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ABSTRACT Parkinsonian gait is a defining feature of shaking palsy (SP) and it has one of the worse impacts
on human healthy life than other SP symptoms. The objective of this work is to propose a Parkinsonian gait
detection system based on an S-band perception technique to classify abnormal gait and normal walking.
Due to the differences in the Gaits of Parkinson’s patients compared with healthy persons, the wireless
signals reflect and generates different variations at the receiver that could be used for SP diagnosis and
classification. To detect a Parkinsonian gait, we first implement data preprocessing of the original data
to obtain clear amplitude and phase information. Then, the feature extraction is carried out by principal
component analysis (PCA). Finally, a support vector machine (SVM) classification algorithm is applied
on collected data to classify the abnormal gait of SP patients compared with a normal gait. We evaluate
the proposed system with different people, and the experimental outcomes show that the Parkinsonian gait
detection of this training-based system achieves a high accuracy of above 90%. Moreover, the early warning
of SP is achieved in a non-contact manner.

INDEX TERMS Parkinsonian gait detection, shaking palsy (SP), principal component analysis (PCA),
SVM classification.

I. INTRODUCTION
Shaking palsy is a neurodegenerative disease that is com-
monly seen in middle and old age. It is mainly characterized
by bradykinesia, tremor, gait disturbance and rigidity [1]. Gait
disturbance is mostly considered to have worse or painful
effect on human healthy life as compared to other symptoms
because it may cause substantial discomfort and impairment
in activities of daily living. Patients with SP often experience
gait impairments, including small gait, festinating gait and
gait hesitation.

• Small gait symptoms appears when the person is
dragging his feet during walking. He is taking short and
shuffling steps, moving more slowly than expected for
his age and reducing arm movement during walking.
In short, it means a decreased step length with decreased
speed.

• Festinating gait is a quickening and shortening of
normal strides. The characteristics are that the person

walk increasingly quickly with the torso forward and
cannot stop quickly [2].

• Gait hesitation is the symptom when a person feel
hesitation before stepping forward or feeling difficulties
in initiating walking. When a patient overcomes the
block, he turns around in a small step, along with the
head and torso. The most initial form of gait hesitation
is ‘start hesitation’ followed in frequency by ‘turning
hesitation’ [3], [4].

These gait impairments of SP are associated with and are
largely as a result of a reduced amount of a neurotransmitter
called dopamine because nerve cells begin to die inside the
brain called the basal ganglia. The main treatments include
physical therapy, corresponding other therapies medications
and inworse case surgery (deep brain stimulation) is required.
All these treatments and measurements taken to reduce inde-
pendent functioning and reducing brain complications [5].
For example, most patients with SP use medications to
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help and manage their symptoms. Levodopa (L-dopa) and
supplementary medications that support the brain produce
dopamine or it is use more effectively to treat a Parkinsonian
gait. Although medications use for SP are very effective, but
determining the optimal dose is difficult. In addition, surgery
and physical therapy shows improvements in gait function of
patients with SP. In [6], Thevathasan et al. proposed the prac-
tice of pedunculopontine nucleus stimulation to improve gait
freezing. In [7], the results showed that Parkinson patients
recover from physical therapy in addition to their normal
medication. The reactions to different treatments vary by
person and the state of the disease, so the treatments for SP
must be verified to the individual patient and their symptoms.
Thus, regular monitoring is important for treatment.

While monitoring disease progression and assessing treat-
ment with effectiveness and accurately, the gait of the SP
patient must be monitored continuously. According to the
gold standard of SP [8], the typical gait patterns include gait
hesitation, festinating gait and small gait; each gait pattern
has its own characteristics. All these patterns are included
in the study of this paper. Considering these gold standard
symptoms, the gait detection system is proposed for continu-
ous ambulatory gait detection. This system uses the S-band
sensing technique to capture the signals of different gaits.
Several significant merits of this paper are summarized as
follows.
• We design a non-contact and Parkinsonian gait detection
system. It is sensuously comfortable compared to wear-
able devices.

• This system can detect the gait continuously and provide
real-time signals. The gait information of the SP patient
can be fed back to the doctor, family or caregiver in a
timely fashion.

• Compared with other gait detection systems, our system
is movable and flexible. We can move the system to
the appropriate place, depending on the requirements for
detection.

