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The disposable income of residents can reflect the living standard of people in the area. For government departments, it is
necessary to master the trend of rural resident income to formulate corresponding policies benefiting farmers. Thus, this paper
proposes a grey model with an improved jellyfish search optimizer to predict the rural resident income in Shaanxi Province.
Firstly, by applying fractional-order modified strategy and Gaussian mutation mechanism to the original algorithm, the proposed
algorithm shows better performance in solving accuracy, stability, and convergence acceleration when compared with different
classical methods on cec2017 and cec2019 test functions. Then, based on the fractional time-delayed grey model, a discrete
fractional time-delayed grey model with triangular residual correction (TDFTDGM) is proposed by replacing the derivative with
a first-order difference and introducing the triangular residual correction functions. Finally, the improved jellyfish search
optimizer is used to explore the optimal order of the TDFTDGM model. The all-around performance of the forecast model is
incomparable to additional grey models compared on four measure criteria, which means it is a practical approach for long-term
prediction with small samples. Moreover, the forecast data of rural resident income in Shaanxi Province from 2021 to 2025 are

given for reference.

1. Introduction

Agriculture, rural areas, and farmers are important issues for
the long-term stability of the country in China [1]. In ad-
dition, the income of rural residents is a key index, which
reflects the living standard of people in rural areas and the
economic development of rural farmers [2]. Only by un-
derstanding the trend of rural residents’ income, the gov-
ernment is able to formulate a series of policies to improve
the income of rural residents [3]. However, there are only
a few empirical studies on income prediction in the current
literature. It is because that it is highly difficult and time-
consuming to get exact information about the disposable
income of a region in a long period [4]. Meanwhile, due to
the income being affected by policies, climate, and other
uncertainty factors, it is a challenging task to predict the
income accurately [5].

Though the forecasting models for resident income are
scarce, there are many forecasting approaches for other
areas. For example, Maaouane et al. used the multiple linear
regression method to predict the industry energy demand in
Morocco [6]. Radial neural network is also a popular tool,
which was used for energy consumption forecasting and
wind speed forecasting in [7, 8], respectively. The authors in
[9, 10] used the ARIMA model to the daily production
prediction of wells in Sulige and to forecast the rural
population in China from 1970 to 2015. Although these
approaches can complete the task of data prediction
according to different features, there are some defects. A
tremendous amount of sample data is required, which
means the above methods are not suitable for problems with
a small sample [11]. As a choice, the grey forecasting al-
gorithm solves the prediction problem of a small sample
data set.
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The grey model (GM) is an effective forecast approach
with microscopic samples, which was proposed in 1982 [12].
It has the benefits of simple calculation, heightened pre-
cision, and wide application. As scholars have a deeper
understanding of GM, some enhanced models were pre-
sented to enhance the accuracy. The classic grey model (GM)
is mixed with the trigonometric residual modification
strategy. Zhou et al. proposed a novel trigonometric grey
prediction approach (TRGM) to forecast electricity needs
and obtain effective results [13]. Then, in [14], an unknown
discrete grey forecasting model called the DGM was
designed. It showed outstanding performance in predicting
the long-term developing tendency of an information series.
Meanwhile, Wu et al. proposed a novel nonlinear grey
Bernoulli model with fractional-order accumulation,
shortened as the FANGBM model in 2019 [15]. This model
was used to predict increase trend of the future China’s
renewable consumption. Though the curtain-raiser of
fractional-order collection has created meaningful contri-
butions to forecasting methods, some issues may also be
mistaken as they do not consider the time-delayed effect.
Thus, the authors in [16] introduce a new fractional grey
model, called the fractional delay grey model (FTDGM). We
design a novel grey model to obtain better-predicted results
considering the significance of the discrete model and
trigonometric residual modification technique.

Moreover, there is a parameter to be determined in the
fractional grey model, the fractional order. Then, how to
choose the most suitable parameters becomes another
thorny problem. The authors in [16] provided a practical
solution, which applied a metaheuristic algorithm to select
parameters.

Metaheuristic methods have been grown rapidly in
current years and show outstanding performance in solving
continuous, discrete, or nonlinear optimizations problems
[17, 18]. Generally, metaheuristic algorithms can be cate-
gorized into four varieties, swarm intelligence (SI) algo-
rithms, evolutionary algorithms (EAs), physics-based
algorithms (PhAs), and human-based algorithms [19]. The
cooperative and hunting behavior of social animals in nature
inspire SI algorithms. Particle swarm optimization (PSO) is
the most classical one, which has been employed to solve
different problems [20]. With the exploration of animal
habits in recent years, lots of SI algorithms have emerged. In
2015, Wang et al. proposed the monarch butterfly optimi-
zation (MBO) algorithm by simplifying and idealizing the
migration of monarch butterflies [21]. After being compared
with other algorithms on thirty-eight benchmark functions,
the results showed the capability of the MBO method sig-
nificantly outperformed the other five algorithms [21]. In
2020, inspired by a unique mathematical model that slime
mould forms the optimal path for connecting food through
the positive and negative feedback of the propagation wave,
Li et al. proposed the slime mould algorithm (SMA) [22]. In
addition, in 2021, by simulating the behavior of African
vultures and emperor penguin, respectively, the African
vulture optimization algorithm (AVOA) [23] and Apteno-
dytes Forsteri Optimization (AFO) [24] were designed and
provided excellent performance. Similar algorithms are
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available for moth search algorithm (MSA) [25], colony
predation algorithm (CPA) [26], and so on. EA algorithms
are inspired by the natural laws of population development
and evolution. Among EA algorithms for solving various
optimization tasks, the genetic algorithm (GA) [27] and
differential evolution algorithm (DE) [28] are undoubtedly
the most touted. PhA algorithms rely on physical regulation
to suggest solutions to optimization difficulties. Such as
multiverse optimizer (MVO) was inspired by the multiverse
theory in physics [29]. In addition, the Archimedes opti-
mization algorithm (AOA) is a novel PhA algorithm created
with motivations from an exciting regulation of physics
Archimedes regulation [30]. In 2021, based on the logic of
slope variations computed by the Runge-Kutta method, the
Runge-Kutta optimizer (RUN) was proposed and offered
outstanding performance on 50 mathematical test functions
and four real-world engineering problems [31]. The last set
of nature-inspired methods simulates some natural human
behaviors. Such as teaching-based learning algorithm
(TBLA) [32], socioevolution learning optimization algo-
rithm (SELOA) [33], preaching optimization algorithm
(POA) [34], and hunger games search (HGS) [35].

Jellyfish search (JS) optimizer is a high-profile meta-
heuristic algorithm suggested in 2020, which was roused by
the conduct of jellyfish in the ocean [36]. After being
compared with ten prominent metaheuristic algorithms on
the encyclopedic set of mathematical standard functions and
used in a sequence of structural engineering concerns, JS is
potentially a flawless algorithm for solving optimization
problems. Unavoidably, the original JS algorithm also suffers
defects in solving accuracy and premature convergence.
Thus, this paper introduces the fractional-order modified
strategy, and Gaussian mutation mechanism into the original
JS algorithm, jellyfish search algorithm based on fractional-
order modified, and Gaussian mutation mechanism
(FOG]JS). In addition, we apply the improved algorithm to
the novel grey model to obtain the optimal order of the
forecast model. The contribution of this paper can be out-
lined as follows:

An enhanced version of the jellyfish search algorithm
with fractional-order modified and Gaussian mutation
mechanism is proposed. And the validity of the im-
proved algorithm is discussed on test functions of
cec2017 and cec2019 by being compared with the
original JS and other ten additional algorithms.

Based on the fractional time-delayed grey model, we
alternate the derivative with a first-order difference. It
introduces the trigonometric residual modification
technique to design a novel forecast model—a discrete
fractional time-delayed grey model with triangular
residual correction (TDFTDGM).

Taking the rural income data of Shaanxi Province as an
example, apply the FOGJS to TDFTDGM to search the
most suitable fractional order of the forecast model.
Then, compared with other optimization algorithms
and grey models, the fitting and predicted errors of the
FOGJS + TDFTDGM approach are discussed.
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The rest of the paper is systematized as tracks. In Section 2,
we give the theory of jellyfish search optimizer. The improved
JS algorithm is proposed in Section 3. Section 4 examinations
the performance of improved algorithms on miscellaneous
test functions. Section 5 presents the novel grey model and
predicts the income of rural residents by different models.
Eventually, the work of this paper is abstracted in Section 6.

