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Commercial poultry farms frequently use live bacterial prophylactics like vaccines and

probiotics to prevent bacterial infections. Due to the emergence of antibiotic-resistant

bacteria in poultry animals, a closer examination into the health benefits and limitations

of commercial, live prophylactics as an alternative to antibiotics is urgently needed.

In this review, we summarize the peer-reviewed literature of several commercial live

bacterial vaccines and probiotics. Per our estimation, there is a paucity of peer-reviewed

published research regarding these products, making repeatability, product-comparison,

and understanding biological mechanisms difficult. Furthermore, we briefly-outline

significant issues such as probiotic-label accuracy, lack of commercially available

live bacterial vaccines for major poultry-related bacteria such as Campylobacter

and Clostridium perfringens, as well research gaps (i.e., probiotic-mediated vaccine

adjuvancy, gut-brain-microbiota axis). Increased emphasis on these areas would open

several avenues for research, ranging from improving protection against bacterial

pathogens to using these prophylactics to modulate animal behavior.
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INTRODUCTION

Poultry animals like layers and broilers are some of the most critical food animals, with 90 billion
tons of chickens meat being produced globally per year (1) and 290 eggs consumed per capita
in the United States (2). Over the years, poultry have been domesticated to maximize particular
functions like meat and egg production. Although selecting for greater weight gain and egg-laying
rates has improved poultry productivity, specific selection for bacterial diseases resistance has not
been pursued as diligently. This is problematic, as poultry animals are becoming increasingly
at-risk for bacterial infections given the push for cage-free rearing [reviewed by (3)] and serve
as major reservoirs for foodborne pathogens like Salmonella and Campylobacter, contaminating
their products [(4); reviewed in (5)]. Furthermore, the emergence of antimicrobial-resistant (AMR)
bacterial pathogens threaten poultry animals and humans health alike (6). Specifically, avian
pathogenic Escherichia coli (APEC), Pasteurella multocida, and Mycoplasma gallisepticum are
causal agents of disease and mortality in poultry animals, which have the potential to harbor
AMR genes [(7–9); reviewed in (10)]. Additionally, chickens are common carriers of bacteria like
Salmonella andCampylobacter, which reside as commensals in their gastrointestinal tract [reviewed
in (11, 12)]. However, these bacteria are frequent contaminators of poultry products and cause
gastrointestinal disease in human consumers [reviewed in (13–15)]. Even worse, these microbes
can horizontally-exchange AMR genes with commensals or other pathogens (16–18). This has
created a dangerous situation in which bacterial pathogens (chicken and human alike) may become
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highly-difficult to treat with conventional antibiotics. Thus, cost-
effective additives that can boost resistance to pathogenic and
AMR bacteria are needed to further optimize both poultry health
and productivity.

Among the strategies currently used to promote productivity
in animal agriculture includes use of live microorganisms. This
includes live bacterial vaccines, which are attenuated bacteria
typically used to immunize animals against particular pathogens
[reviewed in (19)], and probiotics, which are live, non-attenuated
microbes that confer health benefits to the animal host (20).
Probiotics are typically delivered via feed, although spray and
intraocular administration are commonly-used to deliver live
bacterial vaccines. Additionally, both live bacterial vaccines and
probiotics can be cultured in vitro, which drastically lowers
production costs [reviewed in (21); reviewed in (22)]. In this
review, we will outline live bacterial vaccines and probiotics
commercially-available in poultry, describing the peer-reviewed
studies using these commercial products in poultry animals.
Additionally, we discuss probiotic labels and reliability-concerns.
Lastly, this review will discuss the potential for novel live
vaccines, synergism between live prophylactics, and a possible
role for live prophylactics in less-studied biological mechanisms
such as behavior.

LIVE BACTERIAL VACCINES

General
The earliest recorded live bacterial vaccination was in 1884,
where Spanish clinicians utilized a weak Vibrio cholerae isolate
to combat cholera outbreaks (23). Techniques for purposefully-
attenuating bacterial strains while maintaining immunogenicity
have been improved, using targeted modifications at the
genetic level (24). Concerns over virulence-reversion by live
bacterial vaccines have driven researchers to develop antigen-
based vaccines incapable of sustaining disease. However, the
successful development of antigen vaccines with long-term
efficacy is relatively rare, mainly due to evolutionary adaptations
by pathogens (i.e., antigenic loss/drift, serotype diversity) and
design, as antigens have much-fewer epitopes compared to
live bacteria vaccines, limiting protection against multiple,
antigenically-diverse strains of a certain pathogen (25). Thus,
live bacterial vaccines provide a lucrative alternative that can
circumvent many issues with vaccination in poultry.

Like their wild-type counterparts, live bacterial vaccines can
be easily cultured in vitro with low input costs, providing
an inexpensive means of manufacturing large quantities of
vaccine vs. the protein extraction steps required for antigen-
based vaccines (21). Therefore, these vaccines can simultaneously
prevent disease caused by their wild-type parent bacterium
as well as additional pathogens (bacterial, viral, etc.) because
cross-reactivity or via genetic insertions of genes encoding
foreign antigen (24), creating an avenue for broad protection
unachievable by many prophylactics currently available. In
this review, we summarize characteristics and peer-reviewed
findings for commercial live Salmonella enterica, Escherichia coli,
Mycoplasma gallisepticum, and Pasteurella multocida vaccines
available for poultry in Table 1.

