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Abstract: Hundreds of trillions of bacteria are present in the human body in a mutually beneficial
symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals
between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota
contribute to the determinism of various diseases. Recent research suggests that the microbiota is also
involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to
modern molecular biotechnology, various mechanisms regulating the relationship between bone
and microbiota are emerging. Understanding the role of microbiota imbalances in the development
of osteoporosis is essential for the development of potential osteoporosis prevention and treatment
strategies through microbiota targeting. A relevant complementary mechanism could be also
constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs).
miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review,
we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset
by governing miRNA production. An improved comprehension of the relations between microbiota
and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis,
and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
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1. Introduction

1.1. General Consideration on Osteoporosis

Osteoporosis is a systemic disease of the skeleton characterized by decreased bone mineral density
(BMD) and structural deterioration, resulting in an increased risk of fragility fractures. Menopause
and aging are the most common causes of osteoporosis. Genetic predisposition as well as lifestyle
and nutrition are factors related to its pathogenesis. Estrogen, parathyroid hormone, inflammatory
cytokines, and vitamin D are regulatory factors in the bone remodeling process. The pathophysiological
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process underlying osteoporosis is the imbalance of bone remodeling with increased bone resorption
and consequent bone loss [1] as bone is a plastic tissue undergoing continuous remodeling.

Osteoblasts, derived from mesenchymal stromal cells of the bone marrow, are the precursors
of osteocytes and perform bone-forming functions, producing matrix proteins and mineralization,
whereas osteoclasts stem from mononuclear-phagocytic cells and function as bone resorbing cells.
The balance between formation and resorption is essential for bone health [2].

Several diseases and the use of various types of drugs, in particular steroid therapies, can induce
bone resorption and osteoporosis [3,4]. Estrogen deficiency and inflammatory conditions are known
to result in bone resorption, mainly through the increased production of inflammatory cytokines,
such as interleukin (IL)-1, IL-17, tumor necrosis factor (TNF)α, and receptor activator for nuclear
factor-κB (RANKL) in the bone marrow, which induce an increase in osteoclast production, activation,
and survival [5–8]. T helper (Th)17 lymphocytes play a central role in the process of accelerated
bone loss in menopause [9]. Regulatory T cells (Tregs), which exert suppressive functions on the
production of effector cytokines, intervene in the control of bone resorption through the production of
osteoprotective cytokines, including Transforming Growth Factor (TGF) β1, IL-4, and IL-10, and the
downregulation of osteoclast formation [10–12].

1.2. The Microbiota

The microbiota is composed of trillions of microbial organisms, including bacteria, fungi,
and viruses, living symbiotically with the host by increasing the absorption of nutrients from
ingested food, as well as counteracting the colonization of pathogenic bacteria. With the advent of
rapid sequencing technologies, many different bacterial species have been identified in the body,
with approximately 100 times more bacterial genes (microbiome) than host genes [2]. The microbiota
varies from person to person; however, there are four main classes of bacteria primarily represented in
most normal subjects: Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria, with Bacteroidetes and
Firmicutes comprising over 90% of the phylogenic categories [13]. The microbiota can even be considered
our largest organ, and recently, in addition to intestinal function control, other physio-pathological
roles of the microbiota have emerged, including immune regulation, cancer development control,
and bone remodeling [14,15].

1.3. Microbiota and Osteoporosis

Microbiota and the host interact with each other in a dynamic equilibrium that influences the bone
mass. Research established that both the immune system and the microbiota play fundamental roles
in bone homeostasis, and in addition to the term “Osteo-immunology”, which refers to the crosstalk
between the immune system and bone remodeling [16], the new term of “Osteo-microbiology”,
meaning the functional relationship between the microbiota and bone, has been coined [17].
The microbiota modulates immune functions [18], and specific strains of intestinal microbes act
on the cells of the immune system by modulating intestinal as well as systemic immune responses,
thus, affecting distant organs and systems [19,20], such as the bones. The microbiota is able to intervene
on other pathogenetic moments of osteoporotic disease (Figure 1).

Here, we address the relationships between microbiota and osteoporosis and, subsequently,
the role of microRNAs (miRNAs) in this specific network. Several studies [20–23] have shown
how the microbiota is closely related to the bone metabolism and the absorption of nutrients and
minerals essential to the health of the skeleton. It is, therefore, not surprising that the development of
osteoporosis is influenced by the microbiota.
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Figure 1. Relationship between gut microbiota and bone mass. An alteration of the gut microbiota can 
lead to the over-production of inflammatory cytokines, in turn promoting the activation of osteoclasts 
and bone, leading to bone resorption and inhibiting bone formation, ultimately driving to bone mass 
reduction and osteoporosis. 
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et al. [24], who demonstrated that mice raised in germ-free conditions showed increased trabecular 
bone mass compared to controls and that the colonization with gut flora from conventionally raised 
mice was able to reverse this bone phenotype. They also found lower CD4+ T cell numbers and 
decreased TNF-a levels in the bone marrow from germ-free mice, associated with decreased 
osteoclast precursors and higher bone mass, suggesting that commensal gut microbiota decreases the 
bone mass by stimulating bone resorption and inhibiting bone formation [24].  