The structure of this paper is organize as follows. First, the
works related to this paper are reviewed in Section II, and
the system overview design of Parkinsonian gait detection is
presented in Section III. Then, we elaborate on relevant data
processing methods in Section IV, We describe the exper-
imental contents and discuss results based on experiments
in Section V. Finally, Section VI summarize finding and
concludes this paper.

II. RELATED WORK
Based onmeasuring device used, the existing work on Parkin-
sonian gait detection can be divided into three categories:
specialized hardware-based [9], sensor-based [10]–[13], and
smartphone-based [14]–[16].

A. SPECIALIZED HARDWARE-BASED
Fine-grained informative signal measurements can be
achieved by specially designed hardware. De. Venuto et al.
proposed a real-time field-programmable gate array

(FPGA)-based embedded cyber-physical for both gait
analysis and postural instability detection [9]. This system
is worn on the body.

B. SENSOR-BASED
Several studies have been conducted using tiny
motion sensors to monitor gait such as accelerometers and
pedometers [10]–[13]. The Dyna Port move monitor detected
gait and different postures of patients with SP using a single
and small wireless tri-axial accelerometer [10]. Han et al.
used the W-AMS for measuring both the ankles acceler-
ation and introduce a general algorithm of gait detection
from the gait signals [11]. Pham et al. applied anomaly
detection techniques to detect FoG events by using three
tri-axial accelerometers [12]. Putri, Farika T., et al. pro-
posed a low cost diagnostic tool for PD which use unidirec-
tional microphone and Yamada multifunctional microphone
DM-Q6000 to acquire voice data and use BITalino EMG
sensor to acquire gait data [13]. These sensor-based methods
require patients to wear sensors, which are intrusive.

C. SMARTPHONE-BASED
With the attractiveness of smartphones and the growth of
internet technology, gait detection with smartphones has
begun to appear [14], [15]. Mazilu et al. proposed a wearable
assistant consisting of a smartphone and wearable accelerom-
eters for online gait detection [14]. Pan et al. designed and
developed a prototype mobile cloud-based mHealth app, ‘‘SP
Dr’’, to collect SP-related motion data using a smartphone
3D accelerometer [15]. Wan et al. propose a deep multi-
layer perceptron (DMLP) classifier for behavior analysis to
estimate the progression of PD using smartphones [16]. It is
important to note that these methods require physical contact.

Compared to the aforementioned methods, our system
extracts fine-grained information from the wireless channels.
Accordingly, it is possible to achieve a high accuracy using
this technique. In addition, our detection system is remov-
able and requires no physical contact, and it is comfortable
and convenient for patients. Additionally, the technique can
continuously detect and report real-time signals.

III. SYSTEM OVERVIEW
In this section, we introduce some preliminaries related to
the proposed Parkinsonian gait system. We also present the
system design. This system uses S-band perception technique
to detect gait in both patients with SP and ordinary persons.

A. PRELIMINARIES
The defined system uses an S-band spectrum sensing tech-
nique to obtain the wireless channel signal as the original
data. In practical environments, signals are more likely to
be affected by multiple paths, such as walls, floor, ceiling,
desks and so on. As the physical space affects the radio
propagation, the received signals contain information about
the corresponding environments.
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The wireless signals continuously record channel changes,
which characterize the frequency response of the wireless
channel [17]. Suppose that the transmitted and received
responses of the signals in frequency domain are X (f , t) and
Y (f , t) with carrier frequency f . Then, the relation formula of
the two signals is as follows:

Y (f , t) = H (f , t)× X (f , t) (1)

where H (f , t) is the complex valued signal having infor-
mation of channel frequency response (CFR). According
to the orthogonal frequency division multiplexing (OFDM)
technology, H (f , t) is modulated into 30 selected OFDM
subcarriers:

H (f , t) = [H (f1, t) ,H (f2, t) , . . . ,H (fi, t) , . . . ,H (fN , t)]T,

i ∈ [1, 30] (2)

For each subcarrier, it contains the amplitude and phase
information, which is expressed as

H (fi, t) = ‖H (fi, t)‖ e
jsin

∣∣∣ 6 H(fi,t)∣∣∣ (3)

where ‖H (fi, t)‖ and 6 H (fi, t) are the amplitude and phase
information of each subcarrier.