COMMERCIAL LIVE BACTERIAL
VACCINES

Salmonella
Although Salmonella enterica induces inflammatory in the
chicken gut at an early age (46–48), this bacterium can
persist by restructuring the intestinal environment to promote
immunological tolerance, allowing for asymptomatically-
shedding via feces from poultry animals [reviewed in (11)],
resulting in potential contamination of meat and egg products.
Human consumption of these contaminated poultry products
is one of the major routes of salmonellosis incidence in the
United States (49, 50). Live Salmonella vaccines are typically
delivered orally via spray or drinking water to reduce Salmonella
load in poultry. To improve food safety, live Salmonella vaccines
are augmented with genetic deficiencies to limit intestinal
replication while maintaining high levels of immunogenicity
(24), although serotype and genetic attenuations are important
drivers of vaccine efficacy (51, 52). Furthermore, these vaccines
can be readily-modified to carry exogenous antigens (53, 54),
enabling protection against additional pathogens.

Megan R© Vac-1 is a 1cya1crp S. Typhimurium vaccine
[parent strain 13761 or UK-1 (55)], genetically-attenuated to
knockout adenylate cyclase (1cya) and cAMP receptor protein
(1crp). These mutations reduce pathogenicity and persistence
of this live vaccine in the intestine while maintaining high
immunogenicity, as demonstrated by the decrease of a challenge
Salmonella invasion and intestinal colonization in vaccinated
layer pullets (26). However, the protection of this vaccine
against Salmonella appears to be inconsistent. A previous study
testing protection against a wild-type S. Typhimurium strain in
broiler chicks found the Megan R© Vac-1 only reduced challenge
Salmonella load in one of the two challenge experiments,
although the failure in the first experiment may have been
related to in ovo antibiotic administration (27). Furthermore,
the vaccine strain was frequently-recovered from internal organs
and ceca of vaccinated birds (27), although sampled animals
were only 1-week-old and thus are not representative of broilers
at final slaughter. In support of this, Dórea and colleagues
determined that Megan R© Vac-1 significantly-reduced detection
of Salmonella in commercial broiler carcasses, minimizing
carcass condemnation (28).

Poulvac R© ST (Zoetis) is another metabolically-attenuated
S. Typhimurium strain with 1serC (phosphoserine
aminotransferase) and 1aroA (3-phosphoshikimate 1-
carboxyvinyltransferase) deletions. Despite these deletions,
Poulvac R© ST is still immunogenic, inducing anti-
lipopolysaccharide IgA and IgY responses in intestinal washes at
day 13 (29) despite a reduction in ileal macrophages and CD4+

T cells (30). Furthermore, vaccinated broilers had reduced S.
Heidelberg loads in the ceca when challenged at 21 days old
(31). This response may have been facilitated by recruitment
of intestinal CD8+ T cells (30), which have been previously
demonstrated to improve Salmonella clearance in chickens
(56). However, this vaccine was unable to reduce Salmonella
Heidelberg load in the ceca when challenged at 3 days (31).
This may be due to serovar-specific, as Bailey and colleagues
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TABLE 1 | Summary of live bacterial vaccines commercially available for poultry application.

Commercial live

bacterial vaccine

Company Species (strain), additional

attenuations

Peer-reviewed findings

AviPro® Megan® Vac 1 Elanco Salmonella Typhimurium, 1cya1crp Decreased Salmonella invasion and intestinal colonization (26)

Vaccine efficacy may be inconsistent and recoverable from internal organs (27)

Decrease Salmonella detection in commercial carcasses (28)

Gallivac® SE Merial select Salmonella Enteritidis, 1ade1his Induces IgA and IgY in intestinal washes; Reduced Typhimurium and Enteritidis in

ceca and internal organs (29)

Reduced intestinal macrophages and CD4+ cells but increased CD8+ cell

recruitment (30)

Reduced S. Heidelberg in ceca when challenged at 21 but not 3 days post-hatch (31)

Poulvac® ST Zoetis Salmonella Typhimurium,

1serC1aroA

Reduced S. Typhimurium load in liver and ceca (32)

Increased inflammatory gene expression in splenic cells (33)

Poulvac® E. coli Zoetis Escherichia coli, O78 serotype, 1a

roA

Reduced O78 APEC bacterial load in internal organs (34)

Did not protect chickens against O1 APEC; spray administration had superior

protection against O78 APEC challenge vs. drinking water (35)

MG TS-11 Merial select Mycoplasma gallisepticum (TS-11

strain)

Protection against R-strain M. gallisepticum challenge without change in productivity

(36, 37)

MYCOVAC-L® Merck Mycoplasma gallisepticum (Intervet

6/85 strain)

Improved vaccine viability in PBS vs. distilled water (38)

Protective immunity against M. gallisepticum, vaccination at recommended-dose may

reduce egg production (39)

Poulvac® MycoF Zoetis Mycoplasma gallisepticum (F strain) Protection against M. gallisepticum-induced airsacculitis (40)

Intraocular vaccination induces greatest immune response (41)

AviPro® MG-F Elanco Mycoplasma gallisepticum (F strain) Protection against M. gallisepticum-induced airsacculitis (40)

Lless antibody production vs. MycoF (42)

induced superior immune responses vs. TS-11 and MYCOVAC-L® (43, 44)

M-NINEVAX®-C Merck Pasteurella multocida (M-9 strain) Potent antibody response against P. multocida (45)

PM-ONEVAX®-C Merck Pasteurella multocida (PM-1 strain) Protection against P. multocida and high antibody titer (45)

found that Poulvac R© ST alone did reduce challenge Salmonella
Typhimurium and Enteritidis invasion of internal organs and
ceca colonization in 3 and 13-day-old chicks (29).

