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Immune checkpoint blockade (ICB) has changed the therapeutic landscape of oncology

but its impact is limited by primary or secondary resistance. ICB resistance has been

related to a lack of T cells infiltrating into the tumor. Strategies to overcome this hurdle

have so far focused on the tumor microenvironment, but have mostly overlooked the

role of tumor-draining lymph nodes (TDLN). Whereas for CTLA-4 blockade TDLN have

long since been implicated due to its perceived mechanism-of-action involving T cell

priming, only recently has evidence been emerging showing TDLN to be vital for the

efficacy of PD-1 blockade as well. TDLN are targeted by developing tumors to create

an immune suppressed pre-metastatic niche which can lead to priming of dysfunctional

antitumor T cells. In this review, we will discuss the evidence that therapeutic targeting of

TDLN may ensure sufficient antitumor T cell activation and subsequent tumor infiltration

to facilitate effective ICB. Indeed, waves of tumor-specific, proliferating stem cell-like, or

progenitor exhausted T cells, either newly primed or reinvigorated in TDLN, are vital for

PD-1 blockade efficacy. Both tumor-derived migratory dendritic cell (DC) subsets and

DC subsets residing in TDLN, and an interplay between them, have been implicated in

the induction of these T cells, their imprinting for homing and subsequent tumor control.

We propose that therapeutic approaches, involving local delivery of immune modulatory

agents for optimal access to TDLN, aimed at overcoming hampered DC activation, will

enable ICB by promoting T cell recruitment to the tumor, both in early and in advanced

stages of cancer.

Keywords: cancer, tumor draining lymph node, dendritic cell, immune check point, immune exclusion, t cell

exhaustion, CTLA-4, PD-1

INTRODUCTION

Over the past decade, it has become clear that for immune checkpoint blockade (ICB) to work,
tumors need to contain sufficient numbers of infiltrating T cells (1, 2). Particularly in view of the
perceived mechanism-of-action of PD-1 inhibitors this would make sense, since it is supposed to
entail the release of cancer-imposed brakes from tumor-infiltrating cytotoxic effector T cells. An
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intense research effort has therefore been ongoing to characterize
the tumor microenvironment (TME) and find ways to ensure
T-cell infiltration (3, 4). New insights point to the need for
therapeutic targeting of tumor-draining lymph nodes (TDLN),
rather than of the TME, to secure proper antitumor T-cell
generation and at the same time brisk tumor infiltration (5–
8). TDLN can either be more proximal or more distal from
the tumor, but they are all part of the lymph catchment area
of the tumor. As a result of this definition, non-TDLN may
sometimes be more proximal to the tumor than TDLN, but
due to the fact that tumor-derived factors will diffuse through
the lymph basin, be less affected by the tumor, e.g., in terms
of immune suppression (9). A growing number of studies
are exploring the use of systemically administered immune
checkpoint inhibitors (ICI) as neo-adjuvant therapy for patients
in earlier (i.e., resectable) cancer stages (10–13). As in this setting
both the primary tumor and TDLN are still in place (rather
than surgically removed in the adjuvant setting) this approach
will enable simultaneous immune modulation of the TME and
of TDLN. As a result, these studies are generating a renewed
interest in the contribution of TDLN to the efficacy of ICB.
We and others have shown in pre-clinical models that TDLN
play a pivotal role in PD-1/PD-L1 blocking antibody therapy,
and that surgical resection of TDLN prior to treatment hampers
therapeutic outcome (5, 14). In pre-clinical models, lymphatic
drainage has also been shown to facilitate the priming of anti-
tumor T-cell immunity (15, 16). Indeed, recent evidence points
to the need for the recruitment to the tumor of newly primed and
peripherally (e.g., in TDLN) expanded effector T cells to ensure
efficacy of ICB (17). Clinical efficacy and durability of antitumor
immunity appears to be associated with elevated frequencies
of central-memory or early-effector T cells with the ability
to home to lymph nodes (18–20). More in-depth knowledge
on the exact nature of the T cells amenable to ICB and the
underlying molecular mechanisms that control their activation,
point to the importance of Dendritic Cells (DC) in driving
waves of newly primed or reinvigorated early-effector T cells to
facilitate effective ICB (7, 21–23). In this review we will discuss
mechanisms underlying tumor-associated immune suppression
of TDLN and how we can use this knowledge to devise new
local intervention strategies aimed at harnessing TDLN to secure
efficacy of cancer immunotherapy, both in early and in advanced
stages of cancer development.