The signals are obtained by collecting the data in each
packet, so there are different H values at different times. The
wireless signals are expressed as a sequence over a period of
time:

H= [H1,H2,H3, . . . ,Hk ] (4)

where k is the total received number of data packets. We col-
lected the wireless signals of normal walking for some time.
Fig. 1. Shows the time history of the amplitude and phase
information in the first subcarrier.

B. SYSTEM DESIGN
SP is one of the most common neurodegenerative disorders,
and it occurs frequently in older people. However, many
patients miss the best timing for treatment because of a lack
of awareness about the early symptoms of SP. Gait change is
an early symptom that is easily discovered and includes small
gait, festinating gait and gait hesitation. By classifying these
gaits and normal walking, we can detect SP early and provide
better treatment. The variation of wireless signals caused by
a Parkinsonian gait is entirely different from that caused by
normal walking.

The system uses spectrum perception technique to obtain
the gait detection information. Fig. 2 shows the structure of
the Parkinsonian gait detection system. It consists of three
main functional modules: (i) sensing, (ii) data processing and
(iii) gait detection.

The sensing module is responsible for collecting the wire-
less signals. For collecting data, we build a microwave spec-
trum sensing platform (MSSP). Related equipment for the
MSSP is listed in Table I, and this platform consist of a trans-
mitter and a receiver. The transmitter drives on the S-band
spectrum, and the receiver continuously records the wireless

FIGURE 1. Time history of the amplitude and phase information in the
first subcarrier.

FIGURE 2. The structure of the Parkinsonian gait detection system.

TABLE 1. Related equipment for MSSP.

channel signals, where we analyze and obtained amplitude
and phase information. Then, we pass these signals to the next
module.

The data processing module is the most important part
of this system, which works in three parts: information
preprocessing, feature extraction and the classification
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algorithm. In data preprocessing part, we follow an outlier
substitution, normalization, and de-noising to extract the clear
data sequences from wireless channel signals. In feature
extraction approach, we choose Principal Component Anal-
ysis (PCA) to process data because it not only extracts the
main information components but also compresses the raw
data dimension. Subsequently, we adopt a machine learning
algorithm (MLA) to classify data based on the mentioned
features. The SVM classification algorithm is used to attain
high classification accuracy in Parkinsonian gait detection.

IV. METHODOLOGY
Use either SI (MKS) or CGS as primary units. (SI units are
strongly encouraged.) English unitsmay be used as secondary
units (in parentheses). This applies to papers in data storage.
For example, write ‘‘15 Gb/cm2 (100 Gb/in2).’’ An exception
is when English units are used as identifiers in trade, such as
‘‘31/2 -in disk drive.’’ Avoid combining SI and CGS units,
such as current in amperes and magnetic field in Oersteds.
This often leads to confusion because equations do not bal-
ance dimensionally. If you must use mixed units, clearly state
the units for each quantity in an equation.

The SI unit for magnetic field strengthH is A/m. However,
if you wish to use units of T, either refer to magnetic flux
density B or magnetic field strength symbolized as µ0H . Use
the center dot to separate compound units, e.g., ‘‘A·m2.’’
In this methodology section, we elaborate on the

approaches used in the data processing module, which
include collected data preprocessing, desire feature extrac-
tion and a classification algorithm. It also important to men-
tion that the human subjects gave informed consent for this
research.

A. INFORMATION PREPROCESSING
Information preprocessing is an essential procedure in the
data extracting technique that involves transforming raw data
into a useful data. The wireless signals are influenced by envi-
ronmental noise and human activities, so data preprocessing
is essential. The data preprocessing includes noise filtering
and data normalization.

1) DE-NOISING
The wireless channel signals describe how the amplitude and
phase change when the signals travel from the transmitter
to the receiver using subcarriers. When no moving object is
present in the channel, the amplitude is fluctuant due to the
influence of the surrounding environment but remains rela-
tively constant. Fig. 3. Shows the time graph of the amplitude
when there is no moving object in the experimental room.
We can see that the amplitude change caused by noise is about
3 dB. It can be seen in fig. 4 that the signal change due to
the Gait is greater than 10dB, indicating that the background
noise will not affect the accuracy and reliability of the Gait
perception. On the other hand, for most cases, the values are
between−40dBm∼−85dBm; through the measurement, it is

FIGURE 3. Time graph of the amplitude when there is no moving object
in the experimental indoor environment.

