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Abstract 25 

Identifying structural-functional correspondences is a major goal among biologists. In 26 

neurobiology, recent findings identify relationships between performance on cognitive tasks and 27 

the presence or absence of small, shallow indentations, or sulci, of the human brain. Here, we 28 

tested if the presence or absence of one such sulcus, the paraintermediate frontal sulcus (pimfs-29 

v) in lateral prefrontal cortex, was related to relational reasoning in young adults from the Human 30 

Connectome Project (ages 22-36). After manually identifying 2,877 sulci across 144 hemispheres, 31 

our results indicate that the presence of the pimfs-v in the left hemisphere was associated with a 32 

21-34% higher performance on a relational reasoning task. These findings have direct 33 

developmental and evolutionary relevance as recent work shows that the presence or absence 34 

of the pimfs-v is also related to reasoning performance in a pediatric cohort, and that the pimfs-v 35 

is exceedingly rare in chimpanzees. Thus, the pimfs-v is a novel developmental, cognitive, and 36 

evolutionarily relevant feature that should be considered in future studies examining how the 37 

complex relationships among multiscale anatomical and functional features of the brain give rise 38 

to abstract thought.  39 
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Introduction 40 

Identifying structural-functional correspondences is a major goal across subdisciplines in 41 

the biological sciences. In neurobiology and cognitive neuroscience, there is broad interest in 42 

uncovering relationships between neuroanatomical features of the human brain and cognition — 43 

especially for structures in parts of the brain that are largely human-specific. Given that 60-70% 44 

of the human cerebral cortex is buried in indentations, or sulci [1–3], there continues to be great 45 

interest in the relationships among sulcal morphology, functional representations, and cognition. 46 

Previous work exploring this relationship has largely focused on the consistent and prominent 47 

sulci within primary sensory cortices, such as the central and calcarine sulci [4–11]. Nevertheless, 48 

recent work has begun to explore the less consistent and more variable sulci, such as small and 49 

shallow sulci in association cortices that are not always present in a given hemisphere. For 50 

example, recent studies have identified relationships between the presence or absence of specific 51 

sulci in association cortices and individual differences in human cognitive abilities and clinical 52 

conditions (for review see [12]), which could be mediated by differences in white matter 53 

architecture in relation to these sulcal features [3,13–15].  54 

To date, relationships between the presence/absence of variable sulci and cognition have 55 

been most widely explored in the anterior cingulate cortex (ACC) [12]; here, we focus on variations 56 

in the folding of the lateral prefrontal cortex (LPFC), a highly expanded region crucial for higher-57 

level functions such as abstract reasoning [16–22]. A combination of previous findings [23–25] 58 

further motivated the present study, showing that a sulcus in anterior LPFC (ventral para-59 

intermediate frontal sulcus, pimfs-v) was variably present in children and adolescents [23,24] and 60 

markedly rare in chimpanzees [25]. Further, the presence of left hemisphere pimfs-v in a sample 61 

of 6-18-year-olds was associated with higher reasoning scores [24]. Building on these previous 62 

results in the present study, we show that the sulcal patterning of the pimfs and the relationship 63 

between the presence/absence of the pimfs-v and reasoning is a reliable and enduring individual 64 
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difference generalizing to an adult sample (ages 22-36). The reliable brain-behavior relationship 65 

between the presence of the left pimfs-v and reasoning across age groups and studies is 66 

important given a timely discussion among researchers regarding the reliability of brain-behavior 67 

relationships [26–28]. We discuss these findings in the context of (i) the role of anterior LPFC and 68 

reasoning across age groups and (ii) hypothesized relationships among the presence/absence of 69 

sulci, the morphology of sulci, white matter architecture, and the efficiency of network communication 70 

contributing to performance on cognitive tasks. 71 

 72 

Materials and Methods 73 

(a) Participants 74 

Data for the young adult human cohort analyzed in the present study were taken from the Human 75 

Connectome Project (HCP) database (https://www.humanconnectome.org/study/hcp-young-76 

adult/overview). Here we used 72 participants (50% female, aged between 22 and 36 years old). 77 