Further studies showed that, in mice, the short-term administration of antibiotics that 
specifically reduce intestinal bacteria resulted in increased bone mass, and ovariectomy-induced 
bone loss in mice could be partially prevented by the administration of tetracyclines [25,26]. The 
antibiotic treatment, therefore, influenced the bone mass through modifications of the microbiota. In 
addition to reducing the microbiota, antibiotics also alter the composition, decreasing the diversity 
of the microbial taxa present in the intestine. Both the quantity and diversity of the intestinal bacterial 
load are likely to contribute to the mechanisms of regulation of bone mass by the microbiota. The 
colonization of germ-free mice with stool samples from malnourished children exhibiting an 
immature microbiota resulted in increased cortical bone density, shorter bones, and stunted body 
growth, suggesting that bone anabolic effects can be induced by an immature microbiota [27]. 

Different mechanisms of dysbiosis inducing osteoporosis have been hypothesized, such as a 
dysregulation of the immune–inflammatory axis [28]. Gut-mediated inflammation, with the 
intervention of inflammatory cytokines, plays a role in the activation of osteoclasts, favoring the 
appearance of osteoporosis [29]. The gut microbiome mediates osteoporosis pathogenesis by largely 
involving the immune system. Clostridium promotes the accumulation of Tregs, which are inhibitors 
of osteoclast differentiation, in the lamina propria of the colon [30]. A lack of Clostridium strains 
caused a reduction in Foxp3 Treg levels with an increase in bone loss [31].  

T lymphocytes and osteoclast formation can be challenged by Lactobacillus reuteri. 
Osteoclastogenic Th17 cells can be differentiated due to an intestinal flora imbalance. Finally, Th17 
differentiation can be promoted by mouse commensal segmented filamentous and human 
commensal bacteria [32]. B lymphocytes also regulate the function of bone cells by controlling the 
RANKL/osteoprotegrin (OPG) proportion via the phosphoinositide 3-kinase/protein kinase B 
(Akt)/mammalian target of rapamycin (mTOR) signal transduction pathway.  

Intestinal flora controls the mTOR transcription factors, thus, affecting B-cell development and, 
as a consequence, OPG production [33]. The decoy receptor OPG, in addition to the direct RANKL 
inhibition, inhibits osteoclastogenesis by modulating autophagy-related genes and AMP-activated 

Figure 1. Relationship between gut microbiota and bone mass. An alteration of the gut microbiota can
lead to the over-production of inflammatory cytokines, in turn promoting the activation of osteoclasts
and bone, leading to bone resorption and inhibiting bone formation, ultimately driving to bone mass
reduction and osteoporosis.

The relationship between the microbiota and bones was first described few years ago by
Sjogren et al. [24], who demonstrated that mice raised in germ-free conditions showed increased
trabecular bone mass compared to controls and that the colonization with gut flora from conventionally
raised mice was able to reverse this bone phenotype. They also found lower CD4+ T cell numbers and
decreased TNF-a levels in the bone marrow from germ-free mice, associated with decreased osteoclast
precursors and higher bone mass, suggesting that commensal gut microbiota decreases the bone mass
by stimulating bone resorption and inhibiting bone formation [24].

Further studies showed that, in mice, the short-term administration of antibiotics that specifically
reduce intestinal bacteria resulted in increased bone mass, and ovariectomy-induced bone loss in mice
could be partially prevented by the administration of tetracyclines [25,26]. The antibiotic treatment,
therefore, influenced the bone mass through modifications of the microbiota. In addition to reducing
the microbiota, antibiotics also alter the composition, decreasing the diversity of the microbial taxa
present in the intestine. Both the quantity and diversity of the intestinal bacterial load are likely
to contribute to the mechanisms of regulation of bone mass by the microbiota. The colonization of
germ-free mice with stool samples from malnourished children exhibiting an immature microbiota
resulted in increased cortical bone density, shorter bones, and stunted body growth, suggesting that
bone anabolic effects can be induced by an immature microbiota [27].

Different mechanisms of dysbiosis inducing osteoporosis have been hypothesized, such as
a dysregulation of the immune–inflammatory axis [28]. Gut-mediated inflammation, with the
intervention of inflammatory cytokines, plays a role in the activation of osteoclasts, favoring the
appearance of osteoporosis [29]. The gut microbiome mediates osteoporosis pathogenesis by largely
involving the immune system. Clostridium promotes the accumulation of Tregs, which are inhibitors of
osteoclast differentiation, in the lamina propria of the colon [30]. A lack of Clostridium strains caused a
reduction in Foxp3 Treg levels with an increase in bone loss [31].