2. The Theory of Jellyfish Search Optimizer

The jellyfish search (JS) is a recent swarm intelligence
method founded on jellyfish demeanor in the ocean. The
jellyfish’s search behavior and movement mode in the ocean
encourages the algorithm [36]. As Figure 1 shows, the jel-
lyfish will move with the ocean current or move in the
population. Firstly, it is affected by the ocean current. Each
jellyfish will follow the ocean current to form a jellyfish
gathering. Secondly, once the surrounding food changes,
jellyfish will move within the group. These motions are
switched by using a time control mechanism.

The different initialization distributions of exact solu-
tions in the search space will affect whether they will
eventually fall into local solutions. After observing the
typical random methods, it is finally found that the jellyfish
search optimizer performs well under the logistic map. The
mathematical description is as follows [36]:

Zig=aZ;(1-2,),0<2Z,<1, (1)

where Z; represents the i-th jellyfish logistic chaotic value, Z,
is the first people of developed jellyfish, Z, is set between
0 and 1, but Z, cannot take some particular values, such as
0.0, 0.25, 0.5, 0.75, 1.0, and « is selected to 4.0.

The ocean currents contain a lot of nutrients and are
easier to survive, attracting jellyfish. Therefore, the current
ocean direction is usually specified by the average vectors
from all jellyfish in the ocean group to the jellyfish presently
in the optimal situation. The mathematical term of ocean
current is as tails [36]:

Zi(t+1)=Z;(t) +r; x(Z" = Bxryxp), (2)

where r; and r, are the accidental numerals between 0 and 1,
Z* is a jellyfish in the most suitable place at present, 5> 0 is
a distribution coefficient, and f is usually taken as 3.

The movement in the jellyfish group can be divided into
active and passive movements. Initially, when the jellyfish
group was just formed, most jellyfish showed passive
movement. Passive motion is the movement of jellyfish near
its place. At this time, the updated connected place of in-
dividual position is

Z;(t+1)=Z;(t)+yxryx(ub-1Ib), (3)

where ub is the upper attached and Ib is the lower bound of the
tracking area, in addition, y is a move coefficient and its
value > 0, which is connected to the move length of the jellyfish
near its place, and the original algorithm usually takes y =0.1,
and 73 is an arbitrary number in the range of 0 and 1.

The active movement relies on comparing the food
quantity of two jellyfish to judge whether there is relative
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FiGure 1: The simulation of ocean current and swarm.

movement. When the food quantity near the other jellyfish is
higher, it will move towards it. The expression of active
motion is as tails [36]:

Z;(t+1) = Z,(t) + r, x Direction, (4)

where r, is a random number between 0 and 1, and Direction
is used to determine the movement direction of the current
jellyfish in the next iteration. This movement always moves
in the direction of better food position, and represents the
following formula [36]:

—_— { Zy(t) = Z; (1),
Direction =
Z;(t) = Zi (1),

if (Z:)=f(Z),
if f(2;)<f(Z),

where k is the index of a jellyfish determined haphazardly,
and f is an objective function.

A time control tool is presented to control the tendency
of people between observing the ocean current and driving
within the people. Figure 2 is the allocation of activity within
the people. The time control instrument contains a time
control function ¢(t) and a regular c,, and the time control
function is an arbitrary matter that fluctuates from 0 to 1.
The term of the time control instrument is as follows [36]:

c(t)=(1—tL>x(zxr5—1), ©)

max

(5)

where t is the recent iterations, f,,,y is the total iterations, and
75 is a random number between 0 and 1. When c(t) >c,,
swim inward with other passive or active actions; when the
randomly generated random number is more significant
than (1 —c (#)), the current people use the inactive motion.
Otherwise, the active movement is involved.

3. An Improved Jellyfish Search Optimizer

AnimprovedJS algorithm based on fractional-order modified
and Gaussian mutation mechanism (FOG]JS) is proposed to
solve the problem that the jellyfish search algorithm quickly
falls into optimal local solution and improves accuracy.

3.1. Fractional-Order Modified Strategy. Fractional calculus
extends the order of calculus from integer to fraction and
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FIGURE 2: The direction of movement of jellyfish.

recursively deduces the solution limit through the difference
approximation of integer calculus, that is, the differentiation
and integration with the order of fraction. There are many
definitions of derivatives, such as Griinwald-Letnikov,
Caputo fractional derivatives [37], Riesz potential [38], and
so on. The most commonly used definitions is Griinwald-
Letnikov (G-L) [39] definition:

1 & (=D T (a+ Dz (t - KT)
D*[z(t)] = lim |— ,

201 = fim 7 ) T otk |7
where « is the fractional coefficient of a public signal z(#), T'is
a gamma function, and T is the truncation term.

The discrete expression of G-L can be expressed as

. 1 < (-D*T(a+ D)z (t - kT)
D[z ()] T,;) RS TS
Taking advantage of the fractional learning and training
algorithm is easy to leap out of the local extreme points. The
jellyfish search algorithm is integrated with the fractional-
order modified strategy to adjust the fractional-order by
updating the jellyfish position in the ocean current and the
jellyfish passive motion position. Let « =4 in equation (8)
have the following:

D[z(t+1)] = z(t + 1)—ocz(t)+%oc(oc— Dz (t-1)
—éa(a—l)(oc—z)z(t—z) 9)

+i¢x((x— 1) (a—2) (@ —3)z (¢ - 3).

The fractional derivative results are related to the current
term and previous state values, and the influence of past
events decreases with time. The position update of jellyfish
moving under the effect of ocean current and the position
update of people passive movement when jellyfish group just
formed are equations (2) and (3), respectively. Figure 3
shows how fractional-order correction affects the update.
The left side of equations (2) and (3) is fractional-order G-L,
which defines the discrete form when order « is 1, and T'is 1;
that is,
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D[z(t+1)] =7, x(Z" = Bxryxp),

. (10)
D*[z(t+1)] =y xr; x (U, — Ly).
Therefore, the position update formula of jellyfish af-
fected by ocean current after fractional-order modified is as
follows:

1 1 -
Z,} = oz -ala- Nz -cala-D(a- 22}
1 t-3 (11)
+ﬁa(a—1)((x—2)((x—3)2i’j + 7,

x(Z" =B xryxup).

The update formula of passive motion position of jel-
lyfish after fractional-order modified is

1 a1 _
Zj = aZ; - sala- D7 - cala-D(a-2)Z;
(12)
1 t-3
2 (a-1D(a=2)(a=3)Z;; +yxr;x (U, - L)

It is worth noting that when the terms of 1/120 or 1/720
or higher are multiplied by the remaining terms of equation
(8), the values of these terms become negligible and hardly
affect the update of position. Therefore, the higher-order
terms are discarded.

3.2. Gaussian Mutation Mechanism. The Gaussian distri-
bution, also understood as the standard distribution, is
a substantial probability distribution in mathematics, arti-
ficial intelligence, and other related fields [40]. The Gaussian
mutation tool is employed to generate a further variant,
which retains a better position by comparing it with the
target value of the current optimal individual situation. This
mechanism makes the algorithm’s local results and global
results well balanced [41]. The probability density function
(PDF) formula of Gaussian distribution is as tails:

1 (z - u)2
mexp( P ), (13)

where p is the anticipation of Gaussian distribution and o is
defined as the standard deviation of Gaussian distribution.
We can describe the resulting new mutation location as

G(x) =
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ZE(E+1) = 25 (t+ 1) x (1+0x G(0,1)), (14)

where 0is a declining random integer in the range of 0 and 1,
G(0, 1) is the expected Gaussian distribution, and Zf,?“ is the
best location for the current iteration.

3.3. Explicit Steps for the Improved Jellyfish Search Optimizer.
The fractional-order modified strategy and Gaussian mu-
tation mechanism are presented in JS. The convergence
precision of the JS algorithm is effectively enhanced, and the
tracking performance of the original JS algorithm is im-
proved. The exact steps of FOGJS are as follows:

Step 1. Give some parameters associated with FOG]JS, such
as people dimensions N, varying dimension Dim, upper set
range ub, lower set range Ib, total iterations Mj,,, the dis-
tribution coeflicient 5, and the motion coefficient y.

Step 2. Aimlessly initialize N people size according to
chaotic logistic map (equation (1)), and set time f= 1.