These participants have also been used in our previous work [29,30].  78 

 79 

(b) Imaging data acquisition 80 

Anatomical T1-weighted (T1-w) MRI scans (0.7 mm voxel resolution) were obtained in native 81 

space from the HCP database. First, the images obtained from the scans were averaged.  Then, 82 

reconstructions of the cortical surfaces of each participant were generated using FreeSurfer, a 83 

software used for processing and analyzing human brain MRI images (v6.0.0, 84 

surfer.nmr.mgh.harvard.edu). All subsequent sulcal labeling and extraction of anatomical metrics 85 

were calculated from the cortical surface reconstructions of individual participants generated 86 

through the HCP’s custom-modified version of the FreeSurfer pipeline [31–33]. 87 

 88 

(c) Behavioral data 89 
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(i) Overview 90 

In addition to structural and functional neuroimaging data, the Human Connectome project also 91 

collected a wide range of behavioral metrics (motor, cognitive, sensory, and emotional processes) 92 

from the NIH toolbox [34] that illustrate a set of core functions relevant to understanding the 93 

relationships between human behavior and the brain (for task details see: 94 

https://wiki.humanconnectome.org/display/PublicData/HCP-YA+Data+Dictionary-95 

+Updated+for+the+1200+Subject+Release#HCPYADataDictionaryUpdatedforthe1200SubjectR96 

elease-Instrument). 71 of 72 participants in the present project had behavioral scores. Below we 97 

describe the three behavioral tests used. 98 

 99 

(ii) Reasoning task 100 

The ability to reason about the patterns, or relations, among disparate pieces of information has 101 

long been recognized as central to human reasoning and learning (e.g., [35–37]). Tests of 102 

relational reasoning assess the ability to integrate and generalize across multiple pieces of 103 

information; as a result, they help to predict real-world performance in a variety of domains [38]. 104 

Here, we used the behavioral data obtained for each participant measuring reasoning skills using 105 

a measure of relational reasoning, the Penn Progressive Matrices Test from the NIH toolbox [34]. 106 

This test is highly similar to the classic Raven’s Progressive Matrices [39], WISC-IV Matrix 107 

Reasoning task [40], and other task variants that are ubiquitous in assessments of so-called “fluid 108 

intelligence.” Participants must consider how shapes in a stimulus array — a 2x2, 3x3, or 1x5 109 

arrangement of squares, in the case of the current task — are related to one another (e.g., an 110 

increase, across a row or column, in the number of lines superimposed on a shape) [41–46]. 111 

Specifically, participants must extrapolate from the visuospatial relations present in the array and 112 

select among five options the shape that completes the matrix. The task is composed of 24 113 

different matrices to complete, in order of increasing difficulty. Testing is discontinued after five 114 

incorrect choices in a row, and the total score is calculated.  115 
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 116 

(iii) Processing speed task 117 

To measure processing speed, participants completed the Pattern Comparison Processing 118 

Speed Test from the same NIH toolbox [34]. This test has been designed to measure the speed 119 

of cognitive processing based on the participant’s ability to discern as quickly as possible whether 120 

two adjacent pictures are identical. In this test, participants must consider several  possible 121 

differences (addition/removal of an element or the color or number of elements on the pictures). 122 

They indicate via a yes-no button press whether the two stimuli are identical, and their final score 123 

corresponds to the number of trials answered correctly during a 90-second period.  124 

 125 

(iv) Working memory task 126 

To measure working memory performance, participants completed the List Sorting Working 127 

Memory Test from the NIH toolbox [34]. In this task, each participant sequences different visually 128 

and orally presented stimuli (alongside a sound clip and written text for the name of the item) in 129 

two conditions: 1-List and 2-List. In the former, participants order a series of objects (food or 130 

animals) from smallest to largest. In the latter, participants are presented with both object groups 131 

(food and animals) and must report the food in size order and then the animals in size 132 

order. Crucially, completing this task not only requires working memory manipulation and 133 

maintenance but also relational thinking, given that it also requires participants to assess the 134 

relationship between the different stimuli. To report the items in size order it is necessary to 135 

compare pairs of stimuli and then engage in transitive inference across pairs (e.g., as reported by 136 