T lymphocytes and osteoclast formation can be challenged by Lactobacillus reuteri. Osteoclastogenic
Th17 cells can be differentiated due to an intestinal flora imbalance. Finally, Th17 differentiation
can be promoted by mouse commensal segmented filamentous and human commensal bacteria [32].
B lymphocytes also regulate the function of bone cells by controlling the RANKL/osteoprotegrin (OPG)
proportion via the phosphoinositide 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin
(mTOR) signal transduction pathway.

Intestinal flora controls the mTOR transcription factors, thus, affecting B-cell development and,
as a consequence, OPG production [33]. The decoy receptor OPG, in addition to the direct RANKL
inhibition, inhibits osteoclastogenesis by modulating autophagy-related genes and AMP-activated
protein kinase/mTOR/p70S6K signaling [34]. The microbiota modulates the production of insulin-like
growth factor 1 (IGF-1), which is a regulator of bone remodeling [35], and microbiota dysregulations
have been found to correlate with increased inflammatory responses and bone resorption [36,37].
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However, an alteration of the microbiota could have other effects capable of mediating the onset
of osteoporosis. The microbiota regulates the transport and absorption of nutrients necessary for the
growth and maintenance of skeletal health and many metabolic functions as well as the production of
various hormones, such as sex steroids, which play critical roles in skeletal turnover, and are influenced
by the intestinal flora. The microbiota also affects bone health by regulating the metabolism of serotonin
and vitamin D.

In particular, vitamin D plays central roles in the bone metabolism, regulating the calcium channel
function and promoting the intestinal absorption of both calcium and phosphorus as well as bone
calcification [38]. In old age, there is an altered intestinal response to vitamin D and a reduced
absorption of calcium associated with intestinal dysbiosis. In turn, intestinal dysbiosis can affect the
absorption of calcium and vitamin D contributing to the development of osteoporosis.

Vitamin D deficiency appears to induce a decrease in the ratio of Firmicutes to Deferribacteres in the
gut and intestinal inflammation. Interestingly, the proportion of Firmicutes and Deferribacteres can be
rebalanced by the administration of vitamin D, and colon inflammation also improved after vitamin D
and/or antibiotic treatments [39]. In addition to vitamin D, vitamin B12 and folates, which are involved
in bone turnover, are also regulated by the intestinal flora. Folic acid is involved in the metabolism of
homocysteine, an amino acid produced during the metabolism of methionin.

An altered gut microbiome can reduce folic acid absorption in the jejunum, leading to
hyperhomocysteinemia, which, in turn, induces extracellular bone matrix degradation and decreases the
bone mineral density [40]. Gut bacteria also affect the brain–gut axis by regulating the neurotransmitter
serotonin (5-HT) [41]. Gut-derived 5-HT decreases bone formation, while brain-derived 5-HT has the
opposite effect of increasing bone formation [42]. The expression of the rate-limiting enzyme 5-HT
tryptophan hydroxylase-1 (TPH-1) in germ free mice was decreased [43].

The intestinal flora may also affect bone formation or destruction by modulating nitric oxide
(NO) production. The biosynthesis of NO is known to be limited by nitric oxide synthase (NOS).
Micro-organisms can promote the bond of pathogenic bacteria or bacterial lipopolysaccharide-inducible
transcription factor nuclear factor (NF-kB) to the inducible nitric oxide synthase (iNOS) promoter, thus,
upregulating iNOS transcription. iNOS stimulates osteoclast production by increasing the levels of
RANKL. Vitamin D regulates endothelial NOS: it positively regulates NO, which, in turn, can influence
the vitamin D actions on osteoblasts [44].

The alteration of the vitamin D receptor led to increased Eggerthella abundance and other
unfavorable alterations in the intestinal microbiota in murine models [45]. Vitamin D levels were
associated with a decrease in the relative abundance of Escherichia/Shigella. Microbes belonging to the
phylum Firmicutes, including species from the genus Veillonella, which is decreased in osteoporotic
patients, metabolize isoflavone diadzin to the estrogen analogue equol, suggesting that a reduction in
Veillonella may lead to a lack of inhibition of bone resorption, through lower equol production [46].
These considerations support the concept that specific genera within the gut influence the bone
metabolism in the host, subsequently affecting bone health [47].

1.4. miRNAs and Osteoporosis

MicroRNAs (miRNAs or miRs) are a set of small endogenous non-coding RNAs of
18–25 nucleotides that regulate gene expression through base complementarity between the seed
region of the miRNA and the 3′-untranslated region (UTR) of the target mRNA. Corresponding to the
quantity of complementary mRNA, miRNA connections can provoke mRNA translational degradation,
repression, or both [48]. miRNAs can interfere in the onset of numerous pathologies, such as asthma,
cancer, and inflammatory bowel disease [49–51].