IMMUNE SUPPRESSION OF DENDRITIC
CELLS IN TDLN: EARLY IMMUNE ESCAPE

TDLN represent the site where T cells will first be primed
against tumor-associated (neo)antigens. In order to escape the
immune response, it is vital for tumors to nip this induction
of tumor reactive T cells in the bud. The more immunogenic
the tumor, the more pressing this matter becomes. With a high
mutational burden, melanoma is the most immunogenic tumor
type identified to date (24). As tumors develop, the cellular
content of their TDLN shifts (Figure 1A). In breast, melanoma
and cervical TDLN shifts in CD4/CD8T cell ratios and elevated

Treg rates were observed prior to metastatic involvement, but
even more pronounced after (28–30). As metastases in the TDLN
grow, memory T cell rates grow and myeloid regulatory cells
are recruited (29, 30). Already at early stages of melanoma
development, the primary tumor exerts an immunosuppressive
effect on its TDLN through the release of immune modulatory
exosomes and soluble mediators, which can ultimately lead to
a “tumor-supportive” microenvironment, i.e., the pre-metastatic
niche (31). In the first-line draining TDLN, the so-called sentinel
lymph node (SLN), we have found clear evidence of early
suppression of DC (28, 29). DC subsets in TDLN encompass
migratory conventional DC (cDC) subsets (marked by CD1a
expression in human epithelium draining lymph nodes) as
well as lymph node-resident cDC (LNR-cDC, marked by high
CD11c levels, various CD1c, CD141, and CD14 expression
patterns, and absence of CD1a) and plasmacytoid DC (pDC;
CD11c−CD123hiCD303+). Recent studies have shown the in-
vivo exchange of antigens between migratory cDC and LNR-
cDC and have demonstrated their concerted and coordinated
activities to lead to optimal priming of an effective antitumor
T-cell response (32–34). Whereas significantly lower levels of
maturation and co-stimulatory markers were found in migratory
cDC subsets already in Stage-2 melanoma, expression of these
markers dropped profoundly in LNR-cDC only by Stage-3 (28).
A significant negative correlation between the frequency and
activation state of migratory cDC subsets in melanoma SLN
and primary tumor size (Breslow thickness), suggested that the
developing primary melanoma created a pre-metastatic niche
in the TDLN by suppressing the migration of antigen-carrying
cDC from the tumor to the TDLN. This early reduction in
frequency of migratory cDC is consistent with observationsmade
in murine models by Binnewies et al. (35) who reported that
cDC2 migration from the tumor to TDLN was constrained by
regulatory T cells (Tregs) in the tumor, resulting in suboptimal
priming of Th cells and their failure to migrate to the tumor
in sufficient numbers to support an anti-tumor response. In
human melanoma SLN, metastasis size was inversely correlated
with the frequency and activation state of LNR-cDC in SLN
(28). Remarkably, whereas reduced frequencies of migratory
cDC subsets was related to decreased local recurrence-free
survival (RFS), reduced activation of LNR-cDC was related to
decreased distant RFS (28). This suggests differential imprinting
for homing properties of tumor-specific T cells by specific cDC
subsets, and indicates an essential role for LNR-cDC in the
induction of effective systemic antitumor immunity. In breast
cancer SLN a similar progressive reduction in the activation
state of LNR-cDC was observed, which was most pronounced
upon metastatic involvement and then coincided with increased
Treg rates, high co-expression levels of CTLA-4 and PD-1, and
profoundly suppressed effector-T cell activity in the SLN (29).
A possible role for LNR-cDC in keeping PD-1+ T cells in
check was suggested by our finding that LNR-cDC in early-
stage melanoma SLN expressed relatively higher PD-L1 levels as
compared to CD80 (36). This indicates an inability of CD80 to
keep PD-L1 from interacting with PD-1 on T cells through in-
cis interactions (23, 37) and would fit with LNR-cDC subsets
restraining antitumor T cells in early stages of cancer in a
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PD-1 dependent manner as recently reported (22). Dammeijer
et al. (7) showed an association between poor RFS with high
frequencies of PD-1/PD-L1 interactions between T cells and
cDCs in SLN from Stage-2 melanoma patients. In addition,
we found a strong inverse correlation between the activation
state of LNR-cDC and Treg rates in melanoma SLN (28). This
increase of Tregs accompanying decreased LNR-cDC activation
may be responsible for subsequent T-cell anergy induction and
the conversion of Ag-specific naïve T cells into Tregs in TDLN,
as described by Alonso et al. (38) in a lung adenocarcinoma
mouse model. Polychromatic FACS analysis showed CLEC9A+
LNR-cDC to consist mostly of cDC2 expressing both CD1c and
intermediate levels of CD141 and of a minority of CD141hi cDC1
(39, 40). Their superior cross-presentation and -priming ability
and their apparent relationship to the generalized immune state
of the SLN and distant RFS, make LNR-cDC attractive targets
for early therapeutic intervention to curb metastatic spread and
outgrowth (36).