[47,48]). 137 

 138 

(d) Morphological analyses 139 

(i) Cortical surface reconstruction 140 
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FreeSurfer’s automated segmentation tools [31,32,49] were used to generate cortical surface 141 

reconstructions. Briefly, each anatomical T1-w image was segmented to separate gray from white 142 

matter, and the resulting boundary was used to reconstruct the cortical surface for each 143 

participant [31,50]. Each reconstruction was visually inspected for segmentation errors, and these 144 

were manually corrected when necessary.  145 

Cortical surface reconstructions facilitate the identification of shallow tertiary sulci 146 

compared to post-mortem tissue – for two main reasons. First, T1-w MRI protocols are not ideal 147 

for imaging vasculature; thus, the vessels that typically obscure the tertiary sulcal patterning in 148 

post-mortem brains are not imaged on standard-resolution T1-w MRI scans [30,51]. Indeed, 149 

indentations produced by these smaller vessels that obscure the tertiary sulcal patterning are 150 

visible in freely available datasets acquired at high field (7T) and micron resolution (100–250 μm) 151 

[52,53]. Thus, the present resolution of our T1s (0.7  mm isotropic) is sufficient to detect the 152 

shallow indentations of tertiary sulci yet is not confounded by smaller indentations produced by 153 

the vasculature. Second, cortical surface reconstructions are created from the boundary between 154 

gray and white matter; unlike the outer surface, this inner surface is not obstructed by blood 155 

vessels [51,54]. 156 

 157 

(ii) Defining the presence and prominence of the para-intermediate middle frontal sulcus  158 

Individuals typically have anywhere from three to five tertiary sulci within the middle frontal gyrus 159 

(MFG) in LPFC [23,30,55,56]. The posterior MFG contains three of these sulci, which are present 160 

in all participants: the anterior (pmfs-a), intermediate (pmfs-i), and posterior (pmfs-p) components 161 

of the posterior middle frontal sulcus (pmfs). In contrast, the tertiary sulcus within the anterior 162 

MFG, the para-intermediate middle frontal sulcus (pimfs), is variably present. A given hemisphere 163 

can have zero, one, or two pimfs components (examples in figure 1). As described in prior work 164 

[24,57,58], the dorsal and ventral components of the pimfs (pimfs-d and pimfs-v) were generally 165 

defined using the following two-fold criterion: i) the sulci ventrolateral to the horizontal and ventral 166 
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components of the intermediate middle frontal sulcus, respectively, and ii) superior and/or anterior 167 

to the mid-anterior portion of the inferior frontal sulcus.  168 

We first manually defined the pimfs within each individual hemisphere with tksurfer [30]. 169 

Manual lines were drawn on the inflated cortical surface to define sulci based on the most recent 170 

schematics of pimfs and sulcal patterning in LPFC by Petrides [57], as well as by the pial and 171 

smoothwm surfaces of each individual [30]. In some cases, the precise start or end point of a 172 

sulcus can be difficult to determine on a surface [59]. Thus, using the inflated, pial, and smoothwm 173 

surfaces to inform our labeling allowed us to form a consensus across surfaces and clearly 174 

determine each sulcal boundary. For each hemisphere, the location of the pimfs was confirmed 175 

by three trained independent raters (E.H.W., S.M., S.C.) and finalized by a neuroanatomist 176 

(K.S.W.). Although this project focused on a single sulcus, the manual identification of all LPFC 177 

sulci (2,877 sulcal definitions across all 72 participants) was required to ensure the most accurate 178 

definitions of the pimfs components. For in-depth descriptions of all LPFC sulci, see [23,30,55–179 

57,60]. The incidence rates of the two pimfs components (i.e., sulcal patterning) were compared 180 

within and between hemispheres with Chi-squared and Fischer exact tests, respectively. Chi-181 

squared tests were carried out with the chisq.test function from the stats R package [all statistical 182 

tests were implemented in R (v4.0.1; https://www.r-project.org/)]. Fisher’s exact tests were carried 183 

out with the fisher.test function from the stats R package.  184 

 185 

(e) Behavioral analyses: Relating the presence of the pimfs to reasoning performance 186 

