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Pyroptosis plays a critical role in the immune response to immune checkpoint inhibitors (ICIs) by mediating the tumor immune
microenvironment. However, the impact of pyroptosis-related biomarkers on the prognosis and efficacy of ICIs in patients with
lower-grade gliomas (LGGs) is unclear. An unsupervised clustering analysis identified pyroptosis-related subtypes (PRSs) based
on the expression profile of 47 pyroptosis-related genes in /e Cancer Genome Atlas-LGG cohort. A PRS gene signature was
established using univariate Cox regression, random survival forest, least absolute shrinkage and selection operator, and stepwise
multivariable Cox regression analyses. /e predictive power of this signature was validated in the Chinese Glioma Genome Atlas
database. We also investigated the differences between high- and low-risk groups in terms of the tumor immune microenvi-
ronment, tumor mutation, and response to target therapy and ICIs. /e PRS gene signature comprised eight PRS genes, which
independently predicted the prognosis of LGG patients. High-risk patients had a worse overall survival than did the low-risk
patients. /e high-risk group also displayed a higher proportion of M1 macrophages and CD8+ Tcells and higher immune scores,
tumor mutational burden, immunophenoscore, IMmuno-PREdictive Score, MHC I association immune score, and T cell-
inflamed gene expression profile scores, but lower suppressor cells scores, and were more suitable candidates for ICI treatment.
Higher risk scores were more frequent in patients who responded to ICIs using data from the ImmuCellAI website. /e presently
established PRS gene signature can be validated in melanoma patients treated with real ICI treatment./is signature is valuable in
predicting prognosis and ICI treatment of LGG patients, pending further prospective verification.

1. Introduction

Lower-grade gliomas (LGGs) in the brain arise from neu-
roepithelial heterogeneous tissue derived from glial cells of
the central nervous system [1]. /e World Health Organi-
zation classified grade I and II gliomas as “low-grade” based
on histopathological characteristics [2]. However, grades II
and III tumors were recently defined as “lower-grade gli-
oma,” considering that isocitrate dehydrogenase (IDH)
mutations appear in most grade II and III gliomas but rarely
in grade IV tumors [3]. /e main treatment strategies for
LGGs include surgery, radiotherapy, chemotherapy, and
immunotherapy. /ey all improve survival to a certain
extent. However, some patients may not respond to these

therapies because of tumor heterogeneity [4]. Furthermore,
the efficacy of radiotherapy and chemotherapy is poor for
LGG patients due to the lack of a continuous response [3].
Immunotherapy has recently been reported as a promising
therapeutic approach for various types of cancers [5]. Im-
mune checkpoint inhibitors (ICIs) to programmed cell death
protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and
cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) can
activate antitumor immunity and mediate cancer recession
[6]. However, due to the presence or absence of immuno-
genicity, not all patients respond well to ICIs [5]. /e tumor
mutation burden (TMB), expression of immune checkpoints
(ICs), and tumor-infiltrating lymphocytes are considered
biomarkers of the efficacy of ICI treatment and have been
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used to choose patients who could potentially benefit from
subsequent therapy with ICIs [7–9]. However, it is inap-
propriate to choose immunotherapy schemes based on a
single criterion when ignoring the intrinsic relationship of
these biomarkers. It has been suggested that TMB should be
integrated with other ICI-related biomarkers [10]./erefore,
it is necessary to develop a signature associated with these
ICI-related biomarkers to predict the response of patients to
ICIs.

Many studies have focused on the prediction of patient
prognosis and efficacies of treatments that include chemo-
therapy, radiotherapy, and immunotherapy, by establishing
immune-related, tumormicroenvironment- (TME-) related,
and tumor mutation-related gene signatures related to
prognosis [11–13]. However, few studies have explored the
relationship between pyroptosis-related biomarkers and the
prediction of prognosis and efficacy of LGG treatments. As
an inflammatory and programmed mode of cell death,
pyroptosis plays a critical role in the immune response to
ICIs [14]. How pyroptosis activates antitumor immunity
remains unclear, although the association between pyrop-
tosis and TME has attracted research attention for many
years. Prior studies have provided some explanatory factors.
Pyroptosis can inhibit tumor growth by transforming im-
mune “cold” tumors into “hot” tumors, resulting in the
infiltration of various immune cells [15, 16]. Inflammation
caused by pyroptosis may promote the release of inflam-
matory mediators, such as interleukin (IL)-1 and IL-18,
which construct an inflammatory microenvironment suit-
able for tumor development [15, 17]. On the other hand,
pyroptosis can stimulate antitumor immunity and enhance
tumor cell growth because of the heterogeneity of tumors
and the complexity of the tumor immune microenviron-
ment [14]. Pyroptosis alone is unable to induce effective
antitumor inhibition. Pyroptosis combined with ICI treat-
ment can effectively reduce “cold” tumors [18, 19]. /ere-
fore, combining ICI treatment and pyroptosis is a
prospective strategy to improve the prognosis of LGG pa-
tients and their response to ICIs.