Unlike the previously-described Salmonella vaccines,
Gallivac R© SE (Merial Select) is a S. Enteritidis strain (1ade1his)
developed via chemical mutagenesis. Similar to the other
vaccines, Gallivac R© SE can provide protection against non-
Enteritidis serovars, as orally-delivered Gallivac R© SE reduced
S. Typhimurium burden in the liver and ceca up to week 71 in
layer hens vs. unvaccinated hens (32). Although live Salmonella
vaccines are normally given orally, intraocular administration
of Gallivac R© SE increased IFN1, IL-8, and iNOs production
by splenic cells (33), suggesting that this vaccine is capable of
inducing robust immune responses, which extend from mucosal
barriers. Unfortunately, to the authors’ knowledge, these are
the only two peer-reviewed studies which investigated the
immunological potential of Gallivac R© SE in vivo.

Escherichia coli
One of the major drivers of mortality and carcass condemnation
in poultry, APEC are a major problem in commercial
production (57). In addition, APEC are characterized by the
possession of large virulence plasmids that often carry numerous
resistances to antibiotics and heavy metals [reviewed in (58–
60)]. These plasmids can be horizontally-transferred to other
gut commensals as well bacteria like Salmonella (61), making
the reduction of APEC in poultry a major priority. Given their
antigenic variability (62), vaccines with broad protection have

proved problematic. Notably, APEC colonize the gastrointestinal
tract as commensals (63, 64) and only cause colibacillosis when
they translocate the lung epithelium upon fecal aerosolization
(65, 66). Thus, orally-delivered live vaccines are a feasible strategy
to reduce abundances of these microbes in the gut while also
inducing systemic immunity for extraintestinal resistance.

As of this review, Poulvac R© E. coli (Zoetis) is the only live E.
coli vaccine for poultry on the market. Poulvac R© E. coli has a O78
serotype and, similar to Poulvac R© ST, is a 1aroA mutant. When
implemented in broilers, this vaccine increased the number of
healthy carcasses and reduced collibacillosis of a O78 APEC
field isolate compared to non-vaccinated controls (67). Similarly,
Poulvac R© E. coli decreased bacterial load of an O78 APEC in
internal organs compared to non-vaccinated controls, possibly
related to improvements in E.coliO78 antigen-specific IgY serum
levels and splenocyte proliferation (34). However, this protection
appears to be serotype-specific, as Poulvac R© E. coli did not confer
any protection against challenge with an O1 APEC serotype (35).
Furthermore, route appears to be a major determinant of efficacy,
as Poulvac R© E. coli administered to broilers via drinking water
did not confer any protection to an O78 APEC, whereas coarse
spray-administration did (35).

Mycoplasma gallisepticum
The etiological agent of chronic respiratory disease and infectious
sinusitis in poultry animals [reviewed in (68); reviewed in (69)],
M. gallisepticum is a major cause of carcass condemnation,
reductions in egg-laying efficiency and weight gain, andmortality
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in commercial poultry (70–73). Given its antigen variability,
details regarding its entire pathogenesis are unclear (74). Initially,
M. gallisepticum binds to sialic acid residues on lung epithelial
cells (75) and can cause damage high inflammatory damage
locally (76) or in deeper lymphoid tissues like the bursa of
Fabricius (77). Although birds at all ages are susceptible to
this bacterium, immunocompromised birds are especially at-risk
for infection (78). Currently, live vaccines are typically used to
preventM. gallisepticum infection in poultry.

MG TS-11 (Merial Select) is a live attenuated strain of
M. gallisepticum that is delivered via intraocular route (i.e.,
eyedrop). Its complete genome sequence is available to the
public (79). This vaccine strain can prevent development of
clinical airsacculitis, peribronchitis, and interstitial pneumonia
via R-strain M. gallisepticum challenge without reducing egg-
laying productivity (36, 37). More recently, research groups have
sought to improve the efficacy of the TS-11 vaccine. Muneta
and colleagues found that a recombinant TS-11 expressing IFN1

increased cellular immunity via increased splenocyte-IFN1

production and a non-edematous infiltration of heterophils into
the tracheamucosa (36). Furthermore, TS-304, a TS-11 derivative
that expresses the cytadherence molecule GapA, was shown
to be more efficacious than TS-11 at a lower dose (80) likely
related to its ability to more-effectively improve tracheal barrier
function (76).

MYCOVAC-L R© (Merck) is an attenuated 6/85 strain of
M. gallisepticum. Similar to TS-11, its complete genome
sequence is readily-available (38). Typically delivered via
spray, rehydration of the vaccine via distilled water (standard
practice for many bacterial vaccines) results in much lower
MYCOVAC-L R© viability vs. resuspension in PBS (38). In
addition, although vaccination dose at the manufacturer’s
recommendation confers protective immunity against virulent
M. gallisepticum, egg production may be negatively-impacted.
However, hens previously vaccinated with fifteen times the
recommended dose did not exhibit any deficiencies in egg-
laying efficiency and produced more antibodies (39), suggesting
a greater inoculum concentration is needed to negate certain side
effects of MYCOVAC-L R©.

Poulvac R© MycoF (Zoetis) is an F strain of M. gallisepticum
typically administered via spray. Using spray, Evans and
colleagues showed MycoF-vaccinated animals did not exhibitM.
gallisepticum-induced airsacculitis compared to control animals
(40). Similar to MYCOVAC-L R©, resuspension medium prior
to MycoF immunization had a major impact on viability and
antibody production immediately post-vaccination (81). When
given via intraocular route, MycoF demonstrated protection
against spread ofM. gallisepticum in a co-mingled poultry system
(82), suggesting that different vaccination routes may deliver
similar success. However, when delivered in the same study via
eyedrop, nares, or orally, intraocular MycoF vaccination induced
the greatest antibody response (41), although this study did not
investigate differences inM. gallisepticum resistance in vivo.

