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Growth-Promoting Rhizobacterium with
Antifungal Activity
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ABSTRACT Bacillus paralicheniformis MDJK30 was isolated from the rhizosphere of a
peony. It could control the pathogen of peony root rot. Here, we report the com-
plete genome sequence of B. paralicheniformis MDJK30. Eleven secondary metabo-
lism gene clusters were predicted.

he Bacillus genus comprises typical species of plant growth-promoting rhizobacte-

ria (PGPRs) that are able to suppress some plant pathogens by producing antag-
onistic substances. For instance, B. subtilis RB14-CS can inhibit the plant pathogen
Rhizoctonia solani by exerting iturin A (1). The difficidin (2), bacilysin (3), and surfactin
(4) produced by B. amyloliquefaciens are considered to be beneficial compounds
against plant pathogens. B. paralicheniformis is a Gram-positive species of the Bacillus
genus. Rubén Palacio-Rodriguez et al. reported that B. paralicheniformis LBEndo1 can
promote the growth of Arabidopsis thaliana (5). B. paralicheniformis MDJK30 was
isolated from the rhizosphere of peony in Shandong, China. It has the ability to
suppress Fusarium solani, which can cause root rot in peonies.

The whole genome of B. paralicheniformis MDJK30 was sequenced using the Illu-
mina MiSeq and PacBio RS