Participant age and gender were not considered in these analyses, as they were not associated 187 

with reasoning performance (age: r = -0.04, p = 0.75; gender: t = 1.01, p = 0.32). We first ran two-188 

sample t-tests to assess whether the number of components in each hemisphere (two vs less 189 

than two) related to reasoning performance (Penn Progressive Matrices Test). Next, to determine 190 

if the presence of a specific pimfs component was related to reasoning performance, we ran 191 

additional two-sample t-tests to test for an effect of presence of the pimfs-v and pimfs-d (present 192 
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vs absent) in each hemisphere. As presented below, this model revealed that the presence of left 193 

pimfs-v was linked to reasoning performance. To determine whether this result was impacted by 194 

differences in sample size between participants with and without this sulcus, we iteratively 195 

sampled a subset of participants from the left pimfs-v present group (N = 57) to match that of the 196 

left pimfs-v absent group (N = 14) 1000 times and conducted a Welch’s t-test for each sampling 197 

(to account for the distributions potentially being unequal when resampling). To evaluate the 198 

results, we report the median and 95% confidence interval for the effect size.  199 

To ascertain whether the observed relationship between sulcal morphology and  cognition 200 

is specific to reasoning performance, or generalizable to other measures of cognitive processing, 201 

we tested this sulcal-behavior relationship with measures of processing speed (Pattern 202 

Comparison Processing Speed Test) and working memory (List Sorting Working Memory Test). 203 

Participant age and gender were not considered in these analyses, as they were not reliably 204 

associated with processing speed (age: r = -0.21, p = 0.08; gender: t = 0.06, p = 0.95) or working 205 

memory (age: r = -0.03, p = 0.81; gender: t = 1.59, p = 0.12). Two-sample t-tests were run to 206 

assess for differences in performance on each measure based on left pimfs-v presence (present 207 

vs absent!"# $%# &'()&*# (&+(# +),-&.# /# +(*,01# /++,2'/(',03# -&# ()&0# 4+&.# ()&# 56/'6&# $0%,*7/(',0#208 

8*'(&*',0# 95$8!# (,# 2,7:/*&# ()&# 7,.&;# :*&.'2(',0+# (,# *&/+,0'01# :*&.'2(',0+"# <*'&%;=3# ()&# 5$8#209 

:*,>'.&+# /0# &+('7/(&# ,%# '0?+/7:;&# :*&.'2(',0# &**,*# /0.# '+# +4'(/@;&# %,*# 0,0?0&+(&.# 7,.&;#210 

2,7:/*'+,0"#<=#2,7:/*'01#5$8#+2,*&+3#-&#/*&#/@;&#(,#/++&++#()&#*&;/('>&#:&*%,*7/02&#,%#()&#(-,#211 

7,.&;+"#$%#()&#A5$8#'+#BC3#'(#+411&+(+#/0#'0(&*:*&(/@;&#.'%%&*&02&#@&(-&&0#7,.&;+"#$%#()&#A5$8#'+#212 

BDE3# '(# +411&+(+#/# +(*,01#.'%%&*&02&#@&(-&&0#7,.&;+3#-'()# ()&# ;,-&*#5$8#>/;4&# '0.'2/('01# ()&#213 

:*&%&**&.#7,.&;#[61,62]. 214 
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T-tests were implemented with the t.test function from the R stats package. T-test effect 215 

sizes are reported with the Cohen’s d (d) metric. The median and 95% confidence intervals were 216 

calculated with the MedianCI function from the DescTools R package. AIC values were quantified 217 

with the AIC function from the stats R package. 218 

 219 

(f) Probability maps 220 

As in prior work [23,25,29,30,63], sulcal probability maps were calculated to display the vertices 221 

with the highest alignment across participants for a given sulcus. To generate these maps, the 222 

label file for each pimfs component was transformed from the individual to the fsaverage surface. 223 