FIGURE 4. Time graph of the amplitude when a human walks normally in
the experimental indoor environment.

found that the error margins is about −90dBm and for this
value, it is almost impossible to establish channels.

Thus, we know that the wireless signals measurements
obtained from the S-band sensing technique having noisy
signal from various sources, including device interference
devices, transmission power adaptation, and not proper clock
synchronization [18]. Before we extract human gait features,
we must filter out noises from the raw signals measurements.
In received data the existence of high-level impulses and burst
noises need de-noising approaches such as low-pass filters
and median filters, the performance is not very good for this
application. Theoretically, a low-pass filter or a median filter
should be able to filter out these noises. However, after using
these filters, still the residual noises are present and distorting
the filtered signals. Fig. 5(a) shows a raw amplitude sequence
with impulse noises. Fig. 5(b) shows the filtered result of
the raw amplitude sequence after applying Butterworth filter,
the filtering frequency is 100 Hz. Figure 5(c) shows the
results of a 10-point median filter output. From Fig. 5(b)
and 5(c), it is clear that the sequence is distorted after filtering.
Therefore, directly using of these de-noising methods is not
recommended.

We adopt a wavelet transform (WT)-based de-noising
algorithm to filter noises in the wireless signals because it
can perform better in collecting the amplitude of the sig-
nal. Specifically, when four level wavelet transform is uti-
lized [19]. Fig. 5(d) demonstrates the WT filtered result
derived from the raw amplitude sequence. The results shows
that the original signal is noise free and provide clear
information.

2) NORMALIZATION
To facilitate further data processing and improve the detection
accuracy, we select data normalization to ensure the received
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FIGURE 5. Time graph of the amplitude for a subject normally walking.
(a) Raw amplitude sequence. (b) An amplitude sequence after low-pass
filtering. (c) An amplitude sequence after median filtering. (d) An
amplitude sequence after wavelet transform filtering.

values fall into the range [0, 1]. The formula is:

Yi =
Xi − Xmean
Xmax − Xmin

(5)

where Xi is the raw data, Xmean is the mean value, Xmax
and Xmin represent the maximum and minimum value of the
amplitude or phase after outlier removal, respectively.

B. FEATURE EXTRACTION
The principle component analysis (PCA) technique is applied
to extract features for Parkinsonian gait detection, which can
not only keep the characteristics of data intact but it is also
causing decrease in data dimension [20]. It has an active
effect in two aspects: it saves storage space and improves the
calculation speed. For the collected amplitude and phase of
the wireless channel signals, we can calculate the principal
components for each data sequence through PCA. As a result,
we obtain amatrix with dimension p×N , whereN defined the
number of the collected data in unit time. We consider p= 5
for all of the experiments perform in this paper. The detailed
process is presented as follows:
• Preprocessing: In the above–mentioned preprocessing
procedure, the noise components have been removed.

Therefore, we utilize the processed amplitude and phase
of the wireless signals to create matrices as

H =


h11 h12 h13 · · · h1n
h21 h22 h23 · · · h2n
...

...
...
. . .
...

hm1 hm2 hm3 · · · hmn

 (6)

here m is the number of frequencies and hij represents the
treated amplitude or phase of wireless signals that correspond
to subcarrier i and packet j.
• Compute the correlation matrix: The following formula
is use to find the correlation matrix R with size n× n.

R =
1
n
HTH (7)

• Compute the eigenvectors: From the correlation matrix
R, we use Eigen decomposition to calculate the Eigen
vectors qi, i = 1, 2, . . ..

• Reconstruction of signal: a new matrix is construct via
the correlation matrix and the eigenvectors as hi =
qi × H , where qi is the ith Eigen vector and hi is the
ith principal component.

C. CLASSIFICATION
SVM is a one of the useful technique for classification.
A classification methods usually works in two parts: training
and testing of data, which consist of some data occur-
rences [21]. An SVM classifies data by judging the finest
hyperplane that split up all data points of one class from
those present in another classes. One realistic choice as the
finest hyperplane is the one that signifies the prime sep-
aration or margin among the classes. Thus, we select the
hyperplane so the distance on each side is maximized from
it to the nearest data point.

