
Citation: Wei, X.; Fan, X.; Zhang, H.;

Jiao, P.; Jiang, Z.; Lu, X.; Liu, S.; Guan,

S.; Ma, Y. Overexpression of ZmSRG7

Improves Drought and Salt Tolerance

in Maize (Zea mays L.). Int. J. Mol. Sci.

2022, 23, 13349. https://doi.org/

10.3390/ijms232113349

Academic Editor: Richard

R.-C. Wang

Received: 13 September 2022

Accepted: 30 October 2022

Published: 1 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Overexpression of ZmSRG7 Improves Drought and Salt
Tolerance in Maize (Zea mays L.)
Xiaotong Wei 1,†, Xuhong Fan 2,†, Honglin Zhang 1, Peng Jiao 3 , Zhenzhong Jiang 3, Xuan Lu 3, Siyan Liu 1,4,
Shuyan Guan 1,4,* and Yiyong Ma 1,4,*

1 College of Agronomy, Jilin Agricultural University, Changchun 130118, China
2 Jilin Academy of Agricultural Sciences, Changchun 130118, China
3 College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
4 Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education,

Jilin Agricultural University, Changchun 130118, China
* Correspondence: guanshuyan@jlau.edu.cn (S.G.); mayiyong@jlau.edu.cn (Y.M.)
† These authors contributed equally to this work.

Abstract: Osmotic stress caused by drought and high salinity is the key factor limiting plant growth.
However, its underlying molecular regulatory mechanism remains unclear. In this study, we found the
stress-related gene Zm00001d019704 (ZmSRG7) based on transcriptome sequencing results previously
obtained in the laboratory and determined its biological function in maize. We found that ZmSRG7
was significantly expressed in both roots and leaves under 10% PEG6000 or 150 mM NaCl. Subcellular
localization showed that the gene was localized in the nucleus. The germination rate and root length of
the ZmSRG7 overexpressing lines were significantly increased under drought or salt stress compared
with the control. However, after drought stress, the survival rate and relative water content of maize
were increased, while the water loss rate was slowed down. Under salt stress, the Na+ concentration
and Na+: K+ ratio of maize was increased. In addition, the contents of antioxidant enzymes and
proline in maize under drought or salt stress were higher than those in the control, while the contents
of MDA, H2O2 and O2

− were lower than those in the control. The results showed that the ZmSRG7
gene played its biological function by regulating the ROS signaling pathway. An interaction between
ZmSRG7 and the Zmdhn1 protein was found using a yeast two-hybrid experiment. These results
suggest that the ZmSRG7 gene can improve maize tolerance to drought or salt by regulating hydrogen
peroxide homeostasis.

Keywords: maize; drought tolerance; salt tolerance; ABA; ROS

1. Introduction

Maize (Zea mays L.) is widely cultivated around the world as a multiple-use crop [1].
Plants are exposed to various complex and variable environmental factors from the moment
their seeds are planted. Environmental conditions that are not conducive to plant growth
and development are collectively referred to as stress [2]. Stress includes biotic stress and
abiotic stress. Abiotic stresses such as high salt and drought affect 10% of the world’s
arable land, resulting in yield loss of important crops such as maize, rice and wheat by
more than 50% [3]. A previous study showed that under long-term water deficit and high
salt osmotic stress, the growth, development, yield and quality of maize were affected
to different degrees, leading to reduction in yield and quality. Therefore, it is essential
to resist abiotic stress and increase maize yield. Plants have evolved a variety of defense
mechanisms to adapt to adversity: different signaling pathways in the plant body regulate
gene expression series in energy metabolism, ion and water transport, protein degradation,
and active oxygen removal of changes in molecular, cellular, physiological, and biochemical
levels to improve survival under adversity [4,5]. In recent years, more and more drought
resistance genes have been identified. Guo et al. [6] in a genome-wide association analysis
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(GWAS) of 507 rice samples, identified 470 associated loci, of which 437 were co-localized
with previously reported QTLs for drought resistance traits. OsPPI5 was found to be
closely related to one of the core traits, and its important drought-resistance function was
demonstrated. Overexpression of ZmWRKY65, for example, can improve stress tolerance
in transgenic Arabidopsis [7]. ZmbZIP4 helps maize survive stress by regulating Abscisic
acid (ABA) production and root growth [8]. Zhou et al. [9] reported that rice OsSTRK1
significantly increased CatC activity by phosphorylating Tyr210 tyrosine residue of catalase
CatC, with which it interacts, thereby regulating ROS (reactive oxygen species) homeostasis
and improving salt tolerance and rice yield.