THERAPEUTIC TARGETING OF
EARLY-STAGE TDLN: “THINK GLOBAL,
ACT LOCAL”

We have obtained clinical evidence that local administration (i.e.,
intradermal injection around the primary tumor excision site)
of immune modulatory agents in early-stage melanoma, aimed
at TDLN immune potentiation, leads to systemic antitumor
immune activation and increased RFS. In two randomized Phase-
II trials in clinical stage-1/2 melanoma patients, we have shown
that this intradermal administration of one or two doses of
the TLR9 agonist CPG7909 (CpG-B), with or without GM-
CSF, in the week leading up to the SLN procedure, resulted in
enhanced LNR-cDC activation and melanoma antigen-specific
T-cell responses in both the SLN and in peripheral blood
(39, 41–43). Clinical analysis of the 52 patients participating
in these trials showed a significantly and profoundly lower
number of tumor positive SLN and (at a median follow-
up of 88.8 months) a significantly increased RFS in patients
receiving CpG-B as compared to patients receiving a saline
placebo (44). In vitro, cultures of single-cell suspensions of
breast cancer SLN with CpG-B similarly showed enhanced
LNR-cDC activation and increased expression of effector T-
cell-recruiting chemokines and cytokines associated with a
Th1 response (40). The addition of a JAK2/STAT3 inhibitor
interfered with negative feedback loops activated by CpG-B,
resulting in further enhancedDC activation, down-regulated Th2
rates, and constrained Treg expansion (40). Altogether, these
observations are consistent with the reinvigoration and boosting
of pre-existent but dysfunctional T cells in TDLN, through the
activation of LNR-cDC, providing protection against metastatic
spread and outgrowth (see Figure 1). This is consistent with
findings from a previous study by Schietinger et al. (25)
showing that in-vivo antigen-driven T-cell dysfunction in early
developing tumors is reversible. These clinical studies have
clearly demonstrated the systemic immune activating effects of
locally administered immune modulatory agents, resulting in

long-term protection against loco-regional as well as distant
metastases. Moreover, they have delivered important proof-of-
concept that in the absence of the primary tumor (but presence
of TDLN), direct immune modulation of the TDLN can lead to
effective systemic antitumor immunity.