Here, we employ SVM to classify the treated data for
Parkinsonian gait detection. The treated data are randomly
separated into two groups: one group is used for training and
the other for testing. Then we construct a hyperplane in a
high-dimensional space. The training process is given below.
Step 1: Let T = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} ,

xi ∈ Rn, yi ∈ {+1,−1} , i = 1, 2, . . . , n be a training
data set of the extracted feature from the wireless signals
amplitude or phase. Here, +1 and −1 represent two differ-
ent categories. By maximizing the interval, the separation
hyperplane is obtained, which is defined as:

y (x) = wT x + b (8)

The corresponding decision function is

f (x) = sign(wT x + b) (9)

where ωT and b are the classification surface function param-
eter (ωT is stated as normal vector, and b is the offset).
Step 2:Let the hyperplane add a certain constraint, as

follows:

yi(wT xi + b) ≥ 1 (10)
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The new objective function is expressed as

min
w,b

1
2
‖w‖2

s.t. yi
(
wT xi + b

)
≥ 1, i = 1, 2, . . . , n (11)

Step 3: With the Lagrangian multiplier α, the described
function is formulated as

L (w, b, α) =
1
2
‖w‖2 −

∑n

i=1
αi(yi

(
wT xi + b

)
− 1) (12)

Step 4: We determine the maximum interval between the
two boundary ends to determine w and b. Then, the final
classification is transformed as

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj
〈
xi, xj

〉
s.t. αi ≥ 0, i = 1, 2, . . . , n∑n

i=1
αiyi = 0 (13)

where αi and αj are the Lagrangian multipliers.
Step 5:We seek the best w and b to achieve the maximum

interval.

w∗ =
∑n

i=1
α∗i yixi (14)

b∗ = yj −
∑n

i=1
α∗i yi(xi · xj) (15)

Step 6: According to formulas (14) and (15), we know that w
and b are only related to αi. We obtain the best value αi using
the sequential minimal optimization (SMO) algorithm. From
this, we acquire the best w∗ and b∗, and the SVM classifier is

f(x) = sign
(∑n

i=1
yiαi 〈xi, x〉 + b

)
(16)

However, the amplitude or phase data of the wireless chan-
nel signals are not linearly separable because of the complex
indoor environments. Therefore, we use the Gaussian Radial
Basis Function (RBF) work as a kernel function to solve this
problem, which makes the processed data map into a high
dimensional feature space. The new classifier is formulated
as

f(x) = sign
(∑n

i=1
yiαiK 〈xi, x〉 + b

)
(17)

where K 〈xi, x〉 represents the RBF kernel function, which is
defined as

K 〈xi, x〉 = exp
{
−

1
2σ 2 ‖x − xi‖

2
}

(18)

where σ is the standard deviation.

V. RESULTS
In this part, the detail of experimental setups and implementa-
tion of our detection system is presented. We then discuss the
experimental results and performance analysis of our system.

FIGURE 6. Different experiment scenarios.

A. EXPERIMENT SETUPS
We leverage MSSP to collect the wireless signals (MSSP is
described in Section III). The MSSP works with the S-band.
We can obtain the data of 30 subcarriers for each couple
of a transmitting antenna and a receiving antenna. In our
experiments, we used one transmitting antenna and three
receiving antennas, so we obtain 1×3×30 = 90 values at the
same time. Since the sampling rate 800 packets/s is set in the
system, we collected 800 values for the 90 streams per unit
time. The transmitter power of this platform is set to−5 dBm,
the antenna used in the experiment has a gain of 6 dBi and the
received power is about −85dBm.

We conduct our experiments in our laboratory with an
area of approximately 7 × 5 square meters. There is one
sofa, one desk and some chairs in the space. The distance
between Tx and Rx is 4m. Line-of-sight (LOS) and non-
line-of-sight (NLOS) scenarios are considered. In the LOS
scenarios (shown in Fig. 6(a)), the subject stands in a line
with the transmitter and the receiver.