ROS are a necessary chemical component of aerobic life [10]. Plants have evolved an
antioxidant defense system to mop up chemicals such as ROS in order to survive under
stress [11]. These ROS are activated by stress, resulting in the production of peroxidase
(POD), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) [12,13].
The proline content of the osmotic protective material increases with stress time, which
benefits the integrity of the biofilm and cell turgor [14]. Malondialdehyde (MDA) buildup
damages the plant’s cellular structure, causing cell rupture [15]. Numerous studies found
that, compared to drought-sensitive maize inbred lines, drought-resistant maize inbred
lines had higher relative water content, antioxidant enzyme activity, and proline content,
while the latter had lower levels of H2O2, MDA, relative electrical conductivity, and degrees
of cell damage [16–19]. Qiu et al. [20] demonstrated that overexpression of TaASR1-D in
transgenic wheat improves its resistance to oxidative stress. Under drought stress, the
activities of the transgenic lines’ SOD, CAT, and GPx activities were frequently higher than
those of wild-type (WT) lines.

The most widely distributed soluble cation in saline soils is sodium ion (Na+), which
harms plants primarily by creating prolonged osmotic stress and ionic toxicity [21]. Sodium
ions enter plant roots in saline circumstances and are transferred to aboveground tissues by
transpiration flow. Excessive Na+ movement from root to stem and photosynthesis-induced
Na+ accumulation, on the other hand, are detrimental to crops, resulting in lower photo-
synthetic carbon absorption and even yield reduction [22]. Plants have evolved a variety of
ways to avoid the harmful effects of sodium in high Na+ environments [21]. For example,
Na+ is barred from transpiration streams, and these mechanisms are mostly mediated by
ion transporters, particularly those that prefer sodium ions [23]. Previous studies have
shown that the NHX and HKT1 families of genes, which encode selective Na+ transporters,
are essential for maintaining Na+ homeostasis and salt tolerance [24]. ABA is one of the
most important hormones involved in stress signal transduction. Salt and drought stress
can promote the accumulation of ABA in plants. Ye et al. [25] found that salt stress and
ABA treatment induced the expression of the MpSnRK2.10 gene, and overexpression of
this gene alleviated salt stress as the limitation of apple growth. ZmFLZ25 is thought to
be involved in ABA signal transduction in plants because the ectopic overexpression of
ZmFLZ25 in Arabidopsis results in hypersensitivity to exogenous ABA and increases the
expression of ABA-induced genes. This is supported by the interaction of ZmFLZ25 and
the ABA receptor [2]. Both the ABA-dependent and ABA-independent signaling pathways
see an uptick in gene expression in times of stress [26]. Important signaling proteins in
plants, such as transcription factors, phosphatases, and protein kinases, transmit signals
that upregulate the expression of stress-resistance genes. Zong et al. [27] demonstrated
that the sensitivity of transgenic cotton seed germination, the seedling development stage,
and stomatal movement to a certain concentration of ABA was greater than that of WT
cotton, implying that ABP9 may act as a response signal of the ABA signaling pathway in
early plant growth. Wang et al. [28] discovered that under salt and drought stress, ZmHsf08
adversely regulates many ABA-sensitive genes.

Maize is one of the most important global crops. To ensure food security, it is of
great importance to cultivate new maize varieties with strong abiotic stress resistance.
In this study, a ZmSRG7 overexpression vector was constructed and transformed into
maize. The tolerance of transgenic maize plants to oxidative stress, osmotic stress, drought
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stress and salt stress was enhanced. In addition, we found that ZmSRG7 played a role
in this by enhancing the antioxidant system and ABA-mediated ROS signal transduction.
Although a number of genes related to abiotic stress have been discovered and isolated,
their function in maize has not been well investigated. Given that abiotic stress is currently
threatening maize output, it is both theoretically and practically vital to investigate and
identify the relevant genes involved in maize stress resistance using appropriate molecular
biology methodologies.

2. Results
2.1. Induced Expression of ZmSRG7 under Stress Conditions

The expression of the ZmSRG7 gene, isolated from maize inbred line B73, in roots,
stems, leaves, ears, and tassels was detected using qRT-PCR. According to the data, ZmSRG7
expression was found to be higher in roots and leaves but lower in tassels (Figure 1A).
The complete seedlings were sampled 0, 2, 4, and 12 h after hydroponic treatment under
10% PEG6000 solution, 150 mM NaCl solution, 45 ◦C, and 4 ◦C, respectively, to determine
the response of the ZmSRG7 gene to abiotic stress. The results revealed that ZmSRG7 was
highly activated by drought and salt stress (Figure 1B). Next, we evaluated the expression
of ZmSRG7 in roots and leaves following 5%, 10%, and 15% PEG6000 treatments at 0, 2, 4,
6, 8, 10, 12, and 24 h to characterize its response to drought stress (Figure 1C,D). Even after
2 h of treatment with 10% PEG6000, ZmSRG7 expression remained highly elevated in the
roots (Figure 1C). ZmSRG7 expression was high in leaves for 10 h following a 2 h treatment
with 10% PEG6000 (Figure 1D). Next, to investigate the response of ZmSRG7 to salt stress,
the expression levels of ZmSRG7 in roots and leaves were measured following treatments
with 100 mM, 150 mM, and 200 mM NaCl for 0, 6, 12, 24, 36, 72, and 96 h (Figure 1E,F). The
100 mM NaCl treatment for 24 h stimulated ZmSRG7 expression in roots, which was then
augmented by the 150 mM NaCl treatment for 36, 72, and 96 h (Figure 1E). Leaf expression
was induced by 150 mM NaCl for 24 and 36 h (Figure 1F).
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ZmSRG7-GFP signal was only seen on the nucleus of the cell (Figure 2). This finding was 
in line with what was anticipated. 

