11 studies determined that MASLD patients have
approximately four times higher risk of developing cognitive detri-
ments [45].

In addition, obesity and MASLD contribute to peripheral IR on
one hand, thus impairing insulin signaling and insulin-induced
long-term depression (LTD) in brain [41] and participate in
neuro-toxic ceramide overproduction, on the other [46]. Even
more, hyperglycemia drives the abnormal replication and death
of vascular endothelial cells and compromises BBB permeability
by altering the distribution of tight junction proteins and nutrients
transporters [47]. Hence, increased BBB permeability, vascular
injuries and hypoperfusion have been described in patients with
T2D [48].

Interestingly, functional and structural changes in brain mito-
chondria occurred during obesity, mainly as a consequence of reac-
tive oxygen species (ROS) overproduction, lower mitochondrial
biogenesis, mitochondrial depolarization and swelling [49]. More-
over, sustained or long-term changes in brain regional oxidative
metabolic capacity may affect neuronal communication. Hyperam-
monemia due to urea cycle impairment [50], severe deficit in
antioxidant vitamins and hyperhomocysteinemia induced worse
neuropsychological outcomes [35]. In addition, low-grade brain
inflammation triggers cerebral hypoxia, due to reduced oxygen
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delivery and/or utilization and the latter predisposes to neurode-
generative conditions [51].

Urea cycle impairment from pre-cirrhotic to cirrhotic MASLD driving
hepatic encephalopathy

In patients with cirrhosis, it has been largely described that
ammonia clearance through the conversion into urea is completely
burned out, as a consequence of the massive loss of functional hep-
atic tissue. High systemic levels of ammonia due to the impaired
urea cycle facilitate the pass of inflammatory molecules through
the BBB [86] and induce neuro-toxic effects, cerebral edema, brain
herniation, and seizures [87]. In particular, hyperammonemia
induces neuronal damage, astrocyte swelling, and poor synaptic
plasticity, leading to memory loss [88]. Indeed, astrocytes are
widely sensitive to the effects of ammonia, and in attempt to
detoxify themselves from hyperammonemia, a severe osmotic
stress is generated, altering their morphology and function.

However, an inefficacious ammonia disposal is observed early
in pre-cirrhotic MASLD. Indeed, it has been reported that the com-
promised activity of the urea cycle in MASH patients may likely
result from mitochondrial dysfunction and epigenetic alterations
in genes coding the urea cycle enzymes and from hepatocyte
senescence [86,89]. The fine-tuned urea synthetic processes are
required to regulate body nitrogen homeostasis and to retain low
ammonia at both cellular and systemic levels. Fatty liver per se ini-
tiates the intracellular accumulation of ammonia, next priming the
transition from simple steatosis to MASH, fibrosis and up to cirrho-
sis [90]. Specifically, hyperammonemia activates the hepatic stel-
late cells (HSCs), determining the induction of fibrogenesis and
fostering portal hypertension.

Interestingly, ammonia derangement may link MASLD also to
sarcopenia, chronic fatigue and reduced physical fitness, to the
point that its levels play a detrimental effect on muscle mass and
function [91]. Since ammonia passively diffuses through the
plasma membranes, its exacerbated uptake in muscle hesitates
into glutamine synthesis from branched-chain amino acids (BCAA)
determining their exhaustion. For this reason, in cirrhotic patients
with hepatic encephalopathy, BCAA supplementation is required to
rescue the amount of substrate for ammonia detoxification.

As aforementioned, high ammonia levels strongly affect mito-
chondrial ATP synthase activity, whereby enhancing ROS produc-
tion and oxidative damage in brain and muscle [50].
Furthermore, it compromises the immunity response, opening
the way to tumor immune escape mechanisms and increasing
the risk to develop hepatocellular carcinoma [92].

Nutrition and lifestyle interventions to improve cognitive performance
in MASLD patients

A preclinical study demonstrated that a long-term consumption
of high fat diets predisposed to cognitive disruptions mainly affect-
ing hippocampus, even in the absence of obesity, further corrobo-
rating the importance of nutritional choices on brain heath [93].
Conversely, alternate-day fasting provided advantages on cognitive
domains including working memory and synaptic structure in
obese mice, by softening oxidative stress, systemic inflammation
and microglial activation [94].