In this study, we divided LGG patients into different
clusters through consensus unsupervised clustering analysis
based on 47 pyroptosis-related genes (PRGs). Pyroptosis-
related subtype (PRS) genes were used to construct a PRS
gene signature associated with the prognosis of LGG patients
depending on the random survival forest (RSF) and least
absolute shrinkage and selection operator (LASSO) algo-
rithms. Patients were divided into high- and low-risk groups
according to their median risk score. /e ability of this
signature to predict the prognosis and relationship between
the PRS gene signature and TME, tumor mutation, and
efficacy of ICIs were assessed in the two risk groups./e aim
was to fully combine pyroptosis and antitumor immune
response based on the bioinformatics data.

2. Materials and Methods

2.1.DataCollection andProcessing. Transcriptomic data and
clinical information of LGG patients were obtained from
UCSC Xena, /e Cancer Genome Atlas (TCGA) (https://

xenabrowser.net/), and Chinese Glioma Genome Atlas
(CCGA) (http://www.cgga.org.cn/) databases. /e gene
expression profile from TCGA (version: 07-19-2019) was
measured experimentally using the Illumina platform. /is
dataset showed the gene-level transcription estimates, which
were log2 (x+ 1) transformed count and fragments per
kilobase of exon permillionmapped fragments (FPKM)./e
log2 (count+1) and log2 (FPKM+1) were then converted into
count and FPKM, respectively. FPKM data was finally
transformed into transcript per million (TPM) according to
the formula: TPMi � FPKMi∗ 1000000/(FPKM0+ · · ·+
FPKMm), where i represented gene i and m represented the
total number of all genes. /e count data was used for
differential expression analysis and TPM data was used for
other analyses. We used the GRCh38.104 from the Ensembl
(http://Asia.ensembl.org/) database to annotate these genes.
Gene expression profiles in CGGA-325 (version: 05-06-
2020) and CGGA-693 (version: 05-06-2020) were obtained
using Illumina HiSeq 2000 or 2500 and the Illumina HiSeq
platform, respectively. Next, the two sets of gene expression
data were corrected in batches and integrated by the “limma”
[20] and “sva” packages [21]. Only primary, grade II, and
grade III patients with complete survival information were
included in this study. Detailed information of LGG patients
was shown in Table 1. /e clinical features included age,
gender, tumor grade, follow-up time, and survival status.

2.2. Construction of PRS. Forty-seven PRGs were obtained
from a previously published article (Supplementary Table 1)
[22]. “K-means” consensus unsupervised clustering analysis
based on Euclidean and Ward’s linkage was employed to
classify patients into distinct molecular subtypes according
to mRNA expression data of the 47 PRGs by R package
“ConsensusClusterPlus” in TCGA. /e optimal k was de-
termined by the proportion of ambiguous clustering [23],
cumulative distribution function (CDF), and relative change
in area under the CDF curve. One thousand repetitions were
performed to ensure classification stability.

2.3. Characteristics of PRS. /e R packages “survival” and
“survminer” were used to analyze overall survival (OS)
difference and differential expression analysis was per-
formed using the R package “edgeR” among different
subtypes [24]. Differentially expressed PRS genes were se-
lected with |log2Foldchange| >2 and a false discovery
rate <0.05. Gene ontology (GO) enrichment consisted of
cellular components, biological property, and molecular
function. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed with the “BH”
method and adjusted p value <0.05 to investigate the bio-
logical function of these PRS genes through the R package
“clusterprofiler” [25].

2.4. Identification and Validation of PRS Gene Signature.
First, we identified prognostic PRS genes by univariate Cox
regression analysis with p< 0.05./ese PRS genes relevant to
the prognosis of LGG patients were introduced into RSF
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analysis using the R package “randomForestSRC” to rank the
prognostic genes in accordance with the variable relative
importance score (VRIS). A VRIS <0 indicated a reduction
of the prediction accuracy, while VRIS >0 suggested an
improvement in prediction accuracy. Variables with
VRIS >0 were selected for the LASSO algorithm, which was
used to limit overfitting and obtain optimized prognostic
PRS genes using the R package “glmnet.” /e genes with
nonzero regression coefficients selected from LASSO re-
gression analysis were enrolled in the stepwise multivariate
Cox regression analysis to construct a PRS gene signature to
predict the prognosis of LGG patients and their response to
ICIs. /e risk score of each LGG patient was calculated
through a pyroptosis-related risk model.

Risk score � 
n

i�1
coefi ∗ expi. (1)

/e coefi and expi defined the regression coefficient and
expression of each gene, respectively. Patients in the TCGA
and CGGA cohorts were divided into high- and low-risk
groups using the median value of risk score as the cut-off
value and subjected to Kaplan-Meier survival analysis. In
addition, the time-independent receiver operating charac-
teristics (ROC) curve was used to assess the predictive ca-
pability of this signature via the R package “time-ROC.”

2.5. Immunohistochemistry (IHC) and Prognosis of LGG
Patients at the Level of Eight PRSGenes. IHC staining images
of the PRS genes in LGG patients and normal brain tissues
were obtained from the Human Protein Atlas (HPA) (http://
www.proteinatlas.org/) database. /e Gene Expression
Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-
pku.cn/) database was used to further confirm the corre-
lation of these PRS genes with prognosis in LGG patients.