Figure 1. Expression analysis of ZmSRG7. (A) tissue site expression analysis of ZmSRG7. (B) response



Int. J. Mol. Sci. 2022, 23, 13349 4 of 15

of ZmSRG7 to abiotic stress. (C–F) expression of ZmSRG7 in roots and leaves. Values are mean ± SD
of three biological replicates. Bars with different letters are significantly different at p < 0.05 according
to Duncan’s multiple range tests. p < 0.05 (**).

In conjunction with these findings, we determined that the expression level of ZmSRG7
in roots was greatest under stress, and that gene expression was greatest under 10%
PEG6000 and 150 mM NaCl stress. Consequently, this condition served as the stress
condition in the subsequent tests. The results of these tests suggested that abiotic stress
up-regulated the ZmSRG7 gene.

2.2. Subcellular Localization of ZmSRG7

Transient expression of ZmSRG7-GFP was performed in tobacco leaves with the
purpose of observing the subcellular localization of ZmSRG7. The green fluorescence
signal produced by the control vector GFP was visible everywhere. On the other hand, the
ZmSRG7-GFP signal was only seen on the nucleus of the cell (Figure 2). This finding was
in line with what was anticipated.
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2.3. Overexpression of ZmSRG7 in Transgenic Maize Can Improve Maize Osmotic and Drought
Stress Tolerance

To verify gene function, we created a ZmSRG7 overexpression vector and used an
agrobacterium-mediated method to transform ZmSRG7 into the maize inbred line H8204,
yielding seven transgenic lines (OE1-7). Three transgenic lines with high expression levels
(OE-4, OE-5, OE-7) were tested in the T3 generation (Figure 3A). In order to verify the
function of ZmSRG7 under drought stress, plants were treated in a solution containing
10% PEG6000. The results showed that OE and WT seeds were able to germinate, and
the germination rate of OE increased by 84.12% (Figure 3B,C). Further, 3-day-old OE and
WT seedlings were hydroponically grown for 7 d in a solution containing 10% PEG6000
before the lengths of their roots were measured. The transgenic root lengths increased by
59.44% compared to the WT (Figure 3D,E). The longer relative root lengths in transgenic
maize seedlings suggest that ZmSRG7 overexpression enhanced transgenic maize seedling
growth under osmotic stress. All the plants displayed damaged phenotypes under osmotic
stress after 7 d of treatment with 10% PEG6000, whereas the WT lines displayed more
severe wilting and yellowing (Figure 3D).

To determine the OE lines’ tolerance to water scarcity, WT and OE seedlings were
planted in the same container and allowed to grow normally for 10 d. When water was
cut off for 5 d, the leaves of WT appeared to roll and then began to wither, whereas the
leaves of OE lines appeared to roll but remained green (Figure 3F). OE lines recovered
their leaf shape faster than WT lines during the rehydration process. The survival rate,
relative water content, and rate of water loss were all measured 8 d after rehydration.
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OE lines had an 86% higher survival rate than WT lines (Figure 3G). The RWC (relative
water content) for WT lines was obviously lower than for overexpressed lines, but the
opposite was found for the rate of water loss (Figure 3H,I). As a result, maize seedlings
with increased ZmSRG7 expression were found to have better water retention properties
when dehydrated. These findings suggested that maize ZmSRG7 overexpression improved
osmotic stress and drought stress tolerance.
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Figure 3. Overexpression of ZmSRG7 endows plants with drought resistance. (A) expression level
of transgenic lines (OE1-7). (B,C) germination of transgenic lines. (D–F) phenotype and root length
statistics of 10% PEG6000 under osmotic stress. (G) natural drought phenotype. (H,I) survival rate,
RWC and water loss rate under drought stress. Values are mean ± SD of three biological replicates.
Bars with different letters are significantly different at p < 0.05 according to Duncan’s multiple range
tests. Non-significance (ns), p < 0.05 (**).