Once transformed into this common template space, we calculated, for each vertex, the proportion 224 

of participants for whom the vertex is labeled as the given pimfs component. For vertices where 225 

the pimfs components overlapped, we employed a greedy, “winner-take-all” approach such that 226 

the component with the highest overlap across participants was assigned to a given vertex. In 227 

addition to providing unthresholded maps, we also constrain these maps to maximum probability 228 

maps (MPMs) at 10% and 20% participant overlap to increase interpretability (10% overlap MPMs 229 

are shown in figure 3).   230 

 231 

Results 232 

Anatomical and behavioral data were randomly selected from 72 participants (50% 233 

female, aged 22-36) from the HCP study [64]. Cortical reconstructions were then generated from 234 

T1-weighted MRI scans using FreeSurfer [31,32,49]. Following previously established criteria and 235 

the definition of 2,877 sulci across 144 hemispheres (Materials and Methods), we manually 236 

defined the component(s) of the pimfs, when present. Four example hemispheres are presented 237 

in figure 1. Analyses on the patterning of the pimfs found that it was more common for young 238 

adults to have two components in a given hemisphere (left: 72.22% of participants; right: 77.78%) 239 

than either one (left: 25%; right: 20.83%) or none (left: 2.78%; right: 1.39%; χ2 > 54, p < 1.50e-12 240 
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in both hemispheres). There was no hemispheric asymmetry in incidence rates (p = 0.66; figure 241 

1), and when only one pimfs component was present, it was equally likely to be a dorsal or ventral 242 

component (χ2 < 2, p > .15 in both hemispheres; figure 1). These incidence rates were similar to 243 

those observed in children and adolescents [24], which was anticipated given that sulci are formed 244 

during gestation [3,12,55,65,66].  245 

 246 

Figure 1. The incidence of the pimfs is highly variable across individuals and hemispheres. 247 
Left: Inflated left hemispheres (sulci: dark gray; gyri: light gray; cortical surfaces are not to scale) 248 
depicting the four types of the para-intermediate frontal sulcus (pimfs): (i) both components 249 
present, (ii) neither present, (iii) dorsal component present, (iv) ventral component present. The 250 
prominent sulci bounding the pimfs are also shown: the horizontal (imfs-h) and ventral (imfs-v) 251 
intermediate frontal sulci and inferior frontal sulcus (ifs). Each sulcus is colored according to the 252 
bottom legend. Right: Stacked bar plot depicting the incidence of the pimfs components in both 253 
the left (lh) and right (rh) hemispheres across the sample of 72 young adults. Each type of the 254 
pimfs is colored according to the rightward legend. (***, p < .001) 255 
 256 

As the pimfs is variably present among young adults, we statistically tested whether this 257 

variability was related to reasoning performance, as previously found for children and adolescents 258 

[24]. Reasoning performance was quantified as scores on the Penn Progressive Matrices Test 259 

from the NIH Toolbox [34], a relational reasoning task similar to the WISC-IV Matrix Reasoning 260 

task used previously [23,24,40]. The presence of two pimfs components in the left hemisphere 261 

was associated with 21% better reasoning performance relative to either one or none (t(69) = 262 

2.54, p = 0.01, d = 0.67). We had found previously in children and adolescents that this effect was 263 
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driven by the presence or absence of the left hemisphere pimfs-v [24]. Here, we find that this is 264 

also true in young adults. The presence of left pimfs-v was associated with 34% higher reasoning 265 

scores (t(69) = 3.44, p = 0.001, d = 1.03; figure 2a); no other pimfs component in either 266 

hemisphere showed this effect (ts < 1.32, ps > 0.19, ds < 0.47). To account for the difference in 267 

sample sizes between adults with and without the left pimfs-v, we iteratively sampled a size-268 

matched subset of the left pimfs-v present group 1000 times. This procedure confirmed the 269 