They have an essential action in the natural bone growth, and, in a previous study, we reported
that a specific miRNA profile existed in subjects with bisphosphonate-related osteonecrosis of the jaw
with respect to control subjects. In these subjects, altered miRNAs were aimed at several genes and
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metabolic pathways involved in bone reabsorption, mineralization of the bone matrix, the calcium ion
metabolism, and differentiation of bone tissue [52].

Numerous experimental studies have demonstrated that miRNAs are also implicated in the
onset of osteoporosis, principally in modulating the equilibrium between bone construction and bone
reabsorption and osteoblast differentiation [53,54] [Figure 2]. Bioinformatics-based analyses have
reported the existence of miRNA expression patterns correlated to postmenopausal osteoporosis [55,56].
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Figure 2. Selected microRNAs are known for balancing between bone resorption and formation,
having a role in osteoporosis and for targeting several signaling pathways, including Androgen receptor
(AR), Wnt, TGF-β, JAK/STAT signaling pathways.

For instance, Seeliger et al. executed microarray analysis from subjects with osteoporotic hip
fractures and subjects with non-osteoporotic hip ruptures. They stated that five miRNAs were increased
in the bone tissue and in the serum of subjects with osteoporotic fractures with respect to the subjects
with non-osteoporotic fractures [57], and numerous other investigations confirmed that distinctive
circulating miRNAs are correlated to osteoporosis [58–64].

In this regard, the analysis of Li et al. evaluating the miRNA levels of samples of postmenopausal
women with osteoporosis appears particularly interesting. A total of 331 miRNAs were recognized as
differently expressed miRNAs with respect to the control subjects. Among these, 122 miRNAs were
increased, while 209 miRNAs were decreased. More than one hundred genes were identified as the
objectives of these miRNAs. The Kyoto Encyclopedia of Genes and Genome analysis determined
that the miRNAs primarily targeted pathways, such as the androgen receptor signaling pathway,
wnt signaling pathway, TGF beta signaling pathway, and Janus kinase/signal transducers and activators
of transcription (JAK-STAT) signaling pathway [65].

Certain specific miRNAs appear to be markedly relevant in the genesis of osteoporotic disease.
A cross-sectional analysis enrolled 352 subjects, and a diagnosis of osteoporosis was made for 95 females
and 30 males with BMD assays. The authors reported that miR-195 was considerably reduced in
females, while miR-150 and miR-222 were substantially increased in males. In females, advanced age
and decreased miR-195 were major risk elements for reduced BMD, while a decrease of miR-150 was a
relevant risk element for osteoporosis [66].
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miR-195 appertains to the miR-15 family, which is generated by stress and stimulated in
numerous pathologies [67–70], and a correlation with bone metabolism has also been described [71,72].
miR-195 blocks the growth of chondrocytes by aiming at the G protein-coupled receptor kinase
interacting protein-1 (GIT1), a central controller of bone mass in vivo by modulating osteoclast
function [71]. Grunhagen et al. stated that miR-195-5p modifies the gene controlling system of
osteoblast differentiation [72].

A different significant miRNA is miR-1-3p. Gu et al. stated that it was substantially reduced in
the bones of osteoporotic subjects. Secreted frizzled-related protein 1 (SFRP1) was reported as a target
gene of miR-1-3p. Their results demonstrated that the production of SFRP1 was inversely related with
miR-1-3p in osteoporotic subjects. The increase of miR-1-3p augmented osteogenesis and reduced
the adipogenesis of mesenchymal stem cells, while the in vivo reduction of miR-1-3p augmented the
generation of SFRP1 and decreased bone formation [73].

miRNAs were stated to have relevant effects in controlling osteoclast differentiation. Research
reported that an increase of miR-125a-5p augmented osteoclast differentiation through blocking
TNFRSF1B expression [74], while Zhou et al. demonstrated that the increase of miR-100-5p avoided
bone loss in ovariectomized animals through reducing the production of FGF-21 and osteoclast
activeness [75].

Studies also showed that the miR-338 family was increased in postmenopausal osteoporotic
women, and an estrogen-supported positive feedback (Runx2/Sox4/miR-338) loop was able to control
osteoblast differentiation [76]. Finally, augmented concentrations of serum miR-483-5p and miR 194-5p
have been demonstrated in different populations of osteoporotic subjects. [77,78].