2.4. Overexpression of ZmSRG7 in Transgenic Maize Can Improve the Salt Tolerance of Maize

The germination rates of OE and WT seeds in 150 mM NaCl were compared to
characterize the salt tolerance of overexpressed ZmSRG7, and the transgenic seeds showed
a 42.74% increase (Figure 4A,B) (to enable comparison, a single set of untreated germination
maps were shared by salt stress and drought stress). There were apparent supporting roots
under the stem, showing that high salinity reduced the root lengths of WT lines, which
grew by 52.38% compared to WT lines, but there was no significant change in leaf growth
(Figure 4C,D). To investigate how ZmSRG7 improves salt tolerance in transgenic maize
seedlings, we compared the Na+ and K+ concentrations in the roots of WT and OE lines.
After being subjected to salt, both WT and OE lines showed an increase in Na+ content
and a decrease in K+ concentration (Figure 4E,F). Under both the control and salt stress
conditions, there was no discernible difference in K+ content between WT and OE lines
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(Figure 4F). However, OE lines collected more Na+ and had a higher Na+: K+ ratio than
WT lines, which were treated with NaCl (Figure 4E,G). These findings therefore suggest
that overexpression of the ZmSRG7 gene can resist salt stress.
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Figure 4. Salt tolerance of ZmSRG7 gene. (A,B) germination of WT and OE under salt stress. (C,D)
root length and leaf phenotype under salt stress. (E–G) Na+, K+ content and Na+: K+ ratio under salt
stress. Values are mean ± SD of three biological replicates. Bars with different letters are significantly
different at p < 0.05 according to Duncan’s multiple range tests. Non-significance (ns), p < 0.05 (**).

2.5. Overexpression of ZmSRG7 in Transgenic Maize Can Improve the Antioxidant Capacity
of Maize

Next, 3,3′-diaminobenzidine (DAB) and Nitroblue tetrazolium (NBT) staining methods
were used to determine the antioxidant capacity of the overexpressed ZmSRG7 gene. The
results showed that, under salt or drought conditions, the leaves of WT maize were stained
with DAB and NBT, and the degree of staining was deep. Maize overexpressing ZmSRG7
was lighter in color than the WT (Figure 5A). This may be because the overexpression of the
ZmSRG7 gene reduces the generation of H2O2 and thus reduces the accumulation of ROS.
It was preliminarily concluded that the ZmSRG7 gene has a certain antioxidant ability, and
that it reduces oxidative stress. In order to further clarify the causes of decreased ROS accu-
mulation in ZmSRG7 maize overexpression lines, the expression of oxidative factors and
antioxidant factors in maize leaves was detected after stress treatment. When treated with
NaCl or PEG, the expression of H2O2 and O2

− decreased in the ZmSRG7-overexpressing
lines compared with the control (Figure 5B,C). The activity of ROS-scavenging-related
enzymes was measured. As shown in Figure 5E–H, after stress, the enzyme activities of
POD, CAT, SOD and GPx in maize overexpression lines were significantly higher than
those in the WT. However, there was no significant difference between the overexpressed
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ZmSRG7 gene without stress treatment and the control, which was consistent with the
staining results. The results showed that oxidative stress damage was induced in maize
after stress, and overexpression of the ZmSRG7 gene was able to improve the activity of
ROS-scavenging-related enzymes and promote the ROS scavenging ability of cells under
stress treatment conditions. It is well known that ROS can cause damage to a variety of
biological macromolecules in cells, such as lipids. Polyunsaturated fatty acids of membrane
lipids are susceptible to ROS-induced peroxidation, and produce various aldehydes, enals
and hydroxyl alkenes, including the cytotoxic compound MDA [29]. To further determine
the degree of oxidative damage in each line, we measured the content of MDA in each
line. As shown in Figure 5D, MDA content in maize overexpression lines was significantly
lower than that in the WT after both the untreated and stress treatments. These results
indicated that ZmSRG7 may affect the intracellular REDOX balance and reduce oxidative
stress damage.

Soluble sugars can effectively reduce cellular water potential, and plants can respond
to stress by reducing intracellular water potential. Secondly, free proline in plants also has a
protective effect on cells under stress [30]. Therefore, the soluble sugar and proline contents
of the overexpressing lines were examined (Figure 5I,J). The results showed that the soluble
sugar and proline contents of the ZmSRG7 overexpressing lines were significantly higher
than those of the WT. These results indicated that the ZmSRG7 gene may resist stress by
regulating ROS and osmoregulatory substances, thus promoting the growth of maize.
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Figure 5. Oxidative stress of ZmSRG7. (A) DAB and NBT staining. (B,C) O2
− and H2O2 content

analysis. (D) MDA content. (E–H) analysis of antioxidant enzyme activity (POD, CAT, SOD, GPx). (I)
soluble sugar content. (J) proline content. Values are mean ± SD of three biological replicates. Bars
with different letters are significantly different at p < 0.05 according to Duncan’s multiple range tests.
Non-significance (ns), p < 0.05 (**).
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2.6. Related Gene Expression Analyses of Transgenic Maize