Step 3. Compute the fitness value for each people, document
the optimal fitness value and the related optimal place Z*.

Step 4. While t<M,,, compute the control time c(f)
according to equation (6), if ¢() > 0.5, jellyfish will follow ocean
current, update the position of jellyfish by equation (11).

Step 5. If ¢(t) < 0.5, randomly generate an accidental number
r, ranging from 0 to 1, if r> (1 — c(t)), the jellyfish will update
its position by passive motion of equation (12). If
r<(1—c(t)), the position of the jellyfish is computed by
active motion according to equation (4).

Step 6. Judge whether the updated new location crosses the
boundary. If yes, the site is set near the border by default. At
the same time, the fitness value of individual jellyfish is
estimated. If it is more undersized than the optimal value, it
is accepted as the new optimal value, and the related position
is accepted as the recent optimal position Z*.

Step 7. Through the Gaussian mutation mechanism of
equation (14), the optimal position is mutated to produce
a new solution, and judge its fitness with the optimal so-
lution, to choose whether to update the mutated new so-
lution to the optimal solution.

Step 8. Update the value of t (t=1t+ 1), if £ < Mj,,, continue
Step 4. Otherwise, output the optimal value and the optimal
place.

Step 9. Otherwise, output the optimal value and the optimal
place.

To express the enhanced algorithm more obviously,
Algorithm 1 gives the pseudocode of the FOGJS. Among
them, line 1 is to update the candidate solution position
through the logistic chaotic map, lines 9 and lines 14 are the
update operation process of applying the fractional modified

update formula, and lines 22-26 are the update process after
generating the mutation solution through the Gaussian
mutation mechanism. Figure 4 shows the flowchart of the
proposed FOGJS algorithm. It can be found that it first
defines the parameters listed above and then executes the
updated JS based on fractional-order modified. The optimal
solution is taken as the initial point of mutation of the
Gaussian mutation mechanism. The loop will continue,
jump out of the loop when the termination conditions are
met and then output the optimal solution of the search.

3.4. The Complexity Analysis of FOGJS. The computational
complexity of FOGJS mainly relies on three aspects: initial-
ization stage, fitness function evaluation, and coordinated
update. The complexity of the initialization stage is O(N),
where N is the number of candidate solutions. Different
problems lead to additional complexity of the fitness function,
so we will not be concerned about it here. Finally, the
complexity update location is O(N x M), where M represents
maximum iterations. Therefore, the computational com-
plexity of FOG]JS the algorithm is O(N x M). In the following
sections, we will use diverse benchmark functions and actual
optimization problems to verify the implementation of
FOGJS in dealing with different optimization problems.

4. Numerical Examples and Analysis

This part evaluates the comprehensive performance of the
improved FOGJS algorithm in solving challenging test
functions. Two series of popular functions are used, in-
cluding 29 cec2017 benchmarks and 10 cec2019 benchmarks
[42]. The optimization results of FOGJS are analyzed and
compared with other famous optimization algorithms.
Meanwhile, to ensure the consistency and reliability of the
improved FOGJS, 20 independent tests were conducted on
FOGJS and other algorithms. The mean (mean), standard
deviation (STD), the worst solution to date, and the best so-
lution to date are reported. To achieve a reasonable compar-
ison, other algorithms considered achieving the same number
of iterations 1000 and population 30 as the FOGJS.

4.1. Evaluation Index. The following section will analyze the
performance differences between the improved FOG]JS al-
gorithm and other comparison algorithms through the
following evaluation indicators.

4.1.1. The Best Results

., best (15)

best = min (best,, best,, .. runs)>

where best; is the best result of each run. Runs is the number
of runs of each algorithm in each benchmark function,
which is taken as 20 in this paper.

4.1.2. The Worst Results
(16)

worst = min (worst,, worst,, ..., Worst,,,.)-
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Input: The parameters of JS such as the distribution coefficient f3, and the motion coeflicient y. People size N, dimension Dim, and
maximum iterations M;,,.
Output: Optimal fitness value.
Construct the initial value for the population through logistic chaotic map (Z,).
While ( t < Mj,,) do
Calculate the fitness function for an individual population.
Choose the best location Z*.
Compute the time control ¢(t) using equation (6)
For i=1 to N do
If ¢(t) > 0.5 then
Jellyfish follows ocean current
The jellyfish position is updated by equation (11) with fractional-order modified.
Else
Jellyfish move inside a swarm
If rand(0, 1) > (1 — c(¢)) then
Jellyfish exhibits type passive motion.
The jellyfish position is updated by equation (12) with fractional-order modified.
Else
Jellyfish exhibits type active motion.
The jellyfish position is updated by equation (4).
End if
End if
Check the boundary of the jellyfish location and calculate the new area.
Update the location of the jellyfish and the most location Z*
Gaussian mutation mechanism
Zi5 () =27 (1) x (1+60xG(0,1)).
If £ (Z""()) <f (Z*(t + 1)) then
update the optimal location to Z""(¢).

End if
End for
t=t+1
End while
ArGoriTHM 1: The proposed FOGJS.
./.,./,’ '\A\.\. i_._,_._._._,_._._._,_._.i'. ______________________ 3
Start g " Betterthan '~ ~. < ! Find the optimal solution :
TN the best - i of the population i
No N - e I i
Sl 1 |
Initialize parameters: Yes + i - i
N, Dim, My, ub, b, B, y Replace the optimal location and 3 e -y :
* optimal fitness : “-- - Ifc(t)=05 S i
| . - - |
Initialize the position of __._._._._._._._._+. ________________ ! l !
1 | | N |
population *u Gaussian mutation mechanism : i Yes ° !
* [ mutation optimal solution ! l ¢ :
i & Y
! P! - !
Initialize the Z, ; 7, , Z; 5 i : Jellyfish follow _ il T :
T s il | ocean currentby |[<._ rand<0.5% T,
e e i Eq. (12 . |
¢ 7 Better than S o (12) "-T" i
Update fitness values for e the best ? ST !
. - . N

each location . RS No |i Yes wNo :
Sl i Passive motion Active motion |

v Yes § ! by E b
i y Eq. (13) y Eq. (4) i
Calculate the time Update the fitness and i [ | !
] . : | |
control ¢ (1) location of the population | v i
v i Update the fitness and |
= . i location of the population ;
il g | |
Yes .- - Soppilng die J!

End sl iteration ? _,/""‘_
No |

FIGURE 4: Flowchart for the proposed FOGJS optimization algorithm.
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TaBLE 1: Parameters setting.
Algorithm Parameters Values
AOA [43] Con.tr.ol parameter ©=0.499
Sensitive parameter a=5
GSA [44] ElitistCheck, Rpower, Rnorm, alpha, GO 1, 1, 2, 20, 100
PSO [45] C1> €25 VMaxs W 2,2,6,1
WOA [46] 1; Decreased 2from 2to0
SSA [47] Leader position update probability 3=0.5
ﬂmin’ ﬁmin 0.2, 1.2
GBO [48] . o5
SOA [48] Control parameter (A) [2, 0]
fe 2
B 3
JS [36] 01
LSA [49] Channel time 10
DE [28] Scalingfactor, crossoverprobability 0.5, 0.5
Crossover percentage PC=0.13
WHO [50] Stallions percentage (number of groups) PS=0.2
Crossover Mean
MVO [29] WEP_Max, WEP_Min 1,02

4.1.3. The Average Value (AVE)

Runs

M =— best.. 17
ean Runsi_zl est; (17)

4.1.4. The Standard Deviation (STD)

runs

! Z (besti—Mean)z. (18)
i1

runs — 1 £

Std =

4.1.5. Wilcoxon’s Rank-Sum Test. Wilcoxon’s rank-sum test
is a nonparametric examination used to test the statistical
difference between two sample data sets. Wilcoxon’s rank-
sum is an effective tool to check whether the FOG]JS is
significantly better than other comparison algorithms in the
general distribution of the examination results.