OVERCOMING IMMUNE EXCLUSION BY
TARGETING DC IN TDLN:
REINVIGORATION OF EXHAUSTED T
CELLS

While reinvigoration of suppressed T cells in early tumor
stages may only require the “pushing of the gas pedal” by
delivering DC-activating agents to TDLN, in more advanced
stages simultaneous “lifting of the brakes” may be required by
immune checkpoint blockade (Figure 1B). Recent insights hold
that effective ICB would require the reinvigoration of so-called
exhausted CD8+ T cells (7, 26, 45), which are regarded as a
T-cell lineage that usually arises through chronic stimulation
with high antigen doses (18). Exhausted T cells display loss
of effector functions, accompanied by high expression levels
of PD-1 in concert with multiple immune checkpoints. This
exhausted phenotype has been linked to the activation of specific
epigenetic regulatory programs (46). In cancer, exhausted T cells
have been identified, which are replenished from a proliferative
pool of so-called stem cell-like or progenitor-exhausted T cells:
these progenitors are typified by intermediate surface levels
of PD-1 and their expression of TCF-1 and SLAMF6. Recent
findings show that in contrast to terminally exhausted T cells,
these progenitor-exhausted T cells are still amenable to PD-
1 blockade and as such may represent the prime targets for
PD-(L)1 checkpoint inhibition (26). Other studies have pointed
to CD8+ stem cell–like T cells or early-effector T cells as
the foremost targets for effective PD-1 blockade (26, 45, 47–
49). These populations, which may in part overlap, have been
characterized as having a preserved capacity for proliferation
and the ability to exert polyfunctional effector functions (26).
Importantly, they are also commonly distinguished by their
expression of CD28. Indeed, CD28 was shown to be required
for effective PD-1 inhibition (48, 50). This is remarkable and
points to the need for CD80/CD86 co-stimulation in addition
to the “mere” interruption of PD-1 binding to its ligands
PD-L1 and PD-L2 in order to unleash the full force of an
antitumor effector T-cell response. This is in keeping with the
observation of proliferative tumor-infiltrating CD8+ T cells
upon clinical PD-1 blockade (1, 45). These proliferating T cells
have a stem-cell phenotype and are found in niches with cDCs
(51), which can provide CD80/CD86 co-stimulation. A recent
study by Oh and colleagues showed that rather than tumor-
expressed PD-L1, PD-L1 expression by infiltrating and cross-
presenting DCs dictated PD-1 blockade efficacy (23). Similarly,
Garris et al. (21) demonstrated that full-fledged activation of
antitumor T cells by anti-PD-1 involved T-cell-DC crosstalk and
was licensed by IFNγ and IL-12. This is all the more remarkable
since macrophages by far outnumber DCs in tumors, and may
be due to the fact that DCs, in contrast to tumor-associated
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FIGURE 1 | A proposed model of tumor-induced immune suppression of draining lymph nodes and local therapeutic intervention opportunities to overcome T cell

dysfunction and exclusion in early- and late-stage cancer development. (A) Schematic representation of how tumors, at early (left) and late stage (right), suppress the

loco-regional immune response in the tumor as well as in the tumor-draining lymph nodes (TDLN). In early-stage disease, migratory DCs are hampered in their

migration and activation [through release of suppressive factors in the tumor microenvironment (TME) and interactions with Tregs], resulting in suboptimal T cell

priming and activation in the TDLN (generating dysfunctional T cells), conversion of Th cells to Tregs (see arrow), and reduced recruitment of Teff cells to the tumor. In

late-stage disease, upon metastatic spread to the TDLN, LNR-cDC are profoundly suppressed, leading to the priming and expansion of dysfunctional progenitor

exhausted T cells and Tregs in TDLN and poor recruitment of Teff to the tumor. Active suppression in the TME (with accumulating myeloid regulatory cells like M2

macrophages and a lack of mature DCs) contributes to the differentiation of terminally exhausted T cells and Treg recruitment with possible immune exclusion. (B)

Suboptimal priming in the TDLN due to suppression of cDC, accompanied by excess PD-L1 surface expression, results in restrained T cell priming and deviated

CD8+ T cell differentiation, marked by a reversibly dysfunctional state in early cancer development. Chronic high-dose (neo)-antigen stimulation in later stages of

cancer development and progression will lead to the development of progenitor-exhausted and, ultimately, terminally exhausted T cells, marked by progressively

higher PD-1 expression levels and the co-expression of other immune checkpoints, like LAG3, TIM3, and TIGIT. Typical markers for the different stages of

dysfunction/exhaustion are listed (25–27). Whereas progenitor exhausted T cells can be rescued by immune checkpoint blockade, terminal exhaustion is an

irreversible state due to epigenetic programming. Local immunotherapy, targeted at TDLN conditioning, can restore the anti-tumor T cell response by promoting DC

activation (e.g., through local injection of TLR-L): in early cancer stages without tumor involvement of TDLN this may suffice to reverse T cell dysfunction and kick-start

effective systemic antitumor immunity. In advanced cancer additional immune checkpoint blockade in the TDLN will enable reinvigoration of progenitor exhausted T

cells, which can then home to the tumor and populate the TME, thus overcoming immune exclusion. This image was created using Biorender.com.
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macrophages (TAMs), express CD80. CD80 interacts with PD-
L1 in-cis (37), resulting in a block of PD-1 binding to PD-L1 with
maintained CD80 co-stimulatory activity through interactions
with CD28 on progenitor-exhausted, early-effector or stem-cell
like T cells. Indeed, the importance of DCs for PD-1 inhibition
efficacy in vivo was recently linked to the relative expression
levels of PD-L1 and CD80, which were shown to dictate T-
cell priming efficacy of DCs (22). This finding was confirmed
by relatively high levels of PD-L1 on DC from patients with
renal cell cancer, in line with their compromised T-cell induction
ability (22). In particular tumor-infiltrating DCs expressing
CCR7, indicative of their ability to migrate to TDLN, have been
pinpointed as essential for effective PD-1 inhibition (33). Of note,
increased PD-1/PD-L1 interactions in TDLN were identified
as restraining antitumor T-cell immunity through increased
PD-L1 levels on tumor-conditioned DCs (7); PD-L1 blockade
resulted in DC-mediated expansion of progenitor-exhausted
T cells, which, upon making their way to the tumor, could
expand, and differentiate further to mediate antitumor effector
functions. These observations provide a compelling argument for
combining immune adjuvants, aimed at DC activation and T cell
priming, with PD-1 blocking antibodies.