We analyzed the expression patterns of marker genes involved in ROS to better
characterize the functional mechanism of ZmSRG7. qRT-PCR was used to investigate
the expression of ROS-scavenging and antioxidant genes in ZmCAT3, ZmSOS1, ZmSOD1,
ZmLTP3, ZmRD29B, ZmRD22, ZmCBF4, and ZmABI4 [31]. When WT and OE lines were
treated with 10% PEG6000 and 150 mM NaCl, eight marker genes were activated, and the
expression levels of these genes in OE lines were noticeably higher than those in WT lines
(Figure 6A–H). The detection of these indicators fully proved that the ZmSRG7 gene can
resist stress through regulating the ROS signaling pathway.

Next, we analyzed the gene expression of COR15 and DREB2A, which are involved in
the ABA-independent pathway, and NCED3, a well-known marker of the ABA-dependent
pathway. Transgenic materials treated with 10% PEG6000 and 150 mM NaCl showed sig-
nificant changes in the expression of NCED3 and SnRK2.6 in the ABA-dependent pathway
compared to controls (Figure 6I,J). There was also a notable shift in the expression of COR15
and DREB2A (Figure 6K,L). These results indicated that overexpression of the ZmSRG7
gene may also participate in the regulation of key genes involved in the ABA pathway to
resist stress.

Furthermore, two genes involved in transporting sodium ions, ZmHKT1 and ZmNHX1,
were found to be highly expressed. After being exposed to salt, ZmHKT1 and ZmNHX1
expression levels increased, and OE lines had higher levels of these genes than WT lines did
(Figure 6M,N). We found that the leaves of the OE lines expressed the glycosynthase-related
genes ZmSh1 and ZmSus1, which is significant because sugar tolerance is essential for plant
abiotic stress, and soluble sugar content was found to have increased. The results indicated
that ZmSh1 and ZmSus1 expression were elevated in response to stress (Figure 6O,P).
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three biological replicates. Bars with different letters are significantly different at p < 0.05 according
to Duncan’s multiple range tests. Non-significance (ns), p < 0.05 (**).
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2.7. Comparison of Yeast Growth under Drought and Salt Stress

Next, a pYES2-ZmSRG7 yeast overexpression vector was created (Figure 7A). Under
drought and salt stress circumstances, there was no significant difference in the growth of
INVSC1 (pYES2-ZmSRG7) and INVSC1 (pYES2) (Figure 7B). Furthermore, the expression
of the ZmSRG7 gene in yeast had no effect on normal yeast growth. Under drought stress,
INVSC1 (pYES2-ZmSRG7) and INVSC1 (pYES2) were inoculated at the same density
on SC-URA solid medium containing 2% galactose at the original concentration and 10
dilutions. After they were diluted 100 times, the number of yeast colonies of INVSC1
(pYES2-ZmSRG7) was found to be greater than that of INVSC1 (pYES2). After they were
diluted 1000 and 10,000 times, the differences between INVSC1 (pYES2) and INVSC1
(pYES2-ZmSRG7) became more apparent. INVSC1 (pYES2-ZmSRG7) had essentially little
growth, whereas INVSC1 (pYES2-ZmSRG7) still had a substantial amount of growth. The
results demonstrated that expressing the exogenous ZmSRG7 gene increased transgenic
yeast’s drought tolerance considerably. In both yeast species, NaCl stress was equivalent to
drought stress. However, INVSC1 (pYES2-ZmSRG7) was more prominent in point culture,
and INVSC1 (pYES2) was much lower than INVSC1 (pYES2-ZmSRG7) after being diluted
100, 1000, and 10,000 times (Figure 7B). These results demonstrated that transgenic yeast
was more resistant to salt stress than non-transgenic yeast.
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2.8. One-to-One Validation of ZmSRG7 Interacting Proteins

To avoid reporter gene expression caused by the inserted target fragment, which would
have interfered with the screening of interacting proteins, it was important to determine
whether the pGBKT7-ZmSRG7 recombinant vector possessed autoactivation capability.
pGBKT7-ZmSRG7 + pGADT7-dhn1 (experimental group), pGBKT7-53 + pGADT7-T (posi-
tive control), and pGBKT7-Lam + pGADT7-T (negative control) plasmids were transfected
into yeast competent (Y2H Gold) cells. By treating the two nutrient-deficient media, the
autoactivation was confirmed. The results demonstrated that the experimental group
ZmSRG7-BD + Zmdhn1-AD, the negative control pGBKT7-Lam + pGADT7-T, and the
positive control pGBKT7-53 + pGADT7-T were all able to grow normally on ditrophic
media (-Leu/-Trp). In the four-deficient medium containing X-α-Gal chromogen (-Ade/
-Leu/-Trp/-His), only the experimental group ZmSRG7-BD + Zmdhn1-AD and the positive
control pGBKT7-53 + pGADT7-T were able to grow normally and become blue. Finally, the
yeast proteins ZmSRG7 and Zmdhn1 were found to interact.
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3. Discussion