4.2. Parameter Setting. Algorithms with various character-
istics are selected to be compared with the FOGJS in this
paper. These algorithms include the original JS and other
intelligent optimization algorithms, which are differential
evolution (DE) [28], multiverse optimizer (MVO) [29],
games search (HGS) [35], arithmetic optimization algorithm
(AOA) [43], gravity search algorithm (GSA) [44], particle
swarm optimization (PSO) [45], whale optimization algo-
rithm (WOA) [46], sparrow search algorithm (SSA) [47],
gradient-based optimizer (GBO) [48], lightning search al-
gorithm (LSA) [49], wild horse optimizer (WHOA) [50],
crisscross optimization algorithm (CSO) [51], Harris hawks
optimization (HHO) [52], atom search optimization (ASO)
[53], Aquila optimizer (AO) [19], heap-based optimizer
(HBO) [54], seagull optimization algorithm (SOA) [55],

FiGure 5: The average rank of FOGJS algorithms with different
parameters on cec2017.

grasshopper optimization algorithm (GOA) [56], and lion
swarm optimization (LSO) [57]. Considering that the pa-
rameters of algorithms will have an impact on performance,
these parameters are set the same as those in the corre-
sponding literature, which are shown in Table 1.

4.3. Sensitivity Analysis of Parameters. Several JS algorithms
introduce parameters that affect the performance when
working with improvements, such as the distribution co-
efficient 3 parameter related to the trend length and the
motion coefficient y parameter associated with the update of
the position motion length. A sensitivity analysis of the
response to parameter changes is now performed to properly
understand the effectiveness of these parameters on im-
proving the FOGJS situation.
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FIGURE 6: The exploration and exploitation diagrams of FOGJS. (a). cec03. (b) cec06. (c) cec09. (d) cecl0. (e) cecll. (f) cec12. (g) cecl3.
(h) cecl4. (i) cecl6. (j) cecl7. (k) cecl9. (1) cec20. (m) cec22. (n) cec24. (o) cec27.

The coefhicient $ was changed from 0.1 to 1 in steps of 0.1.
The coefficient y was changed from 1 to 10 in Step 1. The
algorithm was run on 29 cec2017 test functions, where the
dimension was set to 30, and the population was set to 30.
Figure 5 shows the average rank obtained for each analysis
for the two parameters (3, y). The optimal values of the
coeflicients include for f8 equal to 0.4 and y equal to 2. It is
important to note that we set the parameters only when the
two strategies of fractional order and Gaussian variation are
more effective in improving the JS algorithm. There will be
differences with the parameters provided by the JS algo-
rithm. Experiments prove that the FOG]JS algorithm is
feasible and suitable at $=0.4 and y=2.

4.4. Exploration and Exploitation. The distance between
individuals in different dimensions and the overall trend can
determine whether the whole tends to be divergence or
aggregation. When there is a trend of separation, the dif-
ference between each individual in multiple dimensions will
become more prominent, which means that each individual
explores the space in a differentiated way. This trend will
make the algorithm do a more comprehensive exploration of
the solution space through the temporary characteristics of
the population. In addition, when there is a tendency of
aggregation, the population is based on a widely recognized
partial exploration space, reducing the differentiation of
each individual and doing more detailed exploitation of the
region. At the same time, maintaining a good balance be-
tween these two modes of exploration and exploitation is
a necessary guarantee to find the optimal solution. Usually,
algorithms with poorer methods fail to produce satisfactory
results.

Studying the trend of convergence plots and the sta-
tistical mean, best, worst, and standard deviation over
multiple runs do not help us understand an algorithm’s
exploration process, leading to the failure to solve the speed
of accuracy problem faced by an algorithm. Therefore, we
resorted to the dimensional diversity measure proposed by
Hussain et al. in [58], which calculates the variability be-
tween individuals and populations in terms of di-
mensionality by

1 & . .
Divi =~ ) Median(z’) - 2/,
Gy
(19)
1 Dim

Div = Divy,
Dim k; k

where Median(Z) is the median of jth dimension in the
whole group, 2/; is the jth dimension of the people i, and # is
the number of the population. After calculating the average
Div; of each individual, divide the result by Dim to estimate
the diversity index of the average dimension.

By obtaining the average diversity of the estimated
population after each iteration, we can calculate the ex-
ploration and utilization percentage of all iterations
according to the following formula:

Di
Exploration% = il Y 100,

ivmax
(20)
Div — Div
7| - max' % 100,
Div,

max

Exploitation% =

where Div is the average diversity of the population in each
iteration and Div,,,,, is the maximum of the average variety
in all iterations. Exploration% and Exploitation% are the
exploration and development percentages of iterations,
respectively.

Figure 6 shows the exploration and exploitation dia-
grams of FOGJS for some of the cec2017 test functions
(cec03, cec06, cec09, cecl0, cecll, cecl2, cecl3, cecl4, cecl6,
cecl7, cecl9, cec20, cec22, cec24, and cec27). From cec03,
cecll, cec20, and cec24, we can find that FOGJS has a high
exploration rate at the beginning of the iteration and a rapid
transition to a high exploitation rate in the middle and finally
finishes the iteration with a high exploitation profile. This
process indicates that the higher exploration rate in the early
stage of FOGJS ensures the global search and prevents
getting into the optimal local solution, while the higher
exploitation rate in the later stage ensures the higher ac-
curacy of the optimal solution. And in cecl10, cecl4, cecl7,
and cec20 test functions, the exploration and exploitation
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maintain almost the same ratio throughout the iterations,
indicating that FOGJS can ensure the balance between the
two when handling these test functions. Whereas in cec06,
cec09, cecl2, cec13, and cec19, the exploitation rate has been
dominant throughout the iterative process, and in cec27, the
opposite is true.

In summary, FOGJS has different strategies in dealing
with varying test functions and therefore has a solid dynamic
and adaptable nature. Figure 7 shows the histogram of the
percentage of both exploration and exploitation for different
test functions. As can be seen, there are 12 test functions with
more than 50% exploitation, while at cec10, cec20, and cec27
while more focused on exploration.

4.5. Comparison Results Using cec2017 Test Functions. To
further prove the performance of the improved JS algorithm,
a challenging set of test functions named cec2017 is selected
to be solved. It contains 29 functions, at least half of which
are challenging mixed and combined functions. To evaluate
the stability of the improved FOGJS performance, these
functions are used to test FOGJS. Meanwhile, the FOGJS has
achieved 1000 iterations and 30 population sizes for 20
independent operations. The results are compared with
other excellent algorithms, including JS [36], GSA [44],
MVO [29], WOA [46], GOA [56], LSO [57], HHO [52], ASO
[53], AOA [43], and AO [19]. The AVE (average value) and
STD (standard deviation) values of the benchmark test
bench considered are calculated through the executed al-
gorithm. In addition, to make the data more convincing, the
last few rows of the table contain the statistical results of the
Wilcoxon rank-sum test, where “+” indicates that the results
of other algorithms are better than FOGJS, “~” means the
opposite, and “=” suggests that there is no significant
contrast between FOG]JS and different comparison methods.
The best average obtained by 12 algorithms in tables is also
drawn in bold.

Table 2 provides the evaluation results of the best so-
lution to date. The average rank of the FOG]JS is 2.28, ranking
first. Among them, the FOGJS provides the best results of all
algorithms in 10 functions and also shows strong compet-
itiveness in other functions. For other algorithms, MVO
ranks second, second only to FOGJS, and has successfully
implemented 10 functions, but it has poor competitiveness
in other functions. JS and CSO successfully implemented 6
and 3 functions, respectively, while GSA, WOA, GOA, LSO,
HHO, ASO, AOA, and AO did not show the best perfor-
mance. In conclusion, the FOG]JS is superior to other op-
timization algorithms in accuracy and occupies the first
place. In addition, the ranking of the original JS is 2.69,
which is lower than that of the FOG]JS. It can be seen that the
fractional-order modified strategy and Gaussian mutation
mechanism improve the effective exploration ability of the JS
in finding the optimal solution. The FOGJS algorithm can
search for better solutions with faster convergence rates
established on the actual algorithm. The results of the
Wilcoxon rank-sum test are shown in the final row of Ta-
ble 2. The Wilcoxon rank-sum test results of JS, GSA, CSO,
MVO, WOA, and GOA are 3/26/0, 1/4/24, 2/12/15, 9/10/10,
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0/2/27, 1/5/23, LSO, HHO, ASO, AOA, and AO are 0/0/29,
1/2/26, 0/2/27, 0/1/28, and 1/4/24, respectively. Figure 8
displays the average convergence process of 29 test functions
in 30-dimensions. By analyzing the curve, it can be found
that the iterative curve of FOG]JS can escape the local so-
lution and connect to the approximate optimal solution in
the early phase of iteration, and the optimization will be
found near the optimal solution in the later development
stage. Specifically, in the 30-dimensional convergence curve,
the FOGJS shows that the convergence effects of cec0l,
cec05, cecl6, cec2l, and cec29 are more obvious. This ob-
servation shows that the FOGJS can be regarded as one of the
most reliable algorithms. Figure 9 shows the box plots of
different algorithms. Obviously, in most test functions, the
box of the FOGJS algorithm is more concentrated, and its
target distribution is smaller than other improved algo-
rithms, which shows that the enhanced algorithm has good
stability. The results of the Wilcoxon rank-sum test are
shown in Table 3. Table 4 shows the number of function
evaluations and execution times for each comparison al-
gorithm. It can be found that FOGJS has a longer execution
time compared to the original algorithm, which is due to the
added improvement strategy. FOGJS has a shorter execution
time than the GOA and ASO algorithm but still requires
a long running time. NFFEs are the number of equation
evaluations of an algorithm, which is another expression of
the execution efficiency of an algorithm. JS, GSA, MVO,
WOA, ASO, and AOA all have smaller NFFEs, while FOGJS
has 60030 NFFEs in one run.