Circulating miRNAs may be also a possible instrument for examining the effect of drugs on the
osteoporosis. Patients with postmenopausal osteoporosis demonstrated a reduction in the serum
amount of miR-33-3p after 3 months and miR-133a after 12 months of teriparatide administration [79].
Osteoporotic women demonstrated an increase in the serum concentrations of miR-497-5p and
miR-181c-5p after treatment [80].

Finally, miRNAs could also play a role in the treatment of osteoporosis as miR-214-5p was reported
to have an essential action in the adipogenic differentiation of bone marrow mesenchymal stem cells,
and it might be a possible drug for osteoporosis [81].

2. Microbiota and miRNAs; A Novel Functional Axis

Current searches on the microbiota indicate its participation in the onset of different
diseases through modulating the microbiota–gut axis, microbiota–brain axis, microbiota–liver
axis, microbiota–lung axis, and microbiota–vascular axis [82]. Numerous experiments have also
demonstrated the presence and actions of a microbiota–bone axis capable of inducing the onset of
osteoporotic disease. The systems by which an altered microbiota can participate in the progression of
osteoporosis diseases are manifold, and, among these, a fundamental moment could be constituted by
the ability of the microbiome to intervene in the expression and functioning of miRNAs.

In osteoporosis, Firmicutes were significantly increased while Bacteroidetes were significantly
decreased. The Firmicutes/Bacteroidetes ratio correlates negatively with the BMD, whereas an abundance
of actinobacteria phylum members, such as Bifidobacteriaceae, positively correlates with the BMD [25].
In subjects with a normal BMD, Bacteroides, Faecalibacterium, and Prevotella represented more than
half of the bacterial community, while, in patients with osteoporosis and osteopenia, 5 and 11 genera,
respectively, constituted 50% of the bacterial community [83].

The genera Parabacteroides, Blautia, and Ruminococcaceae also differed significantly between
osteoporotic patients and controls. Colonization by Firmicutes and the increase in the biodiversity in
the intestinal bacterial flora were associated with increased local and systemic inflammatory responses,
and responsible for the differentiation of osteoclasts from monocytic precursors in the bone marrow
and their activation in the bone [22].
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Although data in the literature are sometimes conflicting, it has been shown that firmicutes were
able to modify the expression of miRNAs associated with osteoporotic disease, such as miR-21 [84],
and this miRNA has been recognized as having a role in the genesis of osteoporosis. In a paper,
among 83 tested miRNAs, miR-21-5p concentrations were reported to be higher in the serum of
osteoporotic subjects with respect to non-osteoporotic subjects (both with bone ruptures) [57], and this
increase was confirmed by different reports in cohorts of fractured postmenopausal osteoporotic
subjects [85,86] Figure 3.
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Figure 3. Simplified view of the action of the major intestinal bacteria on osteoporosis through microRNA
regulation: (i) Firmicutes are known to modify miR-21 expression, associated with osteoporosis;
(ii) Klebsiella pneumoniae drives to increased miR-142 and miR-223, in turn increased in osteoporosis;
(iii) E-coli leads to an increase in miR-146a concentration, able to challenge osteoporosis by promoting
osteogenesis; (iv) Shigella promotes increased miR-4732-5p concentrations, in turn associated with
significant cell growth, also challenging osteoporosis.

Chen et al. evaluated the pattern of expression of 150 serum miRNAs in osteoporotic subjects
and in a group of age-matched controls, and they found that six miRNAs were decreased, while five
miRNAs comprising miR-21-5p were increased in the serum of osteoporotic subjects [87].

Regarding the systems via which miR-21 could exercise its effects on osteoporosis, researchers
demonstrated that an increase of miR-21 augmented RANKL generation and reduced TGF-Beta 1 and
OPG concentrations, and this was able to provoke an augment of RANKL/OPG ratio with a rise of
bone reabsorption and reduction of BMD, producing osteoporosis [88].

Klebsiella and Lachnoclostridium were also found to be more plentiful in osteoporosis than in a normal
subject group [22]. Research reported that, after the intratracheal administration of Klebsiella pneumoniae,
several miRNAS, including miR-223/142, were markedly increased in the serum and bronchoalveolar
lavage fluid, and a variation of the expression of this miRNA was reported in osteoporotic subjects [89].
miR-223-3p and other miRNAs were described as more augmented in osteoporotic subjects than
in non-osteoporotic subjects (both with fractures), and the Receiver operating characteristic (ROC)
analysis demonstrated the relevant capability of these miRNAs in discriminating osteoporotic from
non-osteoporotic fractures [57]. A study also determined that miR-223 contributes to the calcification
process by networking with osteoblasts and osteoclasts [90].

A different situation appears to be present with respect to Clostridium. Patients with clostridium
infection had greater concentration levels of fecal miR-1246, while no modification was observed in
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serum samples. In any case, there are currently no studies that correlate alterations of this miRNA
with the onset of osteoporosis [91].