Abiotic stress, such as drought, high salt and low temperature, seriously affected the
growth of maize, and is the main factor limiting the yield of maize [32]. Therefore, it is a pri-
ority of scientific research to explore the functional genes of maize related to stress adversity.
Based on maize stress transcriptome sequencing data completed in the laboratory (NCBI:
PRJNA793522), the ZmSRG7 gene with significantly up-regulated expression was selected
(Figure S1). Studies have shown that this gene is highly expressed in roots and leaves in
response to drought and salt stress (Figure 1), and is a dual resistance gene, so we named
it ZmSRG7 (stress-related gene, mapping chromosome 7, SRG7). Muthusamy et al. [33]
found that BrEXLB1 (Brassica rapa Expansin-Like B1) is involved in root development, the
drought stress response, and seed germination. Therefore, the seed germination rate under
stress is very important for plant growth and development. In this study, the overexpression
of ZmSRG7 was found to significantly enhance the drought resistance and salt tolerance of
plants, and the germination rate of transgenic seeds was found to increase by 84.12% and
42.74% under drought and salt stress, respectively (Figure 3B,C and Figure 4A,B). The root
system is an important organ for crops to absorb nutrients and water, and the cultivation of
a developed and robust root system is an important means for most crops to realize their
yield potential in high-yield cultivation. Gautam et al. [34] found that the LBL1 mutant
LBL-rgd1 played a role in maize root development, and compared the root phenotype with
the WT at 7 d after germination. Furthermore, the taproot of LBL1-rgd1 was found to be
about 72.61% longer than that of the WT. In this study, the root lengths of transgenic plants
under drought and salt stress increased by 59.44% and 52.38% compared with the WT,
respectively (Figures 3D and 4C). Under natural drought conditions, WT leaves showed
withered and yellowing phenotypes, and hardly changed after rehydration, while the
transgenic plants were green during this period, and were able to grow normally after
rehydration. Furthermore, the RWC of the transgenic plants was higher than that of the
WT, while the opposite was true for the water loss rate (Figure 3F,I).

It is often observed that there is no strong correlation between sodium content and
salt tolerance [35]. Under high salinity, plants can isolate Na+ into vacuoles against concen-
tration gradients by Na+/H+ antiporter located in their vacuolar membranes and plasma
membranes, or reverse transport Na+ out of cells to maintain intracellular ion balance [36].
In addition, the SOS signaling system also plays a very important role in regulating ion
homeostasis and improving plant salt tolerance. This signaling pathway is closely related to
the salt stress response, and includes three major proteins, SOS1, SOS2 and SOS3. The SOS1
gene encodes a Na+/H+ antiporter at the plasma membrane [37]. Roots play an important
role in controlling sodium absorption and transport over long distances, and ZmSRG7 is
highly expressed in roots. In this study, the amounts of Na+ and K+ in roots after salt treat-
ment were examined, and the buildup of Na+ in OE lines was found to be larger than in WT
(Figure 4E–G), possibly due to lower expression of the sodium repelling gene (Figure 6N).
We detected significant expression of the SOS1 gene in the overexpressed lines (Figure 6C),
so we hypothesized that the mechanism of salt tolerance involves transporting excessive
Na+ out of the cell by the Na+/H+ antiporter to maintain normal homeostasis. As a result
of the enhanced expression of HTK1 (Figure 6M), transgenic lines’ salt tolerance may have
been improved. This is consistent with the research results of Zhang et al. [23,24]. It is well
known that high salt and drought can cause osmotic stress. In an osmotic stress environ-
ment, soluble sugar can effectively vitrify the liquid around chloroplasts to reduce the water
potential of cells, thus playing a protective role in plants. The soluble sugar content of the
ZmSRG7 overexpression lines under salt and drought stress was significantly higher than
that of the WT and the high expression level of sugar-synthetase-related genes, indicating
the enhanced tolerance of the transgenic lines to osmotic stress (Figures 5I and 6O,P).