4.6. Comparison Results Using cec2019 Test Functions.
This section describes in detail the analysis of FOG]JS results
when tested with the ten functions of the latest CEC
benchmark (cec2019). All results are obtained after 20 in-
dependently runs by set the population size as 30 and the
iterations as 1000 times. The results were compared with JS
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FiGure 8: The convergence curves of the FOGJS and other comparison algorithms on cec2017 functions. (a) cec01. (b) cec03. (c) cec04.
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[36], PSO [45], DE [28], LSA [49], GBO [48], SOA [55], HGS
[35], SSA [47], HBO [54], WHOA [50], and AOA [43]. As
shown in Table 5, in the whole process of the function, the
worst value, average value, the best value, and the STD value
are compared through the considered algorithm. In addition,
the results of the Wilcoxon rank-sum test are shown in Ta-
ble 6. According to the data results in Table 5, the average rank
of the FOGJS is 2.8, ranking first. FOGJS provides the best
results in cec01, cec02, cec08, and cec10. Compared with other
algorithms, FOGJS is also very competitive in other test
functions. WHOA ranks second, ranking worse than FOGJS.
At the same time, it successfully implements one function and
shows good competitiveness in other functions. For other
comparison functions, HBO successfully implemented four
functions, while SSA and HGS successfully implemented one
function. The results show that the improved FOGJS has
better convergence accuracy and accuracy than other algo-
rithms. The last row of Table 5 gives the average and rank
ranking. The Wilcoxon rank-sum test results of JS, PSO, DE,
GBO, LSA, and SOA algorithms are 1/5/4, 0/2/8, 0/0/10, 2/3/
5, 1/4/5, and 0/0/10, respectively. The Wilcoxon rank-sum test
results of SSA, HGS, HBO, WHOA, and AOA are 0/5/5, 0/6/
4, 4/2/4, 1/5/4, and 0/0/10, respectively. Figure 10 shows the

convergence curve of 10 test functions. FOGJS can get closer
to the optimal solution faster than other algorithms by an-
alyzing the curve. At the same time, it will find the optimi-
zation near the optimal solution in the middle development
stage of iteration and replace the original solution with the
newly found better solution. Specifically, FOGJS shows that
the convergence effects of cec0l, cec02, cec04, cec06, and
cec08 are apparent in the convergence curve. Figure 11 shows
the box plot of 12 algorithms in 10 test functions. We can find
that the length of the FOGJS box is small, and there are few
outliers when combining the results of 20 runs, thus showing
the stability and balance of FOG]JS. Table 7 shows the number
of function evaluations and execution times for each com-
parison algorithm.

5. Income Forecast Model of Rural Resident
Based on Improved Jellyfish
Search Optimizer

Agriculture, rural areas, and farmers are important issues for
the long-term stability of the country. In order to adopt
a series of corresponding policies to benefit and support
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FIGURE 9: Box plot of the FOG]JS algorithm and other algorithms on cec2017 functions (red minus — median; red plus — outlier).
(a) Boxplot of cec01. (b) Boxplot of cec03. (c) Boxplot of cec04. (d) Boxplot of cec05. (e) Boxplot of cec06. (f) Boxplot of cec07. (g) Boxplot of
cec08. (h) Boxplot of cec09. (i) Boxplot of cec10. (j) Boxplot of cecll. (k) Boxplot of cec12. (I) Boxplot of cec13. (m) Boxplot of cecl4.
(n) Boxplot of cec15. (o) Boxplot of cec16. (p) Boxplot of cec17. (q) Boxplot of cec18. (r) Boxplot of cec19. (s) Boxplot of cec20. (t) Boxplot of
cec2l. (u) Boxplot of cec22. (v) Boxplot of cec23. (w) Boxplot of cec24. (x) Boxplot of cec25. (y) Boxplot of cec26. (z) Boxplot of cec27.

(z.1) Boxplot of cec28. (z.2) Boxplot of cec29. (z.3) Boxplot of ce30.

agriculture, the forecast of farmers’ income trend becomes
the task need to be solve. Disposable income represents the
sum of the ultimate consumer spending and savings ob-
tained by residents, which can play an important role in
estimating per capita consumption power and un-
derstanding the productivity of an area. Thus, this paper
discusses the per capita disposable income of rural residents
in Shaanxi Province. For ease to be understood, per capita
disposable income of rural resident in this paper is simply
referred to as income of rural resident. As Figure 12 shows,
income of rural resident in Shaanxi Province is increasing
from 1989 to 2020. In this section, a novel discrete fractional
time-delayed grey model is established to solve the problem
of income forecast.

5.1. Income Forecast Model Based on Improved Jellyfish Search
Optimizer

5.1.1. Establishment of the TDFTDGM Model. Grey model
(GM) is a popular predicted approach by establishing a grey
differential prediction model through a small amount of
incomplete information and the development trend of the

internal system is described, which has been widely applied
to population forecast, economy forecast, and climate
prediction. In [16], a fractional time-delayed grey model was
proposed. However, the conversion from the discrete
equation to the continuous equation will bring conversion
error, which will decrease the accuracy of prediction. Thus,
this paper establishes a novel discrete fractional time-
delayed grey model with triangular residual correction
(TDFTDGM).

Firstly, given a raw nonnegative data set
ZO = (2©(1),z2©(2),---,2© (n)). Then, calculate the -
order accumulated sequence Zm = (zm (1), zm (), ...,
z™ (n)) by

k k—i -1
Z(m) (k) = Z( lk+—njl )Z(O) (1),k = 1723' e, (21)
i=1

k—i+m-1
—i
(m+ D)m/(k—1).
Differential equation (23) is the basic fractional grey
model (FGM) with order m:

where

) =(k—i+m-1)(k—i+m—2)---
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TABLE 4: The number of function evaluations and execution times on cec2017 test functions.
Function ]S GSA CSO MVO WOA GOA LSO HHO ASO AOA AO FOGJS
CECO01 2.7065 12.3922  6.0170 6.0348 2.2613 35.1929 1.9855 11.3714  20.9821 4.5290 11.6457 15.1768
CECO03 3.5131 12.2369  7.8752 5.3787 2.7771 35,5317 2.3484 10.1844 23.2933 4.9004 24.9698 16.0245
CEC04 2.6789 11.6298 5.9341 5.5321 2.0978  34.7803 1.6983 9.6181 22.0126  4.0862 10.4534 15.4520
CECO05 2.7505 11.7143  6.2998 5.7581 2.2609  35.0219 1.8799 11.9700 20.3889 4.8477  12.0491 14.5897
CECO06 5.0495 13.8682 12.9905  7.9945 45030 37.2236  4.1648 17.9729 26.0110 6.8288 17.8733 19.3789
CEC07 2.9198 11.9703  6.8966 5.9520 24580  35.2540 2.0748 12.3911  19.7669  4.9447 14.2293  14.9892
CECO08 2.8103 11.7521 6.5594 5.7971 2.3564  35.1671 1.9380 12.2690 20.5061 4.8929 12.2444  14.7867
CEC09 4.3631 13.1465 10.7201 7.3054 3.8079  38.6865 3.3674 14.1672  20.5218  4.8905 12.3131 18.0388
CEC10 5.0373 12.7053  9.6647 6.9376 3.4602 36.3130  3.2438 15.5772  29.0926  5.2186 13.1325 18.3623
CEC11 2.9487 11.8532  6.7883 5.1665 2.4030 35.3573  2.7793 10.4996 26.0504  4.4148 11.2691 15.3322
CEC12 3.6138 12.1908  7.9926 6.2011 2.7580 35.4513 2.6014 11.2374 26.3553 5.1620 11.8367 16.3858
CEC13 3.1011 11.8712  6.9422 5.8020 24297  35.2583 2.1285 10.7652 25.2373  4.4944 109107 15.3066
CEC14 4.2574 12.2911 8.1456 5.9011 2.8667  35.6623 2.5319 12.8246  26.5752  5.3377 12.6115 17.4529
CECl15 2.9989 11.7677  6.6305 5.6208 2.3407  35.2033 2.0122 10.3497 25.4023  4.3027 10.7015 15.3175
CECl16 3.6415 12.4632  7.8490 6.2351 2.7876  35.6124  2.3901 11.1907 26.7440 4.6606 11.5330 18.2657
CEC17 5.6991 14.3658 14.4855  8.4687 5.0384 379059 48134 16.2210 30.2044 6.7846  15.0185 22.2148
CEC18 3.3428 11.9307 7.0916 5.6584 2.4941 35.2894  2.0984 11.2186 25.6128  4.6969 11.3155 16.2910
CEC19 9.0490 17.8390 24.8333 11.8436 8.4414  41.2716  8.2289  39.8321 34.6625 15.8344 34.1780 28.8875
CEC20 6.7150 14.7896 15.6685  8.9579 5.4461 38.0852  5.2075 16.8818  30.0451 6.8492 15.5655 23.0113
CEC21 6.2876 15.0089 16.4831 9.1370 5.6521 38.3453  5.3954 19.7756  33.9069 8.1039 17.9104 22.4235
CEC22 7.4123 16.0146 19.7128 10.4190 6.8338 39.5789  6.6221 22.1463  31.5021 8.9067  20.0652 24.8958
CEC23 8.3140 16.7610 22.0370 11.2247 7.6950 40.2366 10.7281 23.7808 34.3246  9.9222 22.1497  27.9339
CEC24 8.0441 16.6313  21.4595 10.8171 7.3408  40.0270  8.5336  33.3528 35.4490 10.5150 23.8269 29.6309
CEC25 7.8619 16.7512 21.3756 10.8456  7.3697 39.9249 11.0523 29.1524 33.6303 9.3849 22.1971 25.8589
CEC26 9.8584 18.4609 26.9625 12.9988 9.4126 41.8311 12.4126 35.0726 35.9213 11.4311 26.3548 30.0543
CEC27 11.3057 19.5524 30.5458 14.0669 11.3285 429386 11.8015 38.1281 38.6731 12.6044 29.0552 46.5453
CEC28 9.8053 18.3297 26.6680 12.6377 10.6993 41.8145 11.3436 33.5285 35.7967 11.1153 25.8306 32.0283
CEC29 9.2615 17.8411 24.7765 11.9704 8.8397  41.0065 10.5643 29.9246 35.2396 9.2298  21.0481 29.3321
CEC30 12.7780 21.1413 35.0944 154022 12.1838 44.4547 14.7088 58.1867 40.5053 18.4674 39.2704 36.0754
NFFEs 30030 30000 90030 30000 30000 60000 31030 98461 30000 30030 60000 60030
az™ (1) where k™ = Y% ( k 1k+_m ! ) -i is the time delay term
—a +az™ @) =bt"™ +c. (22)  with m-order.

For the derivative of the left of equation (22), the first
backward difference can be approximately expressed by
equation (23) when t=k:

dz™ (1) 2™ (k) -2 (k- A
_— ~ lim
dr e A1 At (23)
=z k) -z (k- 1).

Thus, when t =k, the left of (22) can be approximated by
follows:

(m)
(dz (t) +aZ(m)(t)> ~ Z(m) (k) _Z(m)(k_ D +az(m) (k)

dt ek

=(1+az2)™ (k) -z (k-1).
(24)

Substituting equations (24) into (22), equation (25) can
be obtained:

A+a)z"™ (k) -z (k-1) = bk™ +¢, (25)

Then, discrete formula (25) can be obtained by letting
Bi=1Ul+a,pB,=bl1+a,B;=c/l+a:

2™ (k) = 2™ (k= 1) + k"™ + B, (26)

Equation (26) is the discrete fractional time-delayed grey
model (FTDGM), which can be expressed by matrix:

BB =Y, (27)

Z(m)(l) z(m) 1 Z(m) (2)

(m) (m) (m) B
“ (2) 3 1 ’Y: z (3) ’ﬁ

=B,

z™ (.n—l)n('m) 1 z(mi(n) Ps
If the fractional order m was determined, parameters 1,
B2, and f3 can be estimated by the least squares solution as
equation (28):

where B =

B=[BBBs] =(B"B) 'B'Y. (28)

Then, the value of 2" (k) can be obtained by equation
(29) after determining the parameters 1, 32, and f33:
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Ficure 10: Continued.
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Figure 10: The convergence curves of the FOGJS and other intelligent algorithms on cec2019 test functions. (a) cec0l. (b) cec02. (c)
cec03. (d) cec04. (e) cec05. (f) cec06. (g) cec07. (h) cec08. (i) cec09. (j) ceclO.

2 (k) = Bz ™ (k= 1) + B,k + B,

— Z(O) (1) - (Bl)(k_l) + Zk:(ﬁzi(m) +ﬁ3) . (ﬁl)(k_i)-
(29)

Finally, the predicted value Z'” = (2© (1),29 (2), -,
E(O)(n)) is obtained by m-order inverse fractional-order
accumulation:

k i
2(0)(k)=(2(”‘)(k))(m)=z<k P l)z““)(i). (30)
i=1

Furthermore, the prediction precision of the model can
be improved by analyzing the error between the raw data and
predicted data. Thus, this paper introduces the triangular
residual correction function into the discrete fractional time-
delayed grey model to obtain a new prediction model with
higher precision. According to the predicted value in
equation (30), the residual error sequence can be calculated
as follows:

r) =200 -20(k)k=23-n (3D
In addition, the definition of the triangle model is shown
as

r(k+1) = by + bk + by sin ¥+b4cos%

(32)
+e k=1,3,n-1,

where ¢ is the random error and T'is the parameter of time
period. by, by, bs, and b, are obtained by the least squares
solution as

b= [bo>b1>bz>b3]T = (CTC)_ICTR’ (33)
1 1 sin27/T cos2m/T
where C = 1 2 sin4n/T cos4n/T R= [r(2) 1’(3)
i n; 1sin2 (n.— a/T cosZ(n; a/T
1 (n)].
Submitting by, by, bs, and b, into (32), the finial predicted
values Z* = (z*(1),z* (2),---,2" (n)) can be obtained as
follows:

{ 25 (1) =z ), (34)

2 (k) =z9%k) +7(k),k=2,3,...,

when k <,z (k) are the fitting values of the raw data. And
when k>n, 2 (k) are the predicted values.

5.1.2. Optimization Model Based on the FOGJS Algorithm.
Obviously, once given the order m, the predicted value can
be calculated by the above TDFTDGM model. Regarding the
order m as a variable, the improved jellyfish search optimizer
just can be employed to search the most suitable m to obtain
predicted value with higher precision. Thus, an optimization
model can be established by minimizing the mean absolute
percentage error between the calculated values and the
actual value. The final established optimization model is
shown as equation (35).