2.6. Clinical Features and Presently Established Gene
Signature. To determine whether the presently established
gene signature can be an independent prognostic factor for
LGG patients, risk scores and clinical information were
incorporated into univariate and multivariate Cox

regression analyses. Variables with p< 0.05 were statistically
significant.

2.7. Comparison of Previous Pyroptosis-Related Signatures in
LGG Patients. Four previously determined pyroptosis-re-
lated signatures associated with the prognosis of glioma
patients were collected [26–29]. /ey were compared with
the presently established signature in four external datasets:
including CGGA, E-MATB-3892 (https://www.ebi.ac.uk/
arrayexpress/), E-MTAB-2768 (https://www.ebi.ac.uk/
arrayexpress/), and Rembrandt (http://www.cgga.org.cn/
download_other.jsp). /e AUC and Kaplan-Meier sur-
vival curves were used to compare the predictive ability.

2.8. Tumor Immune Microenvironment and Presently
Established Gene Signature. /e proportion of tumor-in-
filtrating immune cells was estimated by the “CIBERSORT”
(https://cibersort.stanford.edu/) deconvolution algorithm
characterizing the cell composition based on normalized
gene expression profiles. /e gene expression matrix of 22
immune cells was collected from the leucocyte signature
matrix 22 [30]. One thousand permutations were run using
the CIBERSORT algorithm. Samples with p< 0.05 were
included in the tumor-infiltrating analysis. Considering the
complexity of TME which consisted of immune and stromal
cells, immune and stromal scores were calculated by the
“ESTIMATE” algorithm, which is usually used to quantify
the TME [31].

2.9. TMB and Presently Established PRS Gene Signature.
Mutation profiling was acquired from TCGA by the
“maftools” package [32]. TMB is an important indicator of
the efficacy of ICIs, estimated as (total mutation/total
covered bases) ×106. We explored the association of some
mutated biomarkers with our PRS gene signature. /e
distribution of mutated genes was visualized by the “maf-
tools” package. TMB was divided into high- and low- TMB
groups on the basis of the median values. Mutant genes that
differed between these groups were used to compare with the
corresponding wild-type genes regarding the prognosis of
LGG patients.

2.10. SignificanceofPRSGeneSignature inPredictingResponse
to Targeted ;erapy and ICIs. Immunophenoscore (IPS),
MHC I association immune score (MIAS), T cell-inflamed
gene expression profile (GEP) score, and IMmuno-PRE-
dictive Score (IMPRES) were calculated by the IPS (https://
github.com/icbi-lab/Immunophenogram) and MIAS
(https://github.com/perwu/MIAS) R scripts, respectively.
IPS is a method that evaluates a patient’s relative probability
to respond to ICIs based on some important components of
tumor immunity, including major histocompatibility
complex (MHC), checkpoints (CP), effector cells (EC), and
suppressor cells (SC) [33]. IPS ranges from 0 to 10, with
higher IPS indicating a higher response to ICI treatment.
IMPRES ranges from 0 to 15, with higher IMPRES reflecting
a higher relative probability of response to ICIs [34]. /e

Table 1: Clinical information of patients included in this study.

Variables Group TCGA (495) CGGA (408)

Survival status Alive 370 244
Dead 125 164

Survival time
(median time/days) — 671 1927

Age
≤40 242 214
>40 253 193

Unknown — 1

Gender Male 274 236
Female 221 172

Tumor grade
II 238 220
III 256 188

Unknown 1 —

Journal of Healthcare Engineering 3

http://www.proteinatlas.org/
http://www.proteinatlas.org/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
http://www.cgga.org.cn/download_other.jsp
http://www.cgga.org.cn/download_other.jsp
https://cibersort.stanford.edu/
https://github.com/icbi-lab/Immunophenogram
https://github.com/icbi-lab/Immunophenogram
https://github.com/perwu/MIAS


MIAS and GEPmethods were used to predict PD-1 blockade
treatment; the high predictive value has been recently ver-
ified in melanoma patients [35, 36]. Another way to assess
the prediction of ICIs was via the ImmuCellAI (http://
bioinfo.life.hust.edu.cn/web/ImmuCellAI/) website, which
was developed based on an ssGSEA algorithm [37]. To
evaluate the prediction of our signature in a real immu-
notherapy cohort, we used 49 melanoma patients receiving
ICI treatment from the GSE91061 (http://www.ncbi.nlm.
nih.gov/geo/) dataset to further validate our findings. We
used the “pRRophetic” package to evaluate the response of
the LGG patients to lapatinib, an epidermal growth factor
receptor inhibitor [38]. /e IC50 value of each patient was
calculated using Ridge’s regression based on the Genomics
of Drug Sensitivity in Cancer database (http://www.
cancerrxgene.org/).