In order to further determine the function of the ZmSRG7 gene, we tested its phys-
iological and biochemical indexes. ROS are the product of the incomplete reduction of
oxygen molecules, and are highly toxic [10]. Under abiotic stress, ROS can not only destroy
the structure and function of cells, but also be an important regulator of signal transduc-
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tion [16]. Stress causes osmotic stress, oxidative stress, and hazardous chemical buildup [1].
Jiao et al. [31] showed that overexpression of ATHB-6 improved the drought tolerance
of maize and mediated the ROS signaling pathway and ABA-dependent pathway. As a
result, in this study, we took measurements of the transgenic plants’ physiological and
biochemical properties. Transgenic plants were found to have lower ROS accumulation
and MDA content than WT lines under normal and stressful circumstances (Figure 5A,D).
Further, we found that transgenic plants expressed more ROS-related genes than WT plants,
implying that the ZmSRG7 gene is engaged in the ROS signaling pathway. To avoid injury,
plants boost the activity of antioxidant enzymes (POD, SOD, CAT, GPx) in their bodies
when they are stressed (Figure 5E–H). In this study, the antioxidant enzyme activity of
OE lines was always higher than that of the WT, while the proline concentration was
also always higher than that of the WT (Figure 5J). This is consistent with the research
results of Qiu et al. [20]. Under drought and salt treatments, greater sugar synthase gene
expression and soluble sugar concentration boosted OE lines’ osmotic stress tolerance
(Figure 5I, Figure 6O,P). To investigate if the ABA signaling system is involved in plant
adaptation to stress, we evaluated the expression levels of ABA-related genes. Under
normal and treated circumstances, the transcription levels of ABA-up-regulated genes in
OE lines were always higher (Figure 6I–L). These findings show that the overexpression of
ZmSRG7 improves ABA signal transduction in maize, and that ZmSRG7 may play a role in
ABA production and signaling.

Abiotic stress is harmful to plants in many ways, from impacting plant growth to
affecting the internal environment of various plant cells. Long-term selective evolution
requires that the genes generated in plants in response to stress be related to one another in
order to coordinate the regulation, resistance, and repair of stress damage. Interaction gene
screening is a method for investigating the internal gene network of the plant complex
stress response. Through this method, it has been found that the uptake and transport of
aluminum in Arabidopsis, as a plasma membrane transporter, requires the cooperation of
the malate transporter ALMT1, due to NIP1, a member of the aquaporin (AQP) family [38].
The ZmSRG7 protein is subcellularly localized in the nucleus and has the ability to directly
regulate maize water balance under stress conditions via its expression level (Figure 2).
When plants are subjected to abiotic stress, their adaptation mechanism is governed by
multiple complex regulatory networks. The yeast double hybrid experiment technology
was used in this study to verify the ZmSRG7 protein and Zmdhn1 protein one-on-one,
and the results showed that these proteins interacted in yeast (Figure 8). Zmdhn1 is a
member of the DHN dehydration protein family, and the protein encoded by Zmdhn1 has
functions such as oxidative stress tolerance, low temperature tolerance, and an internal
signal transduction mechanism that is related to plant tolerance.
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In general, this study successfully excavated the stress-related ZmSRG7 gene through
completed abiotic stress transcriptome sequencing data of maize, and studied the function
and mechanism of this gene by overexpressing it. The results showed that the expression
of the ZmSRG7 gene was not tissue-specific, but it was highly expressed in roots and leaves,
and was able to be induced by salt and drought stress. The ZmSRG7 protein is mainly
localized in the nucleus. Our results suggest that the overexpression of ZmSRG7 enhances
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the stress tolerance of transgenic maize plants through improving the antioxidant system
and ABA-mediated ROS signaling pathway, which jointly play a response function in salt
and drought stress. In addition, a yeast double hybrid experiment was used to verify the
interaction relationship between ZmSRG7 and Zmdhn1, which provides directions for
future research. In summary, our study shows that ZmSRG7 is a dual resistance gene and
that its overexpression improves drought and salt tolerance in maize, which is a major
advance in crop gene breeding research.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Maize inbred line H8204 was used as experimental material. The maize was cultured
in a room with long periods of sunshine (16 h of light/8 h of darkness) at 25 ◦C. Surface
sterilized seeds were germinated on 1/2 MS liquid medium with or without 10% PEG6000
and 150 mM NaCl. In order to evaluate the tolerance of transgenic plants to osmotic stress,
the root length was determined at 14 d of growth in hydroponics with or without 10%
PEG6000 and 150 mM NaCl. To evaluate drought tolerance, three OE lines and WT lines
were grown in the same pot, soil and vermiculite were added (3:1), and natural drought
lasted for 20 d after 10 d of growth. Then, all the plants were irrigated for 8 d, and their
survival rate, relative water content and water loss rate were calculated. To analyze the
expression patterns of related genes, 3-week-old seedlings were transferred to 150 mM
NaCl and 10% PEG6000 for 12 h.

4.2. Construction of Plasmids and Genetic Transformation

The encoding sequence for ZmSRG7 (Zm00001d019704) was introduced into the
pCAMBIA3301 plasmid, which was driven by the maize 35S promoter. Genetic transforma-
tion of maize was performed as described [31]. Experiments were carried out using seeds
of transgenic maize from homozygous T3 generation.