We propose that the lifting of immune suppressive barriers
specifically in TDLN may increase the efficacy of ICB through
facilitation of the priming and recruitment of new waves of
tumor-specific T cells derived from progenitor-exhausted T
cells. Indeed, our studies of local intradermal injections in
patients with early-stage melanoma, where the primary tumor
was removed but TDLN were still accessible to the locally
injected immune stimulatory agents, have revealed the singular
capacity of TDLN to prime and modulate the systemic antitumor
T-cell response (39, 41–43). For CTLA-4 blockade this may
entail both increased antitumor effector T-cell activation in
the TDLN through CD28-mediated co-stimulation or Treg
depletion or inhibition (52–54). In mouse models, we have
demonstrated TDLN to also be vital in the efficacy of PD-1
blockade, regardless of local or systemic delivery of therapeutic
antibodies (5). Egress of CD8+ effector T cells from TDLN
proved vital for subsequent T-cell homing to the tumor and
hence for PD-1 blockade efficacy. This finding echoes data
we recently obtained from patients with cervical cancer (55):
in patients with adenocarcinoma of the cervix there was an
apparent accumulation of effector T cells in TDLN, coinciding
with decreased frequencies of T cells infiltrating the primary
tumor, indicative of faulty egress from the TDLN and homing
to the tumor (55). These observations were related to a
decreased cDC1-related transcriptional signature in the tumor
and an increased Wnt/β-catenin response signature, similar to
observations previously reported by Spranger and colleagues
in melanoma, showing that β-catenin-mediated restriction in
cDC1 recruitment to the tumor stood in the way of effective
PD-1 blockade (56). The importance of T-cell trafficking from
TDLN to tumor was further underscored by findings from
Salmon et al. (8), showing that the absence of cDCs, presenting
antigen in TDLN, resulted in a failure of CD8+ T cells
to enter the tumor parenchyma after anti-PD-1 treatment,
suggesting that increased T-cell infiltration was due to trafficking

of T cells previously activated in TDLN. Thus, a picture is
emerging of therapeutic PD-1 blockade involving the CD28-
mediated expansion of tumor reactive T-cell clones by DCs in
TDLN, rather than just the reversal of T-cell exhaustion in the
TME. This is consistent with our own observation of superior
effects of in-vitro PD-1 blockade on HPV16 E6-specific T-cell
responses in cervical TDLN over tumors, which was related to
the presence of CD8+FoxP3+ T cells with intermediate PD-
1 expression levels (30), also previously described by others
as prognostically favorable early effectors (18, 57). Such early-
effector or progenitor-exhausted T cells can persist for long
times in the TDLN in the absence of antigen, are polyfunctional,
display a high proliferative capacity and share phenotypic traits
with central-memory T cells (58). Upon PD-1 blockade they
can efficiently home to the TME and there expand further and
differentiate into effector T cells (6, 26). In keeping with this,
Chow et al. showed that expression of CXCR3, required for tumor
rejection after PD-1 blockade in the MC38 mouse model, was
expressed at high levels by progenitor-exhausted or early-effector
T cells, whereas it was hardly expressed by terminally exhausted
T cells (59).

In conclusion, PD-1 blockade in TDLN can lead to efficient
and DC-dependent tumor infiltration by reinvigorated
progenitor-exhausted T cells, thus overcoming immune
exclusion. In light of these observations, there is a clear rationale
for intra- or even peri-tumoral delivery of ICI for optimal access
to TDLN (see Figure 1B). Indeed, peritumoral administration
ensures optimal access to the tumor’s entire and exact catchment
area and consequently the most efficient delivery to the greatest
number of progenitor-exhausted T cells.