In these experimental scenarios, we collect data of each
participant for four different gaits (normal walking, small
gait, festinating gait and gait hesitation of SP patients).
Specifically, each participant is collected 30 samples for each
gait in each scenario, so in each scenario we collect a total
of 150 samples for each gait from the 5 subjects. The partic-
ipants include 3 male and 2 female students and their ages in
the range of 22-27. Before the experiment, these participants
had practiced to imitate the Parkinsonian gait of SP patients
according to medical videos.

B. RESULTS
We evaluate the performance of our Parkinsonian gait detec-
tion system from two aspects: (i) intuitionistic analysis and
(ii) detection accuracy.

1) INTUITIONISTIC ANALYSIS
For each stream, the collected data are of size k× 30 matrix,
where k is the number of packets. Fig. 7 gives the time graph
of the amplitude for the person’s four different gaits. From
Fig. 7 we can observe that there are some differences between
the amplitude of normal walking and the amplitudes of the
three Parkinsonian gaits. However, detecting a specific gait
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FIGURE 7. The raw amplitude sequence of the person’s four different
gaits. (a). Normal walking. (b). Gait hesitation. (c). Festinating gait.
(d). Small gait.

FIGURE 8. The calibrated phase for four different gait.

through the raw amplitude variation is limited and difficult.
Thus, it is necessary for the raw data to be preprocessed and
an SVM algorithm to be used.

The raw phase information is random (as shown
in Fig. 1(b)) and cannot be used directly. Hence, we calibrate
the raw phase information. Fig. 8 presents the calibrated
phase for 4 different gaits. As we can see from this figure,
the phase information of normal walking is similar to that
of the three Parkinsonian gaits. Therefore, we consider the
amplitude information to distinguish between normal walk-
ing and the Parkinsonian gait.

2) DETECTION ACCURACY
To evaluate detection accuracy, we use an SVM classifier to
identify normal walking or Parkinson’s gait. We apply RBF

FIGURE 9. Average Parkinsonian gait detection accuracy in different
scenarios.

kernel function and implemented a one-versus-one (normal
walking vs gait hesitation, normal walking vs festinating gait,
normal walking vs small gait) method for the classification of
the activity.
• Accuracy of the LOS based experiments: In the LOS
experiment scenario, our Parkinsonian gait detection
system attains an average cross validation accuracy
of 95.5% across three one-versus-one classification
cases. Fig. 9 shows the accuracy of 10-fold cross vali-
dation.

• Accuracy of NLOS based experiments: Similarly, in the
NLOS scenario, we select 10-fold cross validation to
analyze the accuracy, and for this scenario, the average
accuracy of classification is up to 91.1%.

We further compute the total accuracy of the abnormal
gait and normal walking in both the LOS and NLOS sce-
narios. The three Parkinsonian gaits are considered of one
class, and normal walking is of other class. We classify them
by the above mentioned classification method. As a result,
we achieve a 94% and 90% detection accuracy in the LOS
and NLOS scenarios, respectively.

Consequently, the proposed Parkinsonian gait detection
system carries a high classification accuracy up to 90%. The
performance of this detection system can be improved by
including more training sets. When we conduct real time
experiments in lab environment, there are other students sit-
ting in the same lab, and they do not move during the exper-
iments. This illustrates that the proposed Parkinsonian gait
detection system is robust to multiple students present at the
same time. Applying this system to different environments is
a future work, as it is collecting data from actual Parkinson’s
patients and evaluating the performance of this system with
actual patients.

VI. CONCLUSIONS
In this paper, we introduce a Parkinsonian gait detection
system by applying S-band spectrum sensing technique.
Unlike the existing Parkinsonian gait detection methods,
the proposed system involves non-contact and works in real
time, and it is more flexibly. According to the mechanism
of the system, we adopted MSSP operating in the S-band to
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collect the wireless signals of Parkinsonian gait and normal
walking. Then, due to the influence of environment noises,
we present several methods to preprocess the data. We next
use the PCA technique for feature extraction from the pre-
processed data. Finally, a SVM classifier is employed to
classify the Parkinsonian gait and normal walking in both
LOS and NLOS scenarios. The real time results show that the
average accuracy of the Parkinsonian gait detection system
can reach 95.5% and 91.1% for LOS and NLOS scenarios,
respectively. In general, the proposed system provides high
accuracy and good robustness and can be considered as a
complement of the existing significant mechanism [22], [23]
for Neuroscience sensing and judgement.
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