Das et al. identified other taxa-specific differences in the gut microbiota profiles associated with
normal bone mineral density, osteopenia, and osteoporosis that could present a link with miRNA
expression. These genera could represent potential biomarkers and future therapeutic targets in high
risk cohorts of osteoporotic patients. Escherichia/Shigella and Veillonella were more abundant in subjects
with osteopenia compared with those with osteoporosis [92], and both Escherichia and Shighella are
capable of modifying miRNAs involved in the genesis of osteoporosis.

A study evaluated and confronted miRNA modifications of human epithelial and human
monocytic THP-1 cells stimulated by the enteropathogenic Escherichia coli (EPEC) strain E2348/69
(O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). THP-1 cells
demonstrated a significant augment in miR-146a production, with a greater augment after EcN
infection and a minor augment after EPEC infection [93].

An increased production of miR-146a was able to block the osteogenic capability of bone marrow
stromal stem cells (BMSCs), while inhibiting miR-146a partly reverted the osteogenesis insufficiency
under TNF-α treatment. Regarding the mechanism of action, miR-146a reduced Smad4 production by
connecting to a part positioned in the Smad4 3′-untranslated region, and reestablishment of Smad4
inverted the repressive actions of miR-146a on osteogenesis [94]. These findings suggest that an
inflammatory milieu is able to block osteogenesis through an increase of miR-146a and a decrease of
Smad4. Research also demonstrated that polymorphisms of miR-146a were correlated with osteoporotic
vertebral compression ruptures in postmenopausal women [95].

A therapeutic modification of miR-146a may be a possible approach to increase osteogenesis in the
context of osteoporosis. This possibility was confirmed by the fact that a miR-146a knockout safeguarded
bone loss in an animal experimental model of estrogen-deficient osteoporosis, and miR-146a blocked
osteoblasts and osteoclast actions in vitro and in vivo. MiR-146a−/− mice exhibited the same bone mass
as the wild type (WT) but showed a greater bone turnover than the WT. However, miR-146a−/− animals
displayed an augment in BMD after experiencing ovariectomy with respect to animals exposed to
sham operations. Osteoclast functions were also modified in the miR-146a−/− animals subjected to
estrogen insufficiency, which was contrary to the increased bone resorption capability of the WT [96].
Thus, miR-146a has a central action in estrogen insufficiency-caused osteoporosis, and the reduction of
this miRNA offers skeleton defense.

However, not all the data in the literature appear to be univocal. In a study, the concentrations of
miR-146a were estimated in the plasma of 120 postmenopausal subjects who were separated into three
groups: normal, osteopenia, and osteoporosis. The modifications of the miR-146a concentrations in
plasma among the three sets were not significant [97].

Instead, the production of endogenous miR-4732-5p and miR-6073 were augmented throughout
Shigella infection [98]. Although there are no specific studies on the action of these miRNAs on the
onset of osteoporosis, research demonstrated that MiR-4732-5p considerably increased the cell growth,
colony formation, and migration of several types of cells [99].

Actinomyces, Eggerthella, Clostridium XlVa, and Lactobacillus were also more abundant in subjects
with osteoporosis compared with the normal BMD group. These microorganisms modulate the host’s
immune system and metabolism, and their functional analyses may provide insights into how the gut
microbiota affects bone mineral density [92].

For example, Actinomyces are involved in the development of osteonecrosis of the jaw induced
by bisphosphonates, and antimicrobial therapy targeting this organism has been proposed for its
management [100]. Interestingly, Clostridium XlVa is a relevant producer of the short chain fatty
acid butyrate, which stimulates bone formation, and is also a potent inducer Tregs, which, in turn,
regulate bone homeostasis [101].

Both Actinomyces and Lactobacillus are able to modify miRNA expression. Naqvi et al. evaluated
the initial (4 h) miRNA reaction of human monocytic THP1-derived macrophages stimulated with
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lipopolysaccharide (LPS) originating from the pathogen Aggregatibacter actinomycetemcomitans (Aa).
Aa LPS determined the au-augmented production of miR-146a. This stimulation caused the release of
a great quantity of TNF-α, that was associated with augmented concentrations of both pre- and mature
miR-146a, which is capable of influencing the bone metabolism [102].

As far the actions of Lactobacillus acidophilus and Bifidobacterium bifidum on miRNAs production,
a recent paper clarified their influence on the expression of miR-135b, 26b, 18a, and 155 and their target
genes, comprising KRAS, APC, PU.1, and PTEN. The data demonstrated that the production of the
miR-135b, miR-155, and KRAS was increased [103], and miR-135a-5p is otherwise produced between
normal subjects and osteoporotic subjects with fractures. Research also demonstrated that employing
the support vector machine algorithm classification 135a-5p could discriminate between the normal
subjects and fractured patients, and the area under the curve was 0.9722 with 95% CI 0.8885–1.056 [104].