Another F strain vaccine, AviPro R© MG-F (Elanco) was
similarly able prevent airsacculitis via M. gallisepticum challenge
(40). Although recommended delivery is in drinking water, Evans
and colleagues found that when delivered via spray, MG-F

delivered similar protection againstM. gallisepticum infection as
MycoF. Additionally, MG-F induced less antibody production vs.
MycoF at one and ten-times recommended dose (42). However,
MG-F induced superior immune responses compared to TS-11
and MYCOVAC-L R© live vaccines (43, 44), suggesting that these
M. gallisepticum vaccines induce immune responses in a vaccine
strain-specific manner.

Pasteurella multocida
In the 1880s, Louis Pasteur developed one of the earliest
live bacterial vaccines by isolating avian P. multocida, the
etiological agent of fowl cholera, and using old cultures
for immunization (83). Although a commensal member of
the oropharyngeal microbiota, P. multocida can become an
opportunistic pathogen in the respiratory tract (84). If able
to bypass the lung epithelium, it can induce a highly-lethal
septicemia (i.e., fowl cholera), causing major economic losses in
poultry production (85, 86), though turkeys are more-affected
(85). Thus, wing-web immunization of live P. multocida vaccines,
superior to bacterin-based vaccines for this pathogen (87), is
the most common method of prophylaxes against this pathogen.
Although the exact mechanisms for protection are somewhat
unclear, these live vaccines can induce broad protection
independent of serotype and lipopolysaccharide composition
(88). However, to the author’s knowledge, very little peer-
reviewed research has been performed using these Pasteurella
live vaccines.

M-NINEVAX R©-C (Merck) is an M-9 vaccine strain used
in vaccinating commercial turkey flock against P. multocida
and in combination with other live vaccines (89). Of the few
studies using this vaccine, Sharaf and colleagues found this
vaccine induced a potent antibody response against P. multocida
(45). Similarly, PM-ONEVAX R©-C, a PM-1 strain, induces
protection against P. multocida challenge in vivo, accompanied
with a high antibody titer (90). Unfortunately, no peer-reviewed
studies on these live vaccines have been performed in the last
two decades.

PROBIOTICS

General
Probiotics are live microorganisms including bacteria (i.e.,
Lactobacillus acidophilus) and yeast (i.e., Saccharomyces
cerevisiae) that are commonly supplemented in poultry feed to
improve animal well-being through a variety of mechanisms.
Probiotics have a variety of functions in host, which are mainly
triggered by their outer membrane composition and metabolic
outputs. In this section, we will discuss major classes of probiotics
used in poultry and their general functions. Furthermore, we
will summarize the findings of peer-reviewed studies using
commercial probiotic products, organized by probiotics
composed of a single class or mixture of classes (Table 2). This
review will be limited to the effects of these commercial products
on host immune function, productivity measures, and bacterial
resistance (specifically, intestinal colonizers like Salmonella,
Campylobacter, E. coli, and Clostridium perfringens). Given the
limited focus on mechanisms with these commercial probiotics
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TABLE 2 | Summary of commercial probiotics available for poultry application.

Probiotic class Commercial

product

Microbial taxa (per label) Peer-reviewed findings

LAB FloraMax®-B11 Lactobacillus salivarius,

Pediococcus parvulus

Immunomodulation and reduced intestinal NFκB transcription (91)

Reduced colonization of S. Enteritidis and improved barrier function (92)

Reduced S. Enteritidis, E. coli, and C. jejuni in vitro (93)

Improved gut morphology and decreased Salmonella (94)

Increased weight gain, reduced Clostridium perfringens and necrotic enteritis-induced mortality

(95)

Sequencing methods yield different taxonomic identifications (93)

Cylactin® Enterococcus faecium

NCIMB 1045

Improved body weight, reduced colonization of Clostridium spp. and E. coli in excreta and

intestine; increased levels of lactate, short-chain and branched-chain fatty acids (96)

No change in intestinal S. Enteritidis load (97)

Bacillus subtilis GalliPro® Bacillus subtilis DSM 17229 Improved performance and decreased ammonia emission (98)

Reduced Salmonella colonization (99)

Increased body weight, feed conversion, and crude protein liberation (100)

Complete elimination of Clostridium perfringens colonization in ileum (101)

CloSTAT® Bacillus subtilis PB6 Increased body weight, feed intake; no change in ileal lactobacilli nor Clostridium perfringens

(102)

Reduced mortality against E. coli (103)

Reduced Clostridium perfringens in ileum (102)

NorumTM Bacillus amyloliquefaciens

AM0938

Bacillus amyloliquefaciens

JD17

Bacillus subtilis AM1002

In vitro reduction of Salmonella, E. coli, Clostridium difficile (104)

Reduced gut leakage (105–107)

Decreased necrotic enteritis lesions (105)

Lower horizontal transfer (108) and liver translocation (104) of E. coli

Mixture Lavipan® Lactobacillus casei LOCK

0915, L. lactis IBB 500,

Carnobacterium divergens

S-1, L. plantarum LOCK

0862, Saccharomyces

cerevisiae LOCK 0141

Limited colonization of Campylobacter and Salmonella Enteritidis (109)

Improved villi width and surface area in duodenum, jejunum, and ileum (110)

Reduced Clostridium and E. coli (96)

PrimaLac® Lactobacillus acidophilus, L.