The data set used in this experiment is the income of
rural residents from 1989 to 2020 in Shaanxi Province. The
data from 1989 to 2013 are used as training data, and the rest
is regarded as test data. Then, the process for FOGJS to solve
the rural resident’s income forecasting model is displayed in
Figure 13:
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TaBLE 7: The number of function evaluations and execution times on cec2019 test functions.
Function JS PSO DE GBO LSA SOA SSA HGS HBO WHOA  AOA FOGJS
CECO01 3.6200 2.8114 6.0888 15.7707 30.2908  4.3671 7.5269 4.3323 4.6441 13.9102 3.4599 15.6979
CEC02 2.1869 1.3686 6.0189 14.4759 47.7168  4.2256 5.3505 2.7221 3.7760 12.2332  2.2003 13.3965
CECO03 2.8174 1.3118 6.3777 15.5053 52.3774  4.5143 5.4665 2.7589 3.7545 12.3701 2.2264 13.4125
CEC04 2.5652 1.5433  4.9453  14.2501 36.4910  3.2141 5.7330  2.6113 3.2024 123221  2.1680 13.8916
CECO05 2.5422 1.5809 4.9875 14.3659 349856  3.2794 5.7593 2.6728 3.2467 12.3997  2.2298 13.9198
CECO06 20.3736  18.8581 22.2178 33.9569 74.9322 20.5988 34.6231 19.9502 20.2233 30.5913 19.6429 49.0128
CEC07 3.2563 1.7084 5.1264 14.5384 36.4959  3.3727 6.0191 2.7732 3.4223 12.5532  2.3344 15.2189
CECO08 2.7577 1.5725 49911 14.4529 30.2979  3.2464 5.7523 2.6618 3.2323 12.4473 2.1979 14.4652
CECO09 2.1947 1.3554 47838 14.1492 37.5057  3.0529 5.2918 2.4728 3.0199 11.8400  2.0393 13.3624
CEC10 3.2142 1.5874 4,9943 14.4306 419134 3.2798 5.8652 2.6894 3.2357 12.4172 2.2075 15.1973
NFFEs 30030 30030 30030 30030 107584 30030 90030 30000 30030 150030 30030 60030
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Ficure 12: Income of rural resident from 1989 to 2020 in Shaanxi Province.
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F1GURE 13: The process of the TDFTDGM prediction model based on the FOGJS algorithm.

5.2. The Comparison Results Based on Different Optimization
Algorithms. In Section 5.1, an optimization model for res-
ident income forecasting is proposed by considering the
order m as a decision variable. However, lots of optimization
algorithms can be used to solve the optimization model.

Thus, to verify the validity of the prediction model based on
the FOG]JS algorithm, the original JS algorithm and other
algorithms are employed to solve this optimization model.
The selected comparison algorithms are the original JS al-
gorithm [36], Aquila optimizer (AO) [19], sine cosine
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TaBLE 8: Result of the predicted model based on different algorithms.

FOGJS JS AO SCA GWO RSO SOA DE PSO
Best 10.3858 10.3859 10.3893 10.3895 10.3859 10.3860 10.3888 10.3859 10.3858
Mean 10.3860 10.3873 10.4338 10.4149 10.3974 10.4267 10.4174 10.3877 10.3970
Worst 10.3865 10.3909 10.6427 10.4926 10.4329 10.5582 10.4819 10.3940 10.4117

Std 2.1697E-04 1.6785E-03 7.4951E-02 3.0414E-02 1.4576E—-02 5.6484E-02 3.1718E—-02 2.4713E—-03 8.7028E-03

10.48 - ¢
*
10.46
10.44
*
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e e ==
1038 1 1 1 1 1 1 1 1 1
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— The median line
o The mean
+ The outliers

FiGure 14: The boxplots of different algorithms.

algorithm (SCA) [59], grey wolf optimizer (GWO) [60], rat
swarm optimizer (RSO) [61], seagull optimization algorithm
(SOA) [55], DE [28], and PSO algorithm [45]. Meanwhile, to
reflect the efficiency of the algorithm, the number of iter-
ations is set as 30 times to highlight the ability of the al-
gorithm to solve problems in a short time. Here, the
parameters of the FOGJS algorithm are the same as the
results obtained by the sensitivity analysis in Section 4.3.
That is, $=0.4 and y=2. All algorithms run 10 times in-
dependently setting the size of the population as 50. Then,
Table 8 provides the results after 10 times runs, including the
best value (Best), the average value (Mean), the worst value
(Worst), and the standard deviation (Std). According to the
error between predicted data and the real data in Table 8, the
FOGJS algorithm is the most suitable one to solve the
predicted model than others, because it has the best per-
formance on all measure indexes. Though JS, DE GWO, and
PSO also perform well on the best values, they are much
worse than the FOGJS algorithm in terms of average values.
It illustrates other algorithms are highly susceptible to local
optimums, thus causing instability of the solutions.

Figure 14 also supports the above conclusion through
boxplots. The lowest position and the smallest height of the
box plotted by the obtained results indicate that the FOGJS
algorithm has strong robustness in solving the problem.
Both JS and DE algorithms have some outliers, showing that
the quality of the solutions is easily affected by other factors,
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F1GURE 15: The convergence curves of different algorithms.

TaBLE 9: Evaluation indicators.

Measure Formula

indicators

Mean absolute n 1200 1y (0)

error (MAE) (W) Ty 12 () - 2@ (o)
Mean absolute

percentage (Un) Y7, 12 (k) - 2 (k)| x 100%

error (MAPE)
Mean square
error (MSE)
Root mean
square
percentage
error (RMSPE)

(Um)yr, 29 (k) - 29 (k)

VW) T, @0 (k) 20 (k)2 (K))? x 100%

which needs to be avoided in practice applications. More-
over, Figure 15 shows the convergence curves of different
algorithms in solving the predicted model of resident in-
come. The FOGJS algorithm has the fastest convergence
speed in the early period of iteration, especially being
compared with the original JS algorithm. That is, the frac-
tional-order modified mechanism improves the quality of
the whole population, speeding up the convergence rate to
the optimal solution. In the later stages of the search,
Gaussian mutation also plays a role in avoiding local op-
timums, which can be observed in the enlarged subplot.
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TasLE 10: Fitting results of different forecast models.
Years Actual income GM DGM TRGM FANGBM FTDGM DFTDGM TDFTDGM
1989 433.67 434.00 434.00 434.00 434.00 434.00 434.00 434.00
1990 530.00 306.97 311.02 569.77 483.14 537.18 483.23 542.11
1991 533.96 347.14 351.70 635.64 537.88 640.47 538.04 534.00
1992 558.79 392.57 397.71 709.11 598.85 743.90 599.08 648.42
1993 652.99 443.95 449.73 791.08 666.77 847.48 667.03 657.57
1994 804.84 502.04 508.56 882.53 742.44 951.26 742.70 786.08
1995 962.89 567.75 575.08 984.54 826.76 1055.29 826.94 816.24
1996 1165.10 642.04 650.30 1098.35 920.71 1159.60 920.75 963.04
1997 1273.30 726.07 735.36 1225.31 1025.41 1264.27 1025.19 1018.92
1998 1415.08 821.08 831.55 1366.95 1142.11 1369.37 1141.48 1189.29
1999 1474.96 928.53 940.32 1524.96 1272.19 1475.00 1270.96 1294.69
2000 1471.67 1050.05 1063.32 1701.24 1417.21 1581.27 1415.13 1477.34
2001 1529.11 1187.46 1202.40 1897.89 1578.89 1688.31 1575.66 1585.97
2002 1648.04 1342.86 1359.68 2117.28 1759.19 1796.31 1754.39 1842.90
2003 1741.11 1518.60 1537.53 2362.02 1960.25 1905.46 1953.40 2035.64
2004 1952.57 1717.33 1738.65 2635.06 2184.52 2016.01 2174.98 2305.63
2005 2161.68 1942.07 1966.07 2939.66 2434.71 2128.27 2421.69 2522.53
2006 2396.33 2196.22 2223.24 3279.46 2713.85 2242.60 2696.39 2890.23
2007 2824.05 2483.63 2514.05 3658.55 3025.34 2359.47 3002.26 3217.49
2008 3373.46 2808.65 2842.90 4081.46 3373.00 2479.41 3342.81 3627.64
2009 3722.07 3176.21 3214.76 4553.25 3761.09 2603.10 3722.00 4011.96
2010 4477.21 3591.86 3635.26 5079.58 4194.40 2731.35 4144.20 4520.87
2011 5483.79 4061.92 4110.77 5666.76 4678.29 2865.13 4614.29 5092.62
2012 6285.00 4593.48 4648.48 6321.80 5218.78 3005.67 5137.71 5725.99
2013 7092.20 5194.61 5256.51 7052.56 5822.62 3154.42 5720.50 6370.73
TasLE 11: Fitting error of different forecast models.
GM DGM TRGM FANGBM FTDGM DFTDGM TDFTDGM
MAE 519 499 320 248 627 256 221
MAPE (%) 25.606 24.725 16.212 9.696 17.258 9.763 9.873
MSE 488381 454256 200193 163109 1546543 185217 85490
RMSPE (%) 28.488 27.717 20.539 11.653 24.240 11.796 12.034

5.3. The Comparison Results of Different Predicted Models.
According to the analysis of Section 5.2, the predicted model
based on FOG]JS algorithm is effective in solving the pre-
dicted problem of resident income. Then, the TDFTDGM +
FOG]JS approach also needs to be compared with other
classical predicted models. In this section, the other six
predicted approaches are selected, including GM [12], DGM
[14], TRGM [13], FANGBM [15], FTDGM [16], and
DFTDGM. Table 9 displays the measure indicators in the
prediction of resident income to illustrate the difference of
all models. To compare different models more fairly, two
types of errors will be calculated. The fitting error is the error
between data obtained by models and training data. And the
predicted error represents the error between data obtained
by models and test data.