As seen above, miRNA-155 is a diverse miRNA stimulated by Lactobacillus acidophilus and
Bifidobacterium bifidum. An osteoporosis animal experimental model was projected to evaluate the
relationship between bone density and the amount of miR-155 in osteoclasts. Animals with osteoporosis
showed reduced BMD and bone tension, and an increased production of miR-155. Down-regulation of
miR-155 provoked a reduction of TNF-α, RANK, IL-1beta, M-CSF, TRAP, and Bcl-2, and an increase of
the leptin receptor with an inhibition of the cell proliferation and bone resorption of osteoclasts [105].
Other data proposed that miR-155 reduction stimulated osteogenic differentiation of hBMSCs under
high glucose and free fatty acid conditions by aiming at the silent information regulator 1. Blocking
miR-155 may offer a novel therapeutic approach for the therapy of osteoporosis [106].

Finally, several data suggested that miR-26b also stimulated BMSC osteogenesis by triggering the
canonical Wnt signal pathway, indicating that miR-26b might be employed as a possible therapeutic
factor of osteoporosis [107].

An overall view of the miRNAs, functions, and target genes involved in the whole process is
displayed in Table 1.

Table 1. miRNAs, functions, and target genes involved in the osteoporosis/microbiota linkage.

miRNA Target(s) Function(s) Reference(s)

miR-1-3p SFRP1 Osteogenesis, adipogenesis,
bone formation regulation [73]

miR-21 RANKL, TGF-Beta 1, OPG Bone reabsorption [88]

miR-26b Wnt pathway Osteogenesis [107]

miR-100-5p FGF-21 Avoids bone loss [75]

miR-125a-5p TNFRSF1B Increased osteoclast
differentiation [74]

miR-146a Smad4 Osteogenesis blockade [94,95]

miR-155 KRAS, TNF-α, RANK, IL-1beta,
M-CSF, TRAP, and Bcl-2

Stimulation of cell
proliferation [105,106]

miR-195 GIT1 Blocks the growth of
chondrocytes [71,72]

3. Modifying the Microbiota/miRNAs Axis: A New Approach to Osteoporosis Therapy

Nutritional supplementation with probiotics, i.e., selected live microorganisms capable of exerting
positive effects for the health of the host, provided in adequate quantities and for sufficient periods,
could find use in the therapy of osteoporosis [108]. Probiotics are essentially harmless and beneficial
bacteria of the microbiota. The genes of these bacteria encode factors capable of governing the
regulation of a wide spectrum of functions not only of the intestine itself but also of other organs.

Through the regulation of vitamins, branched-chain fatty acids, and short chain fatty acid (SCFAs),
they control the functioning of several systems. Numerous studies describe the positive effects of
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probiotics on bone mass in animals and humans [109,110]. In patients with osteoporosis receiving
Lactobacillus reuteri orally, the loss of bone mineral density was significantly reduced compared to a
placebo control group. A red clover extract (RCE), rich in isoflavone aglycones and probiotic lactic
bacteria administered to patients with postmenopausal osteoporosis, improved bone turnover by
promoting the production of estrogen metabolites that reduce bone loss [111]. The integration of
probiotics can, therefore, be clinically useful to prevent bone resorption and osteoporosis.

However, new studies have shown that it is possible to look at the problem from a different
perspective. The link between osteoporosis, the microbiota, and miRNAs is supported by the literature,
suggesting that miRNA can be modulated to modify the onset and progression of neoplastic disease
via a modification of the microbiota obtained by the use of probiotics or dietary advice.

The diet influences the microbiota, in turn, regulating miRNA expression [112]. Then, diet and
probiotics could modify the microbiota and such modifications can affect the synthesis of miRNAs,
although a bidirectional relationship between microbiota and miRNAs cannot be ruled out.

For example, in the previous section, we reported the relevant role played by mir-21 in the
genesis of osteoporosis. The nutritional change of miR-21 production was studied in several in vivo
and in vitro analyses. A very potent epigenetic modulator of miR-21 may be the phenolic substance
resveratrol, a compound generally present in red wine and peanuts, capable of reverting the dysbiosis
in db/db mice typified by low amounts of Bacteroides, Alistipes, Rikenella, Odoribacter, Parabacteroides,
and Alloprevotella [113].

Resveratrol is capable of modifying miR-21 expression in diverse cell culture models. Experiments
employing the culture of U251 cells, cultured with resveratrol for 12 h, reduced miR-21 expression,
and this was followed by the decrease in the generation of proinflammatory transcription factor
NF-κB [114]. The reduction of miR-21 could have a beneficial effect on the progression of osteoporosis.

A different useful dietary substance could be curcumin, which is a polyphenol diferuloylmethane,
extracted from curcuma (Curcuma longa) that has been demonstrated to have antioxidant and
anti-inflammatory effects [115,116].