Although it is well recognized that lifestyle and physical activity
severely influenced the muscle strength and adiposity, less is
known regarding their impact on mental homeostasis preserva-
tion. A study across 2,377 overweight adults (age = 69.3 + 6.7 years;
BMI = 29.1 # 6.3 Kg/m?) from the NHANES 2011-2014 determined
that a sustained physical activity may ameliorate the executive
function and processing speed domains of cognition [95]. Accord-
ingly, 8-week supervised aerobic training in sedentary adult obese
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individuals (BMI, Kg/m? ranging from 27.5 to 45.5) improved brain
insulin sensitivity and strengthened hippocampal functional con-
nectivity [96]. Similarly, it has been described that a significant
weight loss following 18 months of lifestyle intervention might
have a neuroprotective effect on brain aging in adults
(age > 30 years) with abdominal obesity (waist circumference for
men > 102 cm, for women > 88 cm) [97]. The effect of physical
activity and dietary interventions have been investigated also in
a 2-year nonrandomized controlled trial in 504 overweight chil-
dren (aged 6-9 years), showing that a more balanced diet, charac-
terized by high low-fat milk consumption and an increased time
spent in organized sports and reading overall supported cognitive
development [98].

Together with BMI also severe hypovitaminosis due to unbal-
anced diets may reduce mental performances. Therefore, it seems
conceivable that the preventive strategies aimed at hampering
the adiposity and at ameliorating the skeletal muscle tone may
possibly be useful to preserve cognitive function among adults.
Alongside a correct nutritional intake may be helpful to counteract
mental decline and memory loss. A systematic meta-analysis
reported beneficial effects of essential EPA/DHA and multi-
micronutrient supplementation on specific cognitive domains
including attention and orientation, perception, verbal functions
and language skills in older individuals with physical frailty [99].
Indeed, EPA/DHA are fundamental structural components of neu-
ronal cells’ membranes, influencing their composition and fluidity.
Therefore, their accumulation is required for synaptic plasticity,
hippocampal neurogenesis, learning, vision and memory [100].
Likewise, vitamins and flavonoids may exert benefits on mental
decline. In particular, Vitamin D, B, E, carotenoids, antioxidants
and o-3 fatty acids were associated with lower risk of dementia
or AD, and memory loss [101]. For instance, flavonoids supplemen-
tation exerts benefits for hippocampal neurogenesis whereby
potentiating spatial working memory, whereas vitamins and min-
erals participates to neuronal communication, fiber myelination
and neuronal survival [100].

In addition, berberin-enriched extract administration attenu-
ated hippocampal IR, ameliorated locomotor activity and coordina-
tion, reduced anxiety-like behavior and increased muscle strength,
by softening oxidative stress and neuroinflammation in rodent
models of cognitive dysfunction [102-104] and mitigating cogni-
tive deficits in patients with schizophrenia [105]. A similar effect
has been reported for Syzygium aromaticum consumption that
refines brain mitochondria homeostasis in rat with AD [106].

MASLD patients have been widely established to be character-
ized by a poor quality of life, sometimes from the childhood, thus
constituting excellent targets for early cognitive decline preventive
strategies. It is frequent that children whose parents have low edu-
cation levels or live in not industrialized areas develop overweight
or obesity compared to kids from higher-educated families [107].
Few studies focused on the identification of a specific dietary path
to enhance cognitive performances in patients with MASLD,
regardless the presence of obesity. For instance, it has been deter-
mined that in mice fed HFD, a 4-week treatment with Quercetin, a
flavonoid with anti-inflammatory and antioxidant properties, pro-
tected against the diet-induced learning and memory impairments,
by enhancing synaptic plasticity [108]. Superimposable findings
have been observed also after a 4-week administration of another
polyphenolic compound, Resveratrol, which mitigated glucolipid
profile, behavioral and cognitive derangements in a rat model of
MASLD [109].

Similarly, moderate nut intake (15.1-30.0 g/d) has been associ-
ated with an overall improvement of immediate and delayed
memory in 1,848 older adults (>60 years) with MASLD [110].
Another study demonstrated that low lutein and zeaxanthin
intake, that are two different carotenoids with anti-inflammatory
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and antioxidant capacities, is responsible for the reduced cognitive
performances observed in geriatric MASLD patients (mean age 68.
11 £ 0.32 years), whereas their moderate consumption preserves
meningeal stability and defends the structure and the integrity of
axons [111].