behavioral difference (median, 95% CI d  = 0.92, 0.90-0.94; figure 2b). 270 

 271 

Figure 2. The presence of the para-intermediate frontal sulcus is related to relational 272 
thinking. (a) Raincloud plots [67] depicting Penn Progressive Matrices task score as a function 273 
of left pimfs-v presence in young adults (present, N = 57; absent, N = 14). The large dots and 274 
error bars represent the mean ± std reasoning score, and the violin plots show the kernel density 275 
estimate. The smaller dots indicate individual participants. (b) Histogram visualizing the results of 276 
the iterative resampling of the left pimfs-v present group in (A) 1000 times. The distribution of the 277 
effect size (Cohen’s d) is shown, along with the median (black line) and 95% CI (dotted lines). 278 
The red line corresponds to zero to emphasize that none of the comparisons ever showed a 279 
reverse relationship in reasoning scores (i.e., left pimfs-v absent having higher reasoning scores 280 
than left pimfs-v present). (c) Same format as (a) for the List Sorting task. (d) Same format as (a) 281 
for the Pattern Completion task. (**, p < .01; *, p < .05) 282 
 283 

Finally, to assess the generalizability and/or specificity of this brain-behavior relationship, 284 

we tested whether the presence of left pimfs-v was associated with performance on tests of 285 

working memory (WM; List Sorting Working Memory Test) and/or processing speed (Pattern 286 

Comparison Processing Speed Test), foundational cognitive skills that support reasoning [68–287 
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72]. As noted above, the WM test administered to HCP participants involves reordering items 288 

according to their relative size, thereby placing demands on relational thinking (Materials and 289 

Methods). Left pimfs-v presence was positively associated with 9% better performance on the 290 

WM test (t(69) = 2.42, p = 0.01, d = 0.72; figure 2c). While this effect was significant, it was not 291 

as large as that observed for the reasoning test (ΔAIC(working memory - reasoning) = 142.23). By contrast, 292 

left pimfs-v presence was not related to processing speed test performance (t(69) = -0.24, p = 293 

0.81, d = -0.07; figure 2d), a finding suggesting some degree of specificity in this brain–behavior 294 

relation and consistent with previous anatomical-cognitive findings in our pediatric cohort [23,24].  295 

 296 

Discussion 297 

Integrating these data with prior work, at least one pimfs component is identifiable in the 298 

majority of human hemispheres [277/288 (96%)], with comparable incidence between young 299 

adults [141/144 (97%)] and children and adolescents [136/144 (94%)] [24]. However, these 300 

incidence rates are in stark contrast to what is observed in chimpanzees [2/60 (3%; one 301 

chimpanzee)] [25], emphasizing that the pimfs is a largely human-specific cortical structure. 302 

Further, this structure exhibits prominent variability in humans that is robustly linked to variability 303 

in reasoning performance, both in young adulthood (ages 22-36), as reported here, and in 304 

childhood and adolescence (ages 6-18) [24]. Considering that smaller, shallower (tertiary) sulci in 305 

association cortices, such as the pimfs, develop later in gestation than larger, deeper sulci like 306 

the central and calcarine sulci [65,66,73], a testable evolutionary and developmental hypothesis 307 

is that the higher incidence of the pimfs in humans — and cortical sulci in general [25,29,57,74] 308 

— is a consequence of the markedly protracted and greater intrauterine brain growth generally 309 

seen in humans compared to chimpanzees [75].  310 

With regard to the relationship to reasoning performance, it is notable that the pimfs-v 311 

appears to co-localize with rostrolateral PFC (RLPFC), a functionally defined region consistently 312 
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implicated in a variety of reasoning tasks by both neuropsychological and fMRI studies [19,72,76–313 

81], including matrix reasoning tasks like the one used in the present study [42,82,83]. Tightly 314 

controlled fMRI studies have also pointed to the left RLPFC as playing a particularly strong role 315 

in relational thinking [72,84]. However, precise localization of RLPFC at the individual level has 316 

been impeded by normalization and group averaging of fMRI activation. As such, future work 317 

should assess whether the pimfs-v is a useful landmark that predicts the location of functionally 318 

defined RLPFC in individual participants, given that other sulci in association cortices have been 319 

identified as functional landmarks [29,85–89].  320 

The extensive variability in the presence/absence of the pimfs components across 321 

individuals, and the rarity of the pimfs in chimpanzees, likely also reflects differences in white 322 

matter architecture. For example, RLPFC is disproportionately expanded in humans relative to 323 

non-human primates, which has been hypothesized to contribute to species differences in 324 