Recently, researchers assumed that curcumin could exercise regulative actions in the
gastrointestinal tract, where elevated levels have been discovered after oral dispensation. It might be
conjectured that curcumin acts on the gut microbiota, thus, explicating the paradox between its small
bioavailability and its pharmacological effects [117]. Clinical reports stated that miR-21 and miR-155
production were reduced after the daily ingestion of curcumin [118,119].

In addition to the opportunity to change the levels of host-generated miRNAs, numerous
food-derived exogenous miRNAs have been identified. This suggests that nutritional components
themselves are a source of miRNAs that could regulate homeostasis and microbiota and intervene in
several pathological conditions, such as osteoporosis [120].

Variation of gene expression by diet-originated miRNAs might be implicated in the interactions
between microbiota, miRNAs, and osteoporosis, and this correlation could be bidirectional.
Via an informatics methodology, Teodori et al. looked for suggestions that food-containing
miRNAs—essentially implicated in the regulation of the inflammatory systems as the so called
inflamma-miRNAs—may participate in the anti-inflammatory actions exercised by some foods via
the variation of microbiota configuration in a bidirectional interaction. In particular, three different
inflamma-miRNAs were evaluated: miR-155, miR-146a, and miR-21, miRNAS that are all implicated
in the onset and in the progression of osteoporosis.

The in silico analysis corroborated the possibility that these inflamma-miRNAs could regulate
some metabolic pathways, such as the elongation of fatty acids, which are implicated in the regulation of
microbiota structure, i.e., oscillibacter, prevotella, and ruminococcus, and vice versa. Dietary homologues
to human miR-155, miR-21, and miR-146a were identified in eggs, cow milk, and cow fat, indicating
that they may be capable of influencing, and possibly aggravating, inflammation correlated systems.
If these results are confirmed, they will sustain the importance of a nutraceutical procedure for the
treatment of osteoporosis [121].
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Finally, a particularly fascinating field of investigation could be the study of changes in bone
density during the growth period, and the intricate relationship present between the microbiota, diet,
and miRNAs could even be accountable for BMD commencing in the early phases of development [122].

4. Conclusions

Several factors, including diet, antibiotics, and probiotics, impact the microbiota [123–125], which,
in turn, affects the regulation of bone mass through a variety of different mechanisms. Some species of
microbiota bacteria, by increasing the bioavailability of estrogen, exert positive effects on the skeleton
by increasing bone mass with the help of prebiotics. The microbiota can increase the production of
inflammatory cytokines from the immune system, which increases osteoclastogenesis. Metabolites
produced by the microbiota, including short-chain fatty acids, influence the absorption of minerals
essential for bone formation, and the microbiota modifies the intestinal permeability and enhances the
promoting effect of vitamin D on the absorption of bone minerals [126].

A further mechanism through which the microbiome is able to affect the onset of osteoporosis
could be its action on miRNAs. Several miRNAs are able to regulate the substances linked to the
differentiation of osteoblasts in osteoporosis, promoting this event and, thus, challenging osteoporosis
progression. On the other side, miRNAs could also inhibit the differentiation of osteoblasts and
challenge the healing of osteoporosis [127,128].

Modulation, by increasing or reducing these miRNAs acting on microbiota, could help control the
disease. Presently, the use of probiotics or diets that intend to control the microbiota, are thought to
be a possible therapeutic approach to modify miRNA expression, influence BMD, and intervene in
osteoporosis. This could be a low-cost and secure approach to re-establish a healthy status.

Numerous reports demonstrated that several miRNAs could be modified by the microbiota
and employed as prognostic or diagnostic markers for differentiating osteoporotic patients from
non-osteoporotic subjects. In plasma samples from osteoporotic and osteopenia postmenopausal
subjects, the miR-133a and miR-21 concentrations were, respectively, augmented and reduced with
respect to healthy controls and both were correlated to the BMD [129].

In-depth knowledge of the mechanisms that regulate the relationships between the microbiome
and miRNAs could open a new era in disease treatment and prevention. A huge series of novel research
fields appears to be opening up in the context of the study on microbiota, osteoporosis, and non-coding
genetic material other than miRNAs, such as long non-coding RNA (lncRNA) [130]. LncRNA expression
in the gut forms a molecular signature that may unveil the classes of microbes, and Liang et al. proved
the presence of a relation between lncRNA expression and gut microbes [131,132].

In conclusion, the pathogenic mechanisms of osteoporosis at the epigenetic level are becoming
increasingly clearer and have led to epigenetic-related therapies for the treatment of osteoporosis [133].

Interventions on the microbiota to modify the expression of non-coding genetic material could
represent a new frontier in the treatment of osteoporosis.
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