2.11. Statistical Analysis. All statistical analyses were per-
formed using R software. Stepwise multivariable Cox re-
gression analysis was used to construct the PRS signature.
OS between high- and low-risk groups was compared using
Kaplan-Meier survival curves with log-rank tests. AUC was
used to identify the predictive capacity of time-independent
ROC curves. /e Wilcoxon test was applied to compare the
proportion of tumor-infiltrating immune cells, immune and
stromal scores, TMB, ICs, IPS, and others. /e p value was
two-sided, and p< 0.05 was considered statistically
significant.

3. Results

3.1. Characteristics of Patients. A total of 495 primary, grade
II, and grade III LGG patients with complete survival data in
TCGA were included as the training set in this study. In
addition, 408 LGG patients from the CGGA-325 and
CGGA-693 cohorts with the same selected criteria com-
prised the test set for external validation. /e experimental
flow chart was shown in Figure 1.

3.2. Identification and Characteristics of PRS in LGGPatients.
Consensus unsupervised clustering analysis based on the
expression profile of 47 PRGs was used to identify the
potential molecular subtypes of the LGG patients. /e
highest intragroup and lowest intergroup correlations
appeared when TCGA-LGG patients were accurately clas-
sified into two subtypes (Figures 2(a)–2(c); Supplementary
Table 2). Kaplan-Meier survival curves showed the patients
with cluster1 had a significantly longer OS than those with
cluster2 (log-rank test, p< 0.0001; Figure 2(d)). Consensus
unsupervised clustering analysis successfully divided 408
patients from the CGGA dataset into two subtypes based on
47 PRGs (Supplementary Figure 1(a-c)). Survival was better
for the patients in cluster2 than for those in cluster1 (log-
rank test, p� 0.00018; Supplementary Figure 1(d)). In the
TCGA-LGG cohort, 377 differentially expressed PRS genes
between the clusters that were identified comprised 289
upregulated and 88 downregulated genes (Figure 2(e);
Supplementary Table 3). Finally, GO enrichment and KEGG

pathway analyses of 377 differentially expressed PRS genes
further explored the potential biological function between
the different subtypes./ese 377 differentially expressed PRS
genes were mainly enriched in biological functions associ-
ated with immunity, including response to interferon-
gamma (INF-c), MHC class II protein complex, MHC
protein complex, MHC class II receptor activity, immune
receptor activity, cytokine activity, cytokine-cytokine re-
ceptor interaction,/17 cell differentiation,/1 and/2 cell
differentiation, and cell adhesion molecules (Figures 2(f )
and 2(g); Supplementary Table 4, 5).

3.3. Construction and Validation of PRS Gene Signature.
Univariate Cox regression among 495 primary LGG patients
identified 305 differentially expressed PRS genes associated
with OS (P< 0.05; Supplementary Table 6). Subsequently,
204 prognostic PRS genes with VRIS >0 via the RSF algo-
rithm (Figures 3(a) and 3(b); Supplementary Table 7) were
chosen for the LASSO algorithm (Figures 3(c) and 3(d);
Supplementary Table 8) analysis. /irteen PRS genes were
assessed by multivariate Cox regression analysis. Finally, an
eight-gene PRS gene signature was constructed
(Figures 3(e)). Riskscore� (BMP5∗ 0.46289) + (DMRTA2
∗ 0.16702) + (EN1∗ 0.14118) + (EYA4∗ 0.14763) + (IGFBP2
∗ 0.14614) + (PTCRA ∗ 0.16520) + (STAP1 ∗ 0.35830) +
(TNFRSF11B∗ 0.13016). /e distribution of patients in the
two subtypes was displayed in Figure 4(a). Time-indepen-
dent ROC and Kaplan-Meier survival curves were used to
evaluate the predictive capacity of our PRS signature. Higher
risk scores were correlated with worse OS (log-rank test,
p< 0.0001; Figures 4(b) and 4(c)). /e AUC of 1-, 3-, and 5-
year OS was 0.91, 0.88, and 0.78, respectively, in TCGA-LGG
cohort (Figure 4(f)) and 0.74, 0.82, and 0.75, respectively, in
CGGA-LGG cohort (Figure 4(i)) of patients. Risk curve and
survival distribution maps of LGG patients were used to
further assess the discriminatory power in TCGA
(Figures 4(d) and 4(g)) and CGGA (Figures 4(e) and 4(h)).
Our PRS gene signature displayed high distinctive and
predictive capacities.

3.4. Verification of IHC and Prognosis of LGG Patients at the
Level of PRS Genes. BMP5, IGFBP2, and PTCRA are not
available on the HPA website. /us, we compared the other
five genes of normal tissue and tumor tissue that are
available on this website. /e staining of DMRTA2 was
medium in tumor tissue and undetectable in normal tissue
(Supplementary Figure 2(a)). EYA4 was weakly positive in
tumor tissue and negative in normal tissue (Supplementary
Figure 2(b)). EN1, STAP1, and TNFRSF11B were negative in
both normal and tumor tissues (Supplementary Figure 2(c-e)).
LGG patients with higher expression of these PRS genes tended
to have a worse OS in this study (log-rank test, p< 0.05;
Supplementary Figure 3).