IN CONCLUSION: THE RISE OF LOCAL
IMMUNOTHERAPY

Local administration of ICI has been described in pre-clinical
models and tested in several types of cancer in clinical trials by
us and others, with positive results (42, 59–70). We reported that
peritumoral delivery of anti-CTLA-4 inmousemodels resulted in
an equally efficient antitumor response as observed after systemic
administration, without the usually associated inflammatory side
effects (65). A recent report from Francis et al. (6) elegantly
showed in tumor models that intratumoral administration of
CTLA-4 and/or PD-1 blocking antibodies ensured optimal access
to TDLN (in contrast to systemic administration) and, moreover,
that ipsilateral administration on a site different from the tumor
but with lymph drainage to the same lymph node stations
afforded equal tumor protection. This is in line with our own
observations of the induction of systemic and protective anti-
melanoma immunity in early-stage melanoma through local
immune modulation of the SLN after surgical removal of the
primary tumor, either by CpG-B (44) or by anti-CTLA-4 (71).
Of note, systemic treatment with ICI, particularly in early
stages of cancer, can result in unacceptably high toxicity. Local
administration of lower doses may prove instrumental in limiting
this toxicity, while maintaining efficacy by directly targeting the
TME and, more importantly, TDLN. Both in breast cancer and

Frontiers in Immunology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 643291

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


van Pul et al. Immunotherapy Goes Local

melanoma patients it has been well-established that completion
lymphadenectomy in case of metastatic involvement of the SLN
does not offer any prognostic benefits (72, 73). This notion,
together with the recently developed insights that TDLN might
be vital for ensuring effective anti-tumor immunity would argue
for a neo-adjuvant ICB (or other immunomodulatory) strategy
where the lymph nodes in the tumor draining basin are kept
in place, possibly even in case of clinically detected lymph node
involvement. Our approach of local administration of CpG-B to
raise the DC activation state in TDLN and thereby systemic anti-
melanoma T-cell immunity, might be used in concert with locally
applied ICB to ensure DC-mediated T-cell activation in the
TDLN, leading to systemic immunity, allowing new waves of T
cells to be recruited to tumors. Indeed, recent reports have shown
in patients with advanced melanoma that i.t. administration
of CpG (likely ensuring optimal access to TDLN) can lead
to increased T-cell infiltration (also of distant non-injected
metastases) and even overcome prior resistance to PD-1 blockade
(74). Oncolytic virus therapies, such as local treatment with
the oncolytic Herpes Simplex virus Talimogene laherperepvec
(T-VEC) are, similarly to local injection with TLR agonists,
described as belonging to the category of so-called human
intratumoral immunotherapy (HIT-IT). T-VEC is an engineered
virus, that only replicates in tumor cells and induces secretion
of the cytokine GM-CSF from its transgene. Oncolytic viruses
can induce local and systemic anti-tumor immune responses
through immunogenic cell death induction (75). The local release
of GM-CSF results in recruitment and activation of DCs, but
likely will also drains to nearby TDLN to activate lymph node
resident (LNR)-DCs and promote T cell priming and activation.
Moreover, the viral particles containmultiple TLR-ligands, which

can directly activate DCs within the TME, but also, when
produced and released by dying tumor cells [which in turn will
also release damage-associated molecular patterns (DAMPs)],
will drain, together with released DAMPs through the lymphatics
and activate DCs in TDLN. The OPTiM phase 3 trial, that lead to
the approval of T-VEC, compared local T-VEC treatment with
systemic GM-CSF treatment and reported improved response
rate and also showed signs of enhanced systemic immune
responses by tumor regression in non-injected lesions (76).
Moreover, enhanced immune cell infiltration upon local T-VEC
treatment has been reported in non-injected lesions (77, 78).
Combination treatment of local T-VEC with systemic anti-PD-1
therapy was shown to induce high response rates in metastatic
melanoma patients (79). Altogether these observations clearly
stress the importance of TDLN in immunotherapy efficacy and
support the rationale for local delivery of ICI to ensure optimal
access to, and modulation of, dysfunctional tumor-specific T
cells “lying in wait” in the TDLN, which will subsequently
provide systemic tumor control. These considerations have led
to a remarkable surge in clinical studies exploring local or i.t.
immunotherapy and the publication of a consensus statement on
the standardization of terminology and methodologies used in
their reporting (80). In time, increased knowledge on the role
of TDLN in immunotherapy of cancer will lead to even more
rational local therapy strategies in terms of dosing, timing in
relation to surgery, and treatment combinations.
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