4.3. Tobacco Transient Transformation and Subcellular Localization Vector Construction

The plasmid from the recombinant vector pCAMBIA1302-Ubi-ZmSRG7-GFP was
successfully introduced into Agrobacterium EHA105 [31]. A 2.5 mL syringe was used to
inject bacterial solution into the back of 6-week-old Nicotiana benzoi young leaves. The
green fluorescence of the leaves transformed with recombinant plasmid was observed
under a laser confocal microscope after incubation at 22 ◦C and 16 h light/8 h dark for
24–48 h to determine the position of ZmSRG7 protein in the cells.

4.4. Physiological Indices Measurements

The contents of hydrogen peroxide, MDA, soluble sugar and proline, as well as the
activities of SOD, CAT, GPx and POD, were detected using the detection kit [18,39]. The
content of superoxide anion was determined with a detection kit [40]. The RWC values
and water loss rate were determined based on the above method [41].

4.5. Histochemical Staining

In order to detect the endogenous hydrogen peroxide levels under normal and stress
conditions, corn seedlings at the age of three weeks were added with 10% PEG6000 and
150 mM NaCl in 1/2 MS medium, followed by DAB and NBT staining [41].

4.6. Na+ and K+ Concentrations Are Determined

For analysis of Na+ and K+ contents in roots under normal and high salinity conditions,
the 3-week-old seedlings were treated with or without 150 mM NaCl for 7 d. The contents
of Na+ and K+ were determined by atomic absorption spectrometry [21].
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4.7. Quantitative Real-Time PCR (qRT-PCR) Analysis

RNA was extracted, and cDNA was synthesized according to the kit’s directions. The
SYBR Green Master Mix was used to perform qRT-PCR on an ABI 7300 Real-Time device.
Internal reference genes (ACTIN1) refer to this literature [31]. The expression data were
calculated by 2−∆∆CT. In addition, primers related to this paper are listed in Table S1, some
of which refer to other publications.

4.8. Evaluation of Yeast Drought and Salt Tolerance

According to the characteristics of the ZmSRG7 gene sequences and carrier pYES2
enzyme site features, yeast expression vector primers, namely, the upstream primer
for 5′-TCAACCAATCTACTCGCTGCTAC-3′ (BamH I) and downstream primers for 5′-
GAACACAAAATCAGGCGTCTTATTA-3′ (Xba I), were designed. A PCR was used to
obtain the ZmSRG7 sequence containing the restriction site. This was digested and puri-
fied before being ligated with pYES2 to create the recombinant vector pYES2-ZmSRG7.
pYES2-ZmSRG7 and empty PY-ES2 vectors were transferred into yeast INVSC1, resulting
in INVSC1 (pYES2-ZmSRG7) and INVSC1 (pYES2), with the latter serving as the control.
Monoclonal yeast cells INVSC1 (pYES2) and INVSC1 (pYES2-ZmSRG7) were chosen and
incubated for 12 h at 30 ◦C in SC-URA liquid medium containing 2% glucose. The yeasts’
body weight was collected and suspended in SC-URA liquid medium containing 2% galac-
tose with an initial OD600 = 0.5. The culture was then continued at 30 ◦C to OD600 = 1.6,
and the thalli were collected for stress treatment.

4.9. Yeast Two-Hybrid System (Y2H)

ZmSRG7’s complete open reading frame (CDS) was cloned into the c-terminus of
the GAL4 DNA-binding domain in pGBKT7. Next, the CDS of interactive candidate
gene Zmdhn1 was cloned into the pGADT7 vector, and then, the recombinant plasmid
ZmSRG7-BD was used as a decoy to search the STRING database (https://string-db.
org/ (accessed on 1 February 2022)) for all possible interactions between the encoded
proteins (Figure S2). Finally, yeast cells of AH109 were transformed with the recombinant
plasmids ZmSRG7-BD and Zmdhn1-AD via the lithium acetate technique [42]. DDO
culture medium SD (synthetic-defined)/-Trp/-Leu was used to test the efficacy of the
transformation, while QDO medium SD/-Leu/-Trp/-His/-Ade was used to confirm the
protein–protein interaction. The pGADT7-T and pGBKT7-53 constructs were used as
positive controls, while the pGADT7-T and pGBKT7-lam constructs served as negative
controls. Beijing Kulaibo Technology Co., Ltd.’s yeast transformation system was used as a
reference throughout the yeast transformation process.

4.10. Statistical Analysis

All of the findings in this study were replicated three times. For statistical analysis
of experimental measurement data, SPSS 24.0 software was utilized, and unidirectional
ANOVA was performed to confirm the variability of results between treatments. Non-
significance (ns) was set at p < 0.05 (**).
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