3.5. PRS Gene Signature Was an Independent Prognostic
Factor for LGG Patients. Tumor grade and risk score were
related to prognosis in both univariate and multivariate Cox
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regression analyses (p< 0.001; Figures 5(a)–5(d)). After
adjusting for confounding factors, our PRS gene signature
was an independent predictive factor for LGGs. High tumor
grade and high-risk score were risk factors for prognosis, but
there was no statistical significance in other clinical features,
such as age and gender of LGG patients. Patients with high
age and tumor grade tended to have high-risk scores
(Wilcoxon test, p< 0.05; Figures 5(e), 5(g), 5(h), and 5(j)),

but no statistical significance was found in gender group
(Wilcoxon test, p< 0.05; Figures 5(f) and 5(i)).

3.6. Predictive Power of PRS Gene Signature Compared with
Similar Signatures. /e presently established gene signature
and a prior signature statistically stratified patients into
high- and low-risk categories in Kaplan-Meier survival

LGGs data downloaded
from TCGA (N=495)

Transcription data

47 pyroptosis-related genes

Clinical data

Consensus clustering
(Cluster1 and Cluster2)

Differential genes 
(Cluster1 and Cluster2)

KM survival 
analysis

GO and KEGG
analysis

Construction of a pyroptosis-related 
signature using multivariate

Cox regression

Univariate Cox regression

Random survival forest

LASSO regression analysis

Drug sensitivity 
analysis

Validation of ICIs in 
49 melanoma patients

Validation of signature
in CGGA (N=408)

Clinical features 
analysis

Immune infiltration 
analysis

Tumor mutation 
analysis Prediction of ICIsComparison of 

previous signatures

Figure 1: /e experimental flow chart in this study.

Journal of Healthcare Engineering 5



analyses. /e AUC of our signature was higher than those of
other signatures in four datasets. /e difference was most
evident with the Rembrandt dataset (Supplementary
Figures 4–9).

3.7. PRS Gene Signature and Tumor Immune
Microenvironment. We calculated the proportion of 22
immune cells using the CIBERSORTalgorithm to investigate
the relationship between presently established gene
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Figure 2: Identification and characteristics of PRS. (a) Consensus matrix heatmap of two subtypes (k� 2). (b)/e correlation between CDF
and consensus index under consensus CDF curve when k� 2–7. (c) /e relative change in area under the CDF curve when k� 2–7. (d)
Kaplan-Meier survival analysis of OS between Cluster1 and Cluster2. (e) /e volcano plot of differentially expressed PRS genes. (f ) GO
enrichment analysis of differentially expressed PRS genes. (g) KEGG pathway enrichment analysis of differentially expressed PRS genes. BP,
biology process; CC, cellular component; MF, molecular function.

6 Journal of Healthcare Engineering



0 100 200 300 400 500

0.18

0.19

0.20

0.21

0.22

Number of Trees

Er
ro

r r
at

e 

(a)

0.000 0.001 0.002 0.003 0.004

Variable Importance 

G
en

es

(b)

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5
−1.0

−0.5

0.0

0.5

1.0

Log Lambda

Co
effi

ci
en

ts

61 44 27 16 13 7 0

(c)

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5

11.0

11.5

12.0

12.5

13.0
Pa

rt
ia

l L
ik

el
ih

oo
d 

D
ev

ia
nc

e

61 60 54 49 44 42 39 36 29 28 27 25 23 20 16 16 16 15 15 14 13 12 10 10 9 8 7 6 4 2 2 0

Log Lambda

(d)

TNFRSF11B

STAP1

PTCRA

IGFBP2

EYA4

EN1

DMRTA2

BMP5

(N=495)

(N=495)

(N=495)

(N=495)

(N=495)

(N=495)

(N=495)

(N=495)

1.14

1.43

1.18

1.16

1.16

1.15

1.18

1.59

(0.96 − 1.35)

(1.04 − 1.96)

(0.98 − 1.43)

(1.01 − 1.33)

(0.97 − 1.38)

(0.99 − 1.34)

(1.03 − 1.35)

(1.26 − 2.00)

0.128

0.026 *

0.087

0.037 *

0.1

0.064

0.014 *

<0.001 ***

# Events: 125; Global p−value (Log−Rank): 8.4604e−29 
AIC: 1108.68; Concordance Index: 0.84 1 1.2 1.4 1.6 1.8 2 2.2

Hazard ratio

(e)