Notably, nutritional status played a pivotal role in modulating
intestinal flora homeostasis. Indeed, it has been widely described
that HFHC diet induced an unbalance in bacterial species, favoring
Bacteroidetes and Proteobacteria, at the expense of the Lactobacil-
laceae family [112]. Therefore, the rescue of intestinal eubiosis by
using untargeted procedures (diet, probiotics, prebiotics i.e., fibers
boosting SCFAs, antibiotics i.e., Rifaximin or fecal microbiota trans-
plantation) or microbiota-targeted therapy directed against a
specific microbial species and host metabolites may represent
good opportunities to safely and effectively restrain brain-
associated liver disease dysfunctions [113]. However, further stud-
ies dealing with this purpose are needed to better understand how
and when intervene on MASLD patients to prevent/revert cognitive
alterations (Fig. 1).

Gut microbiota, cognitive impairment and intestinal microflora
manipulation

Growing body of evidence indicates that MASLD and other com-
ponents of metabolic syndrome are responsible for substantial
modifications in quantity and quality of intestinal flora taxa (un-
balances referred to as dysbiosis), mucosal alterations and
enhanced gut permeability, resulting in endotoxemia, ethanole-
mia, inflammation and oxidative injuries [61]. Alongside, gut-
liver axis plays a key role in MASLD development and progression
to MASH, as testified by preclinical models of MASH, obtained by
human fecal microbiota transplantation [62]. However, less is
known regarding the impact of gut microbiota and its metabolites
on BBB function and on behavioral aspects.

In details, it has been reported that an enhanced gut permeabil-
ity due to intestinal dysbiosis has been associated with the escape
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of pathogenic microorganisms and endotoxemia, thereby fostering
intestinal mucosal inflammation and a chronic low-grade immune
system activation. Intriguingly, circulating endotoxin concentra-
tions have been significantly correlated with higher scores of
depression, anxiety and decreased social interactions and the ‘leaky
gut’ influenced CNS homeostasis fostering different psychiatric and
non-psychiatric disorders [63]. Thus, cognitive impairment and
altered gut microbiota seem to be tightly correlated in patients
with MASLD and gut-liver-brain network seems to be functionally
connected.

In deeply, Aljumaah et al. reported a significant association
between gut microflora composition and cognitive impairment
[64]. A similar effect may be exerted by microbial harmful by-
products, which strongly induce systemic inflammation and affect
BBB integrity. Higarza and colleagues demonstrated that a high-fat,
high-cholesterol (HFHC) diet induced gut dysbiosis as well as
hyperammonemia and reduced short chain fatty acids (SCFAs) pro-
duction in rats. These findings suggest that gut-derived microbiota
metabolites, along with pathogen-associated molecular patterns
(PAMPs), ammonia and bacterial DNA, may propagate systemic
inflammation thus leading to a neurotoxic environment that could
be reflected in functional brain deficits [65,66].

Notably, other possible mechanisms encompass microbial fer-
mentative processes of fibers which release SCFAs with neuroac-
tive properties (i.e., butyric acid) along with bacterial synthesis
of different neurotransmitters (i.e., gamma-aminobutyric acid
(GABA), dopamine, serotonin and acetylcholine) [67]. Alterations
in these neurotransmitters driven by Western diet administration
in mice compromise cognitive performance and induce astrogliosis
and microgliosis of hippocampus due to neuroinflammation or to a
disruption of neurovascular unit [68]. Furthermore, dysbiosis con-
tributes also to dysregulate bile acid synthesis, thus affecting neu-
roplasticity [69]. On the contrary, Indolepropionic acid (IPA), a
tryptophan-derived metabolite produced by gut microbiota seems
to be able to attenuate systemic inflammation, MASLD and cogni-
tive impairment [70].
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Fig. 1. How chronic inflammation affects the brain-liver-gut axis in MASLD patients. MASLD is characterized by a systemic chronic inflammation mainly due to adipose tissue
insulin resistance (IR) driving the release of free fatty acids (FFAs), proinflammatory cytokines and hormones in the circulation. Another component of MASLD is represented
by intestinal dysbiosis which fosters enhanced gut permeability and the secretion of endotoxins and microbial metabolites as short chain free fatty acids (SCFAs). All these
soluble mediators pass the blood brain barrier (BBB) triggering microglial cells activation, neuronal degeneration, brain mitochondrial disorders and ultimately cognitive