casei, Enterococcus

faecium, Bifidobacterium

bifidum

Limited colonization of Salmonella and E. coli (111), Campylobacter jejuni (112), Clostridium

perfringens (144)

No changes in ceca lactobacilli (113, 115)

Age-dependent alterations in immune gene expression via in ovo (116)

MicroGuard® Bacillus licheniformis, B.

megaterium, B.

mesentricus, B. polymyxa,

B. subtilis, Saccharomyces

boulardii, Bifidobacterium

bifidum, Lactobacillus

acidophilus, L. bulgaricus,

L. plantarum,

Streptococcus faecium

Improved broiler performance; reduced Salmonella Enteritidis and E. coli (117)

Gro-2-Max® Lactobacillus acidophilus,

Pediococcus pentosaceus,

P. acidilactici, Bacillus

subtilis, Saccharomyces

cerevisiae

Increase in intestinal Enterobacteriaceae (118, 119) although this finding is inconsistent (119)

Adjuvant activity against Salmonella and APEC using live Salmonella vaccine (118)

Reduced total triglycerides, low-density lipoprotein cholesterol; altered circulatory immune

parameters (119)

Label inaccuracy (Saccharomyces pastorianus vs. S. cerevisiae) (118)

in poultry, this review will outline observed outcomes in-general
in peer-reviewed studies.

Lactic Acid Bacteria
Lactobacillus, Enterococcus, and Pediococcus are gut commensals
and examples of lactic acid (i.e., lactate in the ionized form)-
producing bacteria (LAB), which protect against pathogens
by several mechanisms. LAB are frequently used by poultry
producers in part due their ability to produce several digestive
enzymes (amylases, chitinases, lipases, phytases, and proteases),

which greatly enhance the digestive process and improve
feed conversion [reviewed in (120)]. Lactate is the major
product of sugar metabolism across all LAB (121). Lactate
can inhibit pathogenic bacterial growth by lowering the pH
of the intestinal environment (122) or directly by disturbing
normal bacterial metabolism (123). Select LAB also produce
inhibitory compounds like bacteriocins, which are bactericidal
compounds that target specific microorganisms (124). LAB
can also directly stimulate immune cells via secretory factors
(125) and toll-like receptor stimulation (125, 126). Given this
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wide array of functions, LAB are common components in
several commercial probiotics used in poultry agriculture. Some
examples of commercial LAB products for poultry animals are
discussed below.

FloraMax R©-B11 is a probiotic supplement composed of
Lactobacillus salivarius and Pediococcus parvulus. Upon oral
challenge with Salmonella Enteritidis, broilers fed FloraMax R©-
B11 showed reduced colonization of Salmonella Enteritidis,
improved gut barrier function, and reduced percentages
of heterophils, lymphocytes, eosinophils, and basophils of
peripheral blood compared to control broilers (92). Given
the role of immune inflammation in clearing intestinal
Salmonella (127) and observed-reduction of circulatory immune
cells, this suggests this product may have directly-reduced
Salmonella load in the intestine. This mechanism of direct
competition is supported in which each probiotic bacterium
in FloraMax R©-B11 directly-reduced Salmonella Enteritidis,
E. coli, and Campylobacter jejuni growth in vitro (93).
Although Prado-Rebolledo and colleagues did not investigate
phenotypic changes in these immune cells, FloraMax R©-B11
reduces intestinal gene expression associated with the NFκB
complex and aldose reductase (91), suggesting this probiotic
also reduces expression of inflammatory genes. In combination
with the perinatal supplement EarlyBird (Pacific Vet Group USA
Inc.), FloraMax R©-B11 was shown to improve gut morphology
and significantly decrease Salmonella recovery, incidence, and
horizontal transmission to broiler chicks (94). Lastly, broilers
supplemented with FloraMax R©-B11 showed significant body
weight gain, lower total Clostridium perfringens (the causal
agent of necrotic enteritis), and lower necrotic enteritis-induced
mortality when compared to control broilers after C. perfringens
challenge (95).

Cylactin R© is composed of a single LAB, Enterococcus
faecium NCIMB 1045 (128). Implementation of Cylactin R© to
the diets of broilers has shown to have positive effects on
average body weight, greatly-decreased counts of Clostridium
spp. and E. coli in intestinal tract and excreta compared
to controls, and had improved lactate production as well
as short-chain and branched-chain fatty acids (96). However,
Cylactin R© alone did not reduce Salmonella Enteritidis load
in the layer intestine (97). Although tested in a non-avian
model, administration of Cylactin R© in the diet of piglets
showed significantly reduced mucus-adherent extraintestinal
pathogenic strains of E. coli (129), suggesting that this
probiotic could have direct effects on APEC found in the
chicken intestine.

Bacillus
Similarly to LAB, Bacillus species secrete digestive enzymes
that improve feed conversion and competitive exclusion,
which limit the ability of pathogens to invade the host
(130–132). However, B. subtilis specifically limits pathogen
colonization by production and secretion of lipopeptides and
other antimicrobial compounds, as 4–5% of a B. subtilis genome
is devoted to the production of antimicrobials [reviewed in
(133)]. In contrast to LAB, B. subtilis can form endospores
(134), improving their survival in the harsh conditions of

the intestinal tract and food preparation processes better than
other probiotics (135, 136). B. subtilis has also been shown
to alter the morphology of the intestinal tract via elevated
villi height and increased villi height-to-crypt depths (137),
increasing the surface area for nutrient absorption. Notably,
the host immune response toward B. subtilis is driven based
on whether it is in its metabolically-inactive (i.e., endospore)
or active (i.e., vegetative) state, as T cell differentiation was
driven toward inflammatory, intracellular TH1 responses and
extracellular TH2 responses via sporous and vegetative B. subtilis,
respectively (138). Thus, de-sporulation in the intestine is a
critical factor that could have major consequences on the host
immune response.