Figure 3: /e construction of PRS gene signature. (a) /e change of error rate with the number of trees in the RSF model. (b) /e relative
importance score distribution of PRS genes in the RSF model. (c) LASSO coefficient profiles of the 204 prognostic PRS genes. (d) Partial
likelihood deviance of genes revealed by LASSO. (e) Forest plot of each gene in eight-gene PRS signature after stepwise multivariate Cox
regression analysis.
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signature and tumor immune microenvironment. In high-
risk TCGA-LGG patients, a higher proportion of M0 and
M1 macrophages, CD4 naı̈ve T cells, and CD8 T cells, and a
lower proportion of monocytes were found (Wilcoxon test,
p< 0.01; Figure 6(a); Supplementary Table 9). /e CIBER-
SORT algorithm was used to assess the gene expression of
CGGA-LGG patients to ensure the stability of the immune

infiltration results. High-risk CGGA-LGG patients displayed
a higher proportion of M1 macrophages, plasma cells, and
CD8 T cells, but a lower proportion of monocytes were
observed (Wilcoxon test, p< 0.05; Figure 6(b); Supple-
mentary Table 10). /e combining results from the two
cohorts demonstrated that LGG patients with high-risk
scores had a higher proportion of M1macrophages and CD8
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Figure 4: /e validation of an eight-gene PRS signature. (a) Alluvial diagram of different subtypes with different risk scores and survival
outcomes. (b) Kaplan-Meier survival curves of OS between the high-risk group and low-risk group in TCGA. (c) Kaplan-Meier survival
curves of OS between the high-risk group and low-risk group in CGGA. (d) /e distribution of risk scores in TCGA. (e)/e distribution of
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Figure 5: Continued.
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Tcells, but a lower proportion of monocytes, than those with
low-risk scores. Finally, the ESTIMATE algorithm was
applied to compare the immune and stromal scores between
the high- and low-risk groups. Higher immune and stromal
scores were found in the high-risk group compared with the
low-risk group in both TCGA (Wilcoxon test, p< 0.0001;
Figures 7(e) and 7(f)); Supplementary Table 11) and CGGA
cohorts (Wilcoxon test, p< 0.0001; Figures 7(g) and 7(h));
Supplementary Table 12). Patients with lower immune and
stromal scores had a significantly longer OS in both TCGA
(log-rank test, p< 0.01; Figures 7(a) and 7(b)) and CGGA
(log-rank test, p< 0.0001; Figures 7(c) and 7(d)) cohorts.

3.8. PRS Gene Signature and TMB. /e top 10 most sig-
nificantly mutated genes were IDH1, TP53, ATRX, CIC,
TTN, FUBP1, NOTCH1, PIK3CA, MUC16, and EGFR in
TCGA. Low-risk patients had a higher frequency of IDH1
(chi-square test; p< 0.001; Figures 8(a) and 8(b)) and CIC
(chi-square test; p� 0.016; Figures 8(a) and 8(b)) mutation
than high-risk patients. Patients with wild-type IDH1 and
CIC had a worse OS than those with mutated IDH1 and CIC
(p< 0.0001; Figures 8(c) and 8(d)). After calculating the
TMB of each patient, higher TMBwas related to a shorter OS
(log-rank test, p< 0.0001; Figure 8(e)). TMB was obviously
higher in the high-risk group compared to the low-risk
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Figure 5:/e eight-gene PRS signature and clinical features. (a)/e forest plot of univariate Cox regression analysis in TCGA. (b)/e forest
plot of multivariate Cox regression analysis in TCGA. (c) /e forest plot of univariate Cox regression analysis in CGGA. (d) /e forest plot
of multivariate Cox regression analysis in CGGA. (e-g) Risk score in LGG patients with different age, gender, and grade groups in TCGA.
(h-j) Risk score in LGG patients with different age, gender, and grade groups in CGGA.
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Figure 6: /e relationship between tumor-infiltrating immune cells and PRS gene signature. (a) /e proportion of tumor-infiltrating
immune cells between the low-risk group and high-risk group in TCGA. (b)/e proportion of tumor-infiltrating immune cells between the
low-risk group and high-risk group in CGGA. Data in (a-b) were analyzed by Wilcoxon test; ns, no significance; ∗p< 0.05, ∗∗p< 0.01, and
∗∗∗p< 0.001.
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group (Wilcoxon test, p< 0.0001; Figure 8(f ); Supplemen-
tary Table 13).

3.9. Response of Patients to Target ;erapy and ICIs.
High-risk patients displayed higher expression of ICs, in-
cluding CD274, CD8A, CTLA4, CXCL10, CXCL9, GZMA,
HAVCR2, IDO1, LAG3, PDCD1, and PRF1 in both TCGA
(Wilcoxon test, p< 0.001, Figure 9(a)) and CGGA (Wilcoxon
test, p< 0.05, Figure 9(b)) cohorts. /ese patients also dis-
played higher MHC scores, EC scores, IPS, MIAS, GEP
scores, and IMPRES, but lower SC scores (Wilcoxon test,
p< 0.0001; Figures 9(c), 9(e), 9(g), and 9(j); Supplementary
Table 14). /e collective findings indicated the higher
sensitivity of high-risk patients to ICI treatment. /e re-
sponse status of LGG patients according to gene expression
was determined through the ImmuCellAI website. Re-
sponders had higher risk scores than nonresponders (Wil-
coxon test, p� 0.032; Figure 9(f ); Supplementary Table 15).
/e presently established gene signature effectively predicted
the prognosis of melanoma patients (log-rank test, p� 0.044;
Figures 10(a) and 10(b)). /ese patients who responded to
ICIs had higher PRG scores compared to nonresponders
(Wilcoxon test, p� 0.023; Figure 10(c)). Higher estimated
IC50 values of lapatinib were obtained in low-risk patients
compared with high-risk patients, indicating the sensitivity
of high-risk patients to this drug (Wilcoxon test, p< 0.0001;
Figure 10(d); Supplementary Table 16). /ese results sup-
ported the fact that high-risk LGG patients had a higher
relative probability of response to ICIs.