reasoning capacity [77,90]. Further, the presence/absence and morphology of sulci are theorized 325 

to be anatomically linked to cortical white matter [12,14,30,91–93]. Given that the pimfs is rare in 326 

chimpanzees [25], the presence of left pimfs-v could reflect evolutionarily expanded white matter 327 

properties that enhance neural communication in this higher cognitive area [3,13–15]. Tentatively 328 

supporting this idea, the white matter properties and functional connectivity of long-range 329 

connections involving RLPFC have been linked to reasoning performance and developmental 330 

growth [94]. Future research should investigate this multiscale, mechanistic relationship 331 

describing the neural correlates of reasoning, integrating structural, functional, and behavioral 332 

data. 333 

In this young adult sample, we showed that the presence of left pimfs-v was associated 334 

not only with 34% (on average) better performance on a test of relational reasoning, but also 9% 335 

(on average) better performance on a test of WM that requires relational thinking. On the other 336 

hand, this sulcal feature was unrelated to processing speed. In our pediatric sample, the presence 337 

of left pimfs-v was not related either to processing speed or to WM. In that prior study, the test of 338 
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WM was a standard measure that involves repeating a series of digits in either the forward or 339 

reverse order (WISC-IV Digit Span task) [40]. Given that participants in the two samples 340 

completed different WM tasks, it is an open question whether presence/absence of the pimfs-v is 341 

only linked to WM when the task requires relational thinking — a plausible hypothesis, given that 342 

RLPFC is not thought to be centrally involved in WM per se (e.g., [47,48]). Future research should 343 

further explore the specificity of the cognitive effects of presence/absence of the left pimfs-v, as 344 

well as test whether and how the presence/absence of the right pimfs-v and left/right pimfs-d are 345 

cognitively relevant in other domains. 346 

To date, the patterning and cognitive relevance of the pimfs has only been examined in 347 

neurotypical populations [23,24,56]. Numerous studies of disorders such as schizophrenia, 348 

autism spectrum disorder, obsessive-compulsive disorder, and fronto-temporal dementia have 349 

found that variations in sulcal incidence are clinically relevant — although most of this work has 350 

focused on the ACC (e.g., [95–103]) and orbitofrontal cortex (for review see [104]). Thus, the 351 

present results raise the question of whether the incidence of the pimfs differs in any of the clinical 352 

populations that exhibit impaired reasoning. Schizophrenia is a prime candidate for future 353 

investigations, given that it is marked by impaired reasoning [105–110] and has repeatedly been 354 

associated with altered RLPFC structure and function [111–117]. To help guide future studies 355 

examining the cognitive, evolutionary, developmental, clinical, and functional relevance of the 356 

pimfs, we share probabilistic predictions of the pimfs from our data (figure 3; Data accessibility). 357 

 358 
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Figure 3. Maximum probability maps for the para-intermediate frontal sulcus. Maximum 359 
probability maps (MPMs) for the pimfs-d (a) and pimfs-v (b) overlayed on the inflated fsaverage 360 
cortical surface (sulci: dark gray; gyri: light gray; cortical surfaces are not to scale). To generate 361 
the MPMs, each label was transformed from each individual to the fsaverage surface. For each 362 
vertex, the proportion of participants for whom that vertex is labeled as the given sulcus (the 363 
warmer the color, the higher the overlap) was calculated. In the cases in which the vertices for 364 
each component overlapped, the sulcus with the highest overlap across participants was 365 
assigned to that vertex. For visual clarity, the MPMs were thresholded to 10% overlap across 366 
participants.   367 
 368 

In conclusion, we have extended prior work in children and adolescents [24] by showing 369 

that the presence of the left hemisphere pimfs-v is also cognitively relevant in young adulthood. 370 

The combination of findings across studies empirically shows that the presence/absence of the 371 

pimfs-v is a novel developmental, cognitive, and evolutionarily relevant feature that should be 372 

considered in future studies in neurotypical and clinical populations examining how the complex 373 

relationships among multiscale anatomical and functional features of the brain give rise to abstract 374 

thought. 375 

 376 

 377 

 378 

 379 
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