impairment.
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Thus, dietary habits, probiotics and antimicrobials may posi-
tively influence the health of the brain, ameliorating memory and
cognition [71] and it could be hypothesized that gut microbiota
manipulation may be an effective strategy to rescue cognitive defi-
ciencies related to MASH. As proof of this concept, dietary supple-
mentation with Akkermansia muciniphila CIP107961 may reverse
the HFHC-induced cognitive dysfunctions in mice [65], whereas
Lactobacillus rhamnosus GG (LGG) administration may exert bene-
fits in middle-aged and older adults with cognitive impairment
[72]. Furthermore, Lactobacillus Plantarum EMCC-1039 supplemen-
tation rescued dysbiosis-induced MASH in rodents [73] and multi-
strain probiotics ameliorated cognitive functions even in patients
affected by cirrhosis, thus reducing inflammatory response [74].
Similarly, patients affected by overweight/obesity are character-
ized by defects in the quantity of Clostridium butyricum combined
with a predominance of the phylum Proteobacteria. Conversely,
oral supplementation of probiotics containing Clostridium butyri-
cum attenuates the obesity-induced cognitive impairment,
improves hippocampal functions and attenuates endotoxemia in
mice fed HFD. These favorable outcomes could be transmitted to
germ free mice through fecal transplants [75].

Gut dysbiosis has been observed also in T2D patients, showing
an enrichment of Blautia, Fusobacterium, and Ruminococcus, which
affect gut permeability, inflammation and glucose metabolism
[76]. More in deeply, the co-presence of MASLD and T2D determi-
nes a shift towards a more severe abundance of Enterobacter, Rom-
boutsia, and Clostridium |[77]. Conversely, physical exercise
positively impacts on gut microbiota diversity, ameliorating synap-
tic function and cellular plasticity changes [78].

Other possible interventions to restore microflora composition
encompass the treatment with Rifaximin and fecal microbiota
transplantation. The former is a gut-selected antibiotic, particu-
larly indicated to counteract mental decline and endotoxemia in
cirrhotic patients with mild hepatic encephalopathy, and to ame-
liorate motor coordination, T cells and macrophages infiltration
in cerebellum, and spatial learning and memory in rodent models
of severe fibrosis [79-81].

The latter, instead, is becoming attractive in the management of
chronic liver diseases as MASLD, although several concerns about
its safety and potential infectivity still remain. Bajaj and collabora-
tors addressed this point in a randomized clinical trial, showing
that this practice ameliorate cognitive functions in patients with
cirrhosis and advanced hepatic encephalopathy, characterized by
progressive neuropsychiatric and motor dysfunctions [82]. In
another clinical trial, the same authors attributed this favorable
effects on the gut-brain axis to the significant reduction of sys-
temic inflammation, testified by the decrease in serum IL-6 and
LPS-binding protein [83]. Accordingly, the fecal microbial coloniza-
tion from patients with cirrhosis hesitated into neuroinflammation
and neuronal activation in germ free mice [84]. Next, another
open-label trial corroborated the positive impact of fecal micro-
flora transplantation in cirrhotic patients with hepatic
encephalopathy [85].

Conclusions

Cognitive decline is a physiological process, which occurs dur-
ing aging in healthy individuals throughout the adult lifespan.
However, this event is further accelerated by various triggers,
among which MASLD, obesity, IR and T2D. Indeed, MASLD is fre-
quently associated with a cognitive decline which includes fatigue,
low concentration, reduced attention, loss of memory together
with more severe conditions as depression and anxiety. It seems
established that inflammation represent the common denominator
of MASLD progression and mental disorders although the mecha-
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nisms through which cognitive impairment in these patients occur
are scantly understood. The diagnosis of mental decline in MASLD
patients is underestimated possibly due to different types of diag-
nostic tools or cognitive test strategies exploited. Nevertheless,
mental dysfunction in MASLD patients represent an enormous
socio-economic burden since it largely impacts on the quality of
life of these patients, on their ability of social networking and on
their working productivity, which are representative of around a
third of the global population.

In this scenario, nutritional and lifestyle interventions may rep-
resent a new avenue to counteract cognitive failure in patients
with MASLD. Indeed, several preclinical models indicated that dif-
ferent nutrients and in particular the Mediterranean diet may be
helpful in maintaining mental health, and preventing the risk of
developing AD, dementia and memory loss [114]. However, a
whole comprehensive dietary and physical approach would be
preferable in these subjects in order to achieve widespread bene-
fits on different aspects. Even more, forefront intestinal microbiota
manipulation including fecal microbiota transplantation may rep-
resent a novel strategy to deal with the burden of cognitive decline
in MASLD patients (Fig. 2).

To sum, by considering the global spreading of MASLD and the
progressive aging of the worldwide population, the assessment of
cognitive performance in these patients becomes crucial and gains
value as further note to face in the management of the disease. A
holistic approach will allow the clinicians to tackle the disease
from a multi-organ and multi-systemic point of view, thus amelio-
rating the clinical practice and possibly introducing early interven-
tions to prevent or partially revert cognitive sphere deterioration.
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