4. Discussion

Increasing evidence indicates that pyroptosis induced by
inflammation influences the TME and directly or indirectly
activates the immune response to tumors [15, 16]. However,
a comprehensive tool needs to be developed with the re-
alization of the “double-edged sword” nature of that
pyroptosis, and that tumor growth is difficult to inhibit by
pyroptosis alone [14, 15, 17]. Increasing research attention
has focused on PRGs in the development of cancer. How-
ever, few studies have considered the pyroptosis-related
status of patients and the association of pyroptosis with
prognosis.

In this study, we used unsupervised clustering analysis to
classify LGG patients into two subtypes (cluster1 and 2)
based on 47 PRGs to assess the pyroptosis-related status.
Compared to cluster2 patients, those in cluster1 had a better
prognosis. /e finding indicated that pyroptosis can influ-
ence the development of LGGs. Participation of differentially
expressed PRS genes between the two clusters in various
immune-related activities and mechanisms was revealed.
/ese included response to IFN-c, MHC class II protein
complex, MHC protein complex, MHC protein complex,
cytokine binding, cytokine-cytokine receptor interaction,
and cell adhesion molecules. /ese findings indicated the
association of pyroptosis with immune-related functions.
IFN-c can suppress tumors, increase MHC expression,
enhance the function of tumor-infiltrating immune cells,
and is involved in antigen presentation [39]. MHC is a
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Figure 7: /e relationship between TME and OS, and PRS gene signature. (a-b) Kaplan-Meier survival analysis of immune score and
stromal score in TCGA. (c-d) Kaplan-Meier survival analysis of immune score and stromal score in CGGA. (e-f) /e immune score and
stromal score between the high-risk group and low-risk group in TCGA. (g-h) /e immune score and stromal score between the high-risk
group and low-risk group in CGGA. Data in (e-h) were analyzed by Wilcoxon test; ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001.
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genetic region that consists of MHC class I and II molecules.
MHC-II has been associated with favorable outcomes in
patients suffering from various solid cancers treated with
immunotherapies [40, 41]. Adhesion molecules play vital
roles in the function of the immune system and participate
in every process of the antitumor response [42]. /ese
findings highlight the potential value of PRS genes as an
immunotherapy target.

In the present study, an eight-gene signature utilized to
predict the prognosis and response to ICIs was constructed
based on 47 PRS genes identified by RSF, LASSO, and
multivariate Cox regression analyses. Of these eight PRS
genes, three (BMP5, TNFRSF11B, and IGFBP2) are im-
mune-related genes, and their association with the prognosis
of cancer patients has been previously reported [43–45].
EN1, EYA4, IGFBP2, and PTCRA were also discovered as
predictive biomarkers in the prognosis and treatments of
LGG patients [46–49]. /e expression of EN1 and EYA4 in
LGGs was prevalent among some known tumor types.
Higher expression of these two proteins has been correlated
with shorter OS [46, 47]. High expression of IGFBP2 was

detected in LGG tumor tissues compared with normal brain
tissues. /is expression was associated with a worse prog-
nosis for LGG patients [48]. PTCRA was a biomarker as-
sociated with the prognosis of LGGs. Lower expression of
PTCRA was related to longer OS [49]. /ese findings were
all consistent with the results of our study.

In the present study, the PRS gene signature could
precisely predict the OS of LGG patients in the training and
validation cohorts. /is gene signature was an independent
predictor for the prognosis of LGGs in TCGA and CGGA
cohorts when considering relevant clinical features, such as
the tumor grade, age, and gender. Clinical variables with
high-risk scores statistically tended to be risk factors for the
prognosis, suggesting that the PRS gene signature can be a
predictor for the prognosis and could be a substitute for
prognosis. To investigate the prognostic mechanism of the
signature and provide clues for the prediction of ICIs, we
compared high- and low-risk groups in terms of the pro-
portion of 22 immune cells, TME, gene mutation, TMB, ICs,
and so on. Consistent with previous publications, infiltration
of CD8 Tcells and M1 macrophages was greater in the high-
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Figure 8: /e relationship between tumor mutation and PRS gene signature. (a) Mutation profile of top 10 mutated genes in the low-risk
group. (b) Mutation profile of top 10 mutated genes in the high-risk group. (c) Kaplan-Meier survival analysis between patients with wild-
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risk group compared with that in the low-risk group [50, 51].
Macrophages in the surrounding TME are usually termed
tumor-associated macrophages and include M1 and M2