GalliPro R© consists of a single strain, B. subtilis DSM
17229 which improved performance, and reduced ammonia
emission from the excreta in broilers (98). GalliPro R© has been
shown to reverse loss of splenic mass in Salmonella-infected
birds, although no immune parameters were changed when
non-infected birds were fed this probiotic (67). Furthermore,
GalliPro R© increased the liberation of crude protein from the
diet, consequently decreasing broiler feeding costs and increasing
body weight and feed conversion ratios (100). However, this
study did not show whether GalliPro R© was directly involved in
this liberation or indirectly through a shift in the microbiota.
Addition of GalliPro R© to feed reduced Salmonella in cecum
samples and greatly reduced Salmonella-positive drag swabs
when compared to control broilers (99). Lastly, GalliPro R©

facilitates complete elimination of C. perfringens colonization in
the ileum of challenged birds (101).

CloSTAT R© contains a single strain of B. subtilis, PB6.
When included to the diet of C. perfringens-challenged broilers
at 1 × 109 CFU CloSTAT R©/g feed, these broilers had
statistically increased body weight and feed intake counts
compared to challenged broilers without probiotics (139).
However, CloSTAT R© supplementation did not significantly
change bacterial load of lactobacilli nor C. perfringens in the
ileal digesta (139).When investigating the mortality rates from
E. coli challenge comparing broilers fed CloSTAT R©, control,
and antibiotic growth promoters, CloSTAT R© showed reduction
comparable to the antibiotic growth promoter (both significantly
compared to control) (103). Similarly to GalliPro R©, CloSTAT R©

also reduced C. perfringens colonization of the ileum upon
challenge (102).

NorumTM is a direct-fed microbial culture that consists of
two B. amyloliquefaciens strains (AM0938 and JD17) Addition of
NorumTM has shown an increase in productivity parameters like
body weight, body weight gain and feed conversion (105, 140).
NorumTM greatly reduced the gut permeability and leakage of
mucosal, immunological effectors like IgA into serum (105).
In a necrotic enteritis model in which birds were challenged
by Salmonella Typhimurium, Eimeria maxima, and Clostridium
perfringens at days 1, 13, and 18–19 post-hatch, respectively,
NorumTM significantly improved lesion scores (105). Lastly, in
ovo administration of NorumTM to the feed greatly decreased the
horizontal transmission of virulent E. coli and infection of broiler
chickens during hatch, possibly through alterations of microbiota
composition and community structure (108).
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Bifidobacterium, Saccharomyces, and
Multi-Species Probiotics
To the authors’ knowledge, there are no commercial poultry
probiotics solely-constituted of Bifidobacterium spp. However,
Bifidobacterium spp. are widely used in combination with
Lactobacillus probiotics (ex: PrimaLac R©) and other combination
products (ex: MicroGuard R©). Bifidobacterium directly affects
IgA secretion in the gut (141) as well as stimulates professional
phagocytes and pancreatic elastase production via secretion
of the serine protease inhibitor Serpin (142). This pro-
inflammatory mechanism action suggests that Bifidobacterium
Serpin-production is involved in the homeostasis of the gut
microbiota. Additionally, Bifidobacterium spp. produces acetate
and lactate, which are subsequently-used by microbial gut
fermenters to produce butyrate and propionate (143). These
two short-chain fatty acids (SCFAs) promote colonic regulatory
T cell differentiation (144, 145) as well as increase bactericidal
functions of intestinal macrophages (146). Furthermore, the high
GC content of the Bifidobacterium genome interacts with TLR9
that is present on the surface of mammalian immune cells (141,
147), although it is not clear whether Bifidobacterium DNA has a
similar effect on the avian analog TLR21 (148).

Although the scope of this review is live bacterial
prophylactics, the eukaryotic Sacchormyces species S. cerevisiae
and S. boulardii [although S. boulardii is arguably a sub-species of
S. cerevisiae (149)] are widely-implemented in poultry probiotic
mixtures (i.e., Gro-2-Max R© and MicroGuard R©, respectively)
and thus will be briefly-mentioned. Despite these two species
being highly-similar, S. boulardii has greater heat and acid
tolerance vs. S. cerevisiae, making it more competitive in the
gut microenvironment [reviewed in (150)]. Additionally, both
Saccharomyces species increased SCFA production via shifts
in the microbiome (151, 152). Furthermore, S. cerevisiae and
S. boulardii can directly-eliminate pathogens via secretory
antimicrobials (153, 154). However, only S. boulardii appears
to possess membrane-associated inulin, which can agglutinate
pathogens (155, 156).

Lavipan R© consists of several LAB (Lactobacillus casei LOCK
0915, Lactobacillus lactis IBB 500, Carnobacterium divergens
S-1, and Lactobacillus plantarum LOCK 0862, all at 1 ×

109 CFU/g product) and Saccharomyces cerevisiae LOCK
0141 (1 × 107 CFU/g) and was shown to competitively
exclude pathogenic bacteria such as Campylobacter spp. and
Salmonella Enteritidis (109). This probiotic also improved villi
morphometric parameters (i.e., villus width and surface area)
of the duodenum, jejunum, and ileum compared to control
group (110). Lavipan R© supplementation also caused reduced
Clostridium spp. and Escherichia coli when compared to the
control broilers, which was increased with the addition of
prebiotics (i.e., raffinose family oligosaccharides) (96), which are
non-viable food components like that improve host health via
direct modification of the commensal microbiota (157). Thus,
adding prebiotics to commercial probiotic products may improve
health outcomes in poultry animals.