Table 10 displays the fitting results obtained by different
forecast models. In addition, Table 11 shows the fitting error
compared with the actual data. Obviously, the TDFTDGM
predicted model shows better performance than others on
two evaluation indicators, which is marked in bold. Com-
pared with GM, TRGM has a smaller fitting error. Mean-
while, under similar results in MAPE and RMSPE,
TDFTDGM performs significantly better than DFTDGM on
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FIGURE 16: Fitting curves of income by different forecast models.

MAE and MSE, which illustrates that applying the triangular
residual correction method into the original model is an
effective method to improve prediction accuracy.



Computational Intelligence and Neuroscience 33
TABLE 12: Predicted results of different forecast models.
Years Actual income GM DGM TRGM FANGBM FTDGM DFTDGM TDFTDGM
2014 7932.21 5874.41 5944.09 7867.80 6497.38 3313.16 6369.39 7232.41
2015 8689.00 6643.17 6721.60 8777.27 7251.58 3484.06 7091.90 8057.86
2016 9396.00 7512.53 7600.81 9791.88 8094.78 3669.75 7896.36 9045.05
2017 10264.51 8495.67 8595.03 10923.76 9037.73 3873.45 8792.07 10096.47
2018 11213.00 9607.46 9719.29 12186.49 10092.53 4099.05 9789.38 11331.47
2019 12326.00 10864.75 10990.61 13595.18 11272.79 4351.32 10899.83 12737.23
2020 13316.00 12286.57 12428.23 15166.70 12593.82 4636.02 12136.24 14283.60
TABLE 13: Predicted error of different forecast models.
GM DGM TRGM FANGBM FTDGM DFTDGM TDFTDGM
MAE 1693 1591 757 1185 6530 1452 478
MAPE (%) 17.239 16.271 6.477 12.056 62.095 14.502 4.731
MSE 2981279 2662247 940980 1458475 44515496 2123232 308408
RMSPE (%) 18.250 17.361 7.885 12.749 62.140 14.929 5.507
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FIGURE 17: Predicted curves of income by different forecast models.
TaBLE 14: The predicted results from 2021 to 2025 based on different forecast models.
Years GM DGM TRGM FANGBM FITDGM DFTDGM TDFTDGM
2021 13894.46 14053.89 16919.89 14072.94 4960.21 13512.89 14782.68
2022 15712.77 15892.20 18875.73 15729.55 5332.43 15045.71 16450.74
2023 17769.04 17970.96 21057.66 17585.65 5763.11 16752.40 18307.02
2024 20094.40 20321.64 23491.80 19666.03 6264.93 18652.68 20372.76
2025 22724.07 22979.79 26207.32 21998.72 6853.30 20768.53 22671.59
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Ficure 19: Comprehensive comparison of different forecast models. (a) MAE. (b) MAPE. (c) MSE. (d) RMSPE.

Figure 16 shows the fitting curve of different models. The
FTDGM and FANGBM models perform well before about
2004. However, after that, the fitting data of FTDGM and
FANGBM differ greatly from the real income data. That is,
these two models have great defects when facing a set of data
with large fluctuation. After discretizing the FTDGM model,
DFTDGM overcomes this disadvantage as shown in the
yellow curve in Figure 16. However, after 2010, the gap
between the income data obtained using the DFTDGM
model and the real income become larger. The red curve of
the TDFTDGM model is closer to the real data for all fitting
data with time growth, which means the trigonometric
correction function further improves the accuracy of the
prediction model to let it more suitable for long-term
forecasting. The analysis of the combined results shows that
the fitted data obtained by TDFTDGM model are more in
line with the actual income changes in the process.

Table 12 shows the predicted results obtained by all
models, and the predicted error is summarized in Table 13.
For the predicted error, the advantages of TDFTDGM are
even more obvious on all four evaluation indexes. In ad-
dition, the predicted error of the FANGBM model is large,
though it provides great performance in fitting results. The
mean absolute percentage error (MAPE) and root mean
square percentage error (RMSPE) of FANGBM are all over
10, which means its poor prediction ability.

Meanwhile, it can be observed in Figure 17 that the
predicted curve of TRGM is moving away from the real
curve with the increase of years. Thus, though the TRGM
model also has smaller MAPE and RMSPE, the predicted
precision will decrease if the predicted data after 2020 is still

needed. However, the predicted data obtained by the
TDFTDGM model is able to maintain fluctuations in the
vicinity of the real data. Hence, the proposed model with
triangular residual correction is superior to others and can
provide more reliable and informative predictions.

The income of rural residents in the next five years
(2021-2025) is also predicted and shown in Table 14. In
addition, Figure 18 is plotted by the predicted data. The
curves of TRGM and FTDGM are growing too fast and slow,
respectively, which are not conform to the trend of income
growth. The red curve’s growth rate of the TDFTDGM
model is more stable, which is more suitable for the long-
term forecast of rural residents’ income. Moreover, due to
the different performance on fitting and predicted error,
Figure 19 draws the bar graphs to discuss the comprehensive
performance of different models. On the four-measure in-
dexes, the proposed TDFTDGM model has outstanding
advantages over other models. That is, by introducing the
trigonometric correction function and FOGJS into the
discrete fractional time-delayed grey model, it becomes
a competitive forecasting method in practical application.

6. Conclusion and Future Work

This paper predicts the rural resident income by combing the
TDFTDGM model and FOGJS algorithm. Firstly, the
fractional-order modified and Gaussian mutation mecha-
nisms are introduced into the original JS algorithm. After
analyzing the effect of different parameters, more suitable
parameters are selected in the FOG]JS algorithm to improve
its capacity. Then, from the exploration and exploitation
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diagrams, the FOG]JS algorithm keeps a balance between the
two capacities. Meanwhile, by being compared with different
kinds of algorithms on classical test functions, the FOG]JS
algorithm offers outstanding performance. For the solution
precision, the improved algorithm ranks first in terms of
mean rank on both cec2017 and cec2019. From the con-
vergence curves and box plots, it can be observed that the
FOGJS algorithm has advantages of convergence speed and
stability. Moreover, the results of the Wilcoxon rank-sum
test further support the conclusion that the introduction of
improvement strategies forms the special search mechanism
to provide superior performance.

Secondly, the discrete fractional time-delayed grey
model with triangular residual correction is established. In
addition, the FOG]JS algorithm is used to optimize the order
of the model. The experiment of income forecasting is
divided into two parts. On the one hand, the original JS
algorithm and the other seven popular algorithms are
selected to solve the TDFTDGM model to be compared
with the FOGJS algorithm. Results show that FOG]JS al-
gorithm has outstanding performance on precision and
convergence  speed, which indicates that the
FOGJS + TDFTDGM approach is an effective tool for
prediction of resident income. On the other hand, the
FOG]JS + TDFTDGM approach is compared with other six
prediction models. Experiments show that TDFTDGM
model obtains the predicted data closer to the real income
data. Thus, a conclusion can be deduced that TDFTDGM
model is more suitable for the long-term prediction of
volatile data. The combination between TDFTDGM and
FOG]JS algorithm also provides an idea to determine the
parameters in the forecast model.

In future work, the fractional-order modified and
Gaussian mutation mechanism may also be suitable choices
for some metaheuristic algorithms (e.g., MRFO algorithm
[62] and hybrid arithmetic optimization algorithm [63]) to
improve their performance. Moreover, the TDFTDGM
model can deal with forecast problems in other fields, such as
population forecast, climate forecast, and resource forecast.
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