macrophages [52]. Unlike tumor-associated M2 macro-
phages, which led to an immunosuppressive TME and are
actively involved in cancer metastasis, M1 macrophages are
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Figure 9: LGG patients’ response to ICIs and PRS gene signature. (a) /e expressions of 11 ICs between the low-risk group and high-risk
group in TCGA. (b) /e expressions of 11 ICs between the low-risk group and high-risk group in CGGA. (c-e) /e MHC score, EC score,
and SC score between the low-risk group and high-risk group. (f ) Risk score in LGG patients with a different ICI response status. (g-j) /e
MIAS, GEP score, IPS, and IMPRES between the low-risk group and high-risk group. Data in (a-b) were analyzed by Wilcoxon test;
∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001.
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usually used as drug carriers for tumor therapy that directly
kills tumor cells [52, 53]. Likewise, effector CD8+ T cells can
inhibit tumor development and secrete several cytokines,
including IFN-c and IL-2 [54]. In terms of TME, high-risk
patients displayed higher immune scores, indicating an
enriched immune-related function in these patients. Feng
et al. classified glioma patients into three groups (immunity-
high, immunity-medium, and immunity-low) and demon-
strated that the immunity-high patients had an unfavorable
prognosis compared with the immunity-low patients [55].
/e findings concerning the tumor immune microenviron-
ment further support the idea that pyroptosis influences the
development of LGGs by mediating this microenvironment.

Concerning tumor mutation, high-risk patients dis-
played a greater TMB than the low-risk patients, even
though low-risk patients expressed more highly mutated
genes (including the high frequency of mutant IDH1 and
CIC). TMB was previously demonstrated to predict the
outcome of ICI treatment. /is is because higher TMB
results in more neoantigens and enhanced Tcell recognition
and is clinically correlated with better outcomes of ICI
therapy [56, 57]. /us, high-risk patients may be more likely
to respond to ICIs. Additionally, IDH1 mutation, as the
main trait of LGGs, was characterized as low tumor mu-
tational load, PD-1+ T cells, or PD-L1 expression [58]. Lin
et al. described the higher expression of CD274, CTLA4,
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Figure 10: /e role of PRS gene signature in the prediction of immunotherapeutic benefits and targeted therapy. (a) Kaplan-Meier survival
curves for 49 melanoma patients with high and low PRG scores in GSE91061. (b) Rate of 49 melanoma patients’ clinical responses to ICI
treatment in high and low PRG scores in GSE91061. (c) PRG score in 49melanoma patients with a different ICI response status in GSE91061.
(d) Lapatinib IC50 value of LGG patients between the high-risk group and low-risk group.
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HAVCR2, PDCD1, and PDCD1LG2 in the CIC wild-type
group of LGG patients [59]. Importantly, the TIDE scores in
the CIC wild-type group were significantly lower than the
scores in the CIC-mutant group [59]. Based on these
findings, we can conclude that LGG patients in IDH1 wild-
type and CIC wild-type groups were more likely to respond
to ICI treatment, indicating that LGG patients with high-risk
scores were more likely to respond to ICI treatment.

With an increased understanding of tumor immunology,
immunotherapy has provided a new direction for tumor
treatment. In the present study, we chose 11 ICs, including
PDCD1, CD274, and CTLA-4, as ICI biomarkers and
demonstrated higher levels of ICs in the high-risk group.
Tumor growth is favored by upregulations of ICs in the TME
[60]. Although the overexpression of ICs suppresses anti-
tumor T cell responses, some studies have shown a strong
positive correlation between IC ligand expression and re-
sponse to IC blockade [61, 62]. For example, in one study,
the risk of death was decreased by 34% in PD-L1 positive
patients and by 20% in PD-L1 negative patients upon PD-1
or PD-L1 blockade treatment [61]. Patients with higher PD-
L1 expression usually benefit more from anti-PD1 treatment
[62]. Furthermore, the upregulation of these ICs in an
inflamed tumor may initiate a contrary feedback mechanism
that produces an active immune environment, which leads
to an improved prognosis [63]. Except for these prevalent
indicators for the prediction of ICIs, we evaluated the re-
sponse to ICIs using some promising methods based on
some genes associated with immunotherapy. We discovered
that the IPS, IMPRES, MIAS, and the GEP, MHC, and EC
scores were positively associated with risk scores. However,
this association was not apparent for SC scores. Moreover,
patients who responded to ICI treatments displayed high-
risk scores compared with nonresponders using the
ImmuCellAI website tool. Most importantly, our signature
effectively predicted the efficacy of ICIs in melanoma pa-
tients from a real immunotherapy cohort.

/ese findings provide more evidence that high-risk
LGG patients are more suitable for ICI treatment. However,
there are several limitations to this study. /e study was
conducted based on retrospective data from public data-
bases. However, we used various datasets to confirm the
stability of these results. We assessed the likelihood of re-
sponse of LGG patients to ICIs by some simulated values
since we had limited access to actual immunotherapy data.
We are trying to verify this PRS gene signature in melanoma
patients from a real immunotherapy cohort. Finally, further
experimental studies in vivo and in vitro are needed to
confirm our results in the future.

5. Conclusion

We constructed an eight-gene PRS signature to predict LGG
patients’ prognosis and response to ICIs. High-risk scores
were associated with a poor OS but were correlated with a
high relative probability of response to ICIs. We believe our
research can help optimize treatment plans and may be
beneficial for improving the prognosis of LGG patients.
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