PrimaLac R© is composed of Lactobacillus acidophilus,
Lactobacillus casei, Enterococcus faecium, and Bifidobacterium

bifidium, all at 1 × 106 CFU/g (158). The use of PrimaLac
has been shown to limit the colonization of Salmonella and
E. coli (111) as well as C. jejuni (115). However, this probiotic
does not induce any changes in ceca lactobacilli (113, 115).
Supplementation of this probiotic to broilers in ovo produced
an upregulation of iNOS, crucial for improving macrophage-
killing of bacteria, in the ileum at day-of-hatch. However, later
time points observed PrimaLac R©-mediated downregulation of
immune genes encoding toll-like receptors, cytokines, and iNOS
in the ileum and ceca tonsil (116). The addition of PrimaLac R©

to the feed of turkey poults reduced Salmonella colonization
upon challenge when compared to the control birds (111). When
compared to an antibiotic growth promoter and control groups,
addition of PrimaLac R© increased reduction of C. perfringens, as
well as improved broiler performance (114).

MicroGuard R© contains 11 microorganisms (Bacillus
licheniformis, B. megaterium, B. mesentricus, B. polymyxa, B.
subtilis, Saccharomyces boulardii, Bifidobacterium bifidum,
Lactobacillus acidophilus, L. bulgaricus, L. plantarum, and
Streptococcus faecium) (159). The addition of MicroGuard R©

to the commercial broilers increased final bodyweight, weight
gain, high density lipoprotein, triglyceride, and antibody titers
against Newcastle disease and avian influenza levels (117). The
addition of MicroGuard R© also limited colonization of both
Salmonella Enteritids and E. coli due to the above mentioned
mechanisms, competitive exclusion, and possibly the production
of bacteriocins (117).

Lastly, Gro-2-Max R© is a multi-species probiotic product
containing LAB (Lactobacillus acidophilus, Pediococcus
pentosaceus, P. acidilactici), Bacillus subtilis, and Saccharomyces
cerevisiae. When comparing route and length of treatment,
Gro-2-Max R© supplementation via food or water had general
physiological impacts like reduced total triglycerides, low-
density lipoprotein cholesterol, circulating lymphocytes,
and viral vaccine-specific antibody titers. Additionally, ceca
Enterobacteriaceae levels were inconsistently increased or
decreased by Gro-2-Max R©, regardless the route of inoculation
(119). Our team has recently demonstrated changes in chicken
intestinal Enterobacteriaceae levels via Gro-2-Max R©, with layers
only fed Gro-2-Max R© exhibiting increased Enterobacteriaceae
fecal shedding compared to the control birds (160). Furthermore,
layers showed increased resistance to both APEC and
Salmonella Kentucky when fed with both live Salmonella
vaccine and Gro-2-Max R© (118), suggesting this probiotic has
adjuvant activities.

FUTURE DIRECTIONS FOR LIVE
PROPHYLACTICS

Although much progress has been made in protecting poultry
against bacterial disease, the movement of poultry animals to
cage-free facilities has driven an increase in bacterial infections
[reviewed by (3)], which pose risks to both animal and
human health. Although the previously-described commercial
vaccines and probiotics are used in practice, there are emerging
technologies and strategies to improve food safety that warrant
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discussion. For the duration of this review, we will highlight
issues in probiotic label-accuracy, novel yet non-commercial
live vaccine strategies, and research gaps where the effects of
probiotics and live vaccines are largely-understudied.

Probiotic Product Label Reliability
Although probiotics are widely-implemented in animal
agriculture, label accuracy is a major concern that can
drastically-influence product efficacy and health outcomes
in poultry animals. More than 28% of the commercial cultures
intended for human or animal use were misidentified at
the genus or species level through rapid detection methods
(161). Looking specifically at poultry probiotics, Redweik
and colleagues use PCR to confirm the identification of all
probiotic bacteria in Gro-2-Max R© but detected Saccharomyces
pastorianus (not S. cerevisiae as advertised) (160). Using four
different methods to taxonomically-identify LAB present in
FloraMax R©-B11, Menconi and colleagues found that each
method produced mixed results (93). Although 16S sequencing
was the most accurate method used in this study, it is nearly
impossible to speciate bacteria via 16S sequencing unless they
are highly-characterized [reviewed in (162)], demonstrating its
limited application. Using whole-genome shotgun sequencing
is a far more accurate tool in addressing current labeling issues
and false positive results for species not listed as components
(163). Finally, another major concern is the accuracy of bacterial
concentrations in these commercial products, as total viable cell
counts often do not correspond with the concentrations given
on the label (164). Altogether, it is imperative that researchers
studying commercial probiotic activities in poultry verify label
accuracy to improve repeatability.

Novel Live Vaccine Strategies
Although live vaccine technologies for Salmonella, APEC,
Mycoplasma gallisepticum, and Pasteurella multocida are
commercially-available for poultry animals, there is no
commercial live vaccines for Campylobacter nor Clostridium
available. Campylobacter, a major foodborne pathogen
responsible for intestinal and extraintestinal disease in humans
(165, 166), typically colonizes the chicken gut as a commensal
(167). Despite several studies evaluating the use of whole-cell
Campylobacter vaccines (168–171) and antigen-based vaccines
(172–177), there is no vaccine commercially-available for
Campylobacter reduction in the intestine. A major issue with
orally-delivered, live Campylobacter vaccines may arise in
distinguishing between vaccine and pathogenic strains during
meat processing. To avoid this issue, one solution could be
to use another vaccine strain that is genetically-modified to
express conserved Campylobacter antigens. Several studies have
explored the use of Lactococcus lactis (178), Salmonella (179),
and E. coli (180) to carry these antigens for anti-Campylobacter
immune development. However, a major limitation to using
antigen-based strategies against Campylobacter is that they are
highly, antigenically-variable between strains (181), making the
identification of a conserved target difficult.

Although necrotic enteritis is a major cause of mortality
and reduced productivity in young birds (182, 183), no

vaccine is available against its causative agent Clostridium
perfringens. Non-virulent C. perfringens can be used to
promote intestinal immunity against pathogenic strains (184).
Furthermore, Salmonella vaccines carrying recombinant C.
perfringens antigens have been successful in potent protection
against necrotic enteritis (185, 186). Thus, there is much potential
for a live, oral vaccine that can protect against C. perfringens-
induced necrotic enteritis, which might be further-improved
through support with probiotics like Cylactin1, GalliPro R©, and
CloSTAT R© which, on their own, offer protection (96, 101, 102).

Research Gaps
Most studies evaluate probiotic and live vaccine-efficacy by
comparing mono-treated animals vs. non-treated controls.
While this experimental design is a crucial first-step in
identifying the usefulness of a live prophylactic, this format
is not representative of natural commercial conditions and
it ignores the impact other vaccines, feed, etc. may have
on the animal’s response to that live prophylactic of-interest.
This is of extreme-importance, as commercial farms routinely
use a wide repertoire of prophylactics (live, inactivated, and
subunit alike) on their poultry animals without knowing how
they might improve or nullify each other’s effects. Probiotics
are widely-reported to serve as biological, vaccine adjuvants
[reviewed in (187)]. However, the role of probiotics in
vaccine-responsiveness is largely-understudied in poultry. As
mentioned briefly, efficacy and weight gain of a live, recombinant
Campylobacter vaccine was drastically-improved in broilers
which were also given Anaerosporobacter mobilis as a probiotic
(180). This improvement in vaccine response is even found for
live vaccines outside the scope of this review. The protection
against the eukaryotic pathogen Eimeria was highest when a
live coccidiosis vaccine was combined with probiotics (188). Use
of Gro-2-Max1 in combination with a live Salmonella vaccine
improved resistance to both intestinal Salmonella Kentucky
colonization and extraintestinal infection by an O78 APEC (118).
This latter study suggests that probiotics can even exert their
benefits outside of the intestine, potentially through activation of
immune phagocytes via TLR-dependent pathways (126). Another
commercial probiotic (Cylactin R©) also may be a useful vaccine
adjuvant, as combining this product with the live Salmonella
vaccine Gallivac R© SE increased Salmonella-specific IgA in layers
(97). Thus, it is imperative that future studies look at the
synergistic-effect other prophylactics may have on one another.
Given the expensive nature of trying to fully-model the spread
of prophylactics used in poultry agriculture, one could feasibly
use commercially-available birds already given their respective
prophylactics prior to experimental treatment.

Although parameters such as weight gain, food-conversion,
egg laying efficiency, and bacterial resistance are commonly-
used to study prophylactic-efficacy, there are many other
mechanisms in which these live microbes could affect the host.
Gut bacteria play a major role in the maturation of the enteric
nervous system (189) and mediate animal behavior via the gut-
brain-microbiota axis (190–192). These interactions are largely-
driven by the ability of probiotic bacteria, Salmonella, and
E. coli to directly synthesize and respond-to neurochemicals
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through a bidirectional communication network called microbial
endocrinology (193–195). Animal models have demonstrated
the ability for probiotics like Lactobacillus and Bifidobacterium
(196, 197) as well as C. perfringens (198) to modulate behavior,
although only the latter has been shown in chickens. Recently,
a 13761-derived Salmonella vaccine and Gro-2-Max1 were
shown to modulate gut catecholamine (but not serotonin)
metabolism in layer pullets, depending if the live prophylactics
were given individually or in combination (160). Altogether,
these findings suggest that the prophylactics used may have
a direct impact on animal behavior. Thus, a novel target

for live prophylactics could be to manipulate poultry animals
into exhibiting positive behaviors (feeding, dust-bathing) while
mitigating negative social behaviors like pecking. However, a
major consideration is whether effects of these live prophylactics
on the gut-brain-microbiota axis aremaintained by chickens with
different gut microbiotas. Given the variability of the chicken
gut microbiome due to factors like geographical location, litter,
breed, and feed [reviewed by (199)], it is very possible that
other commensal bacteria might nullify, reduce, or amplify the
effects live prophylactics might have on animal behavior and
neurochemical metabolism.

FIGURE 1 | Overview of mechanisms live bacterial vaccines and probiotics participate in to improve host health, responses against bacterial pathogens, and future

directions for live prophylactic research.
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CONCLUSIONS

Commercial live bacterial vaccines and probiotics offer several
advantages in improving poultry health against bacterial disease
and colonization (summarized in Figure 1) However, a paucity
of peer-reviewed research studies, inconsistencies with product
labels, limited cross-protection against certain pathogens, and a
vague understanding of synergistic effects when using multiple
prophylactics have encumbered our ability to optimize poultry
health. Additionally, it is crucial that future studies must
investigate whether these live prophylactics may facilitate animal
behavior changes via the gut-brain axis (Figure 1), providing
a convenient means of improving social behaviors among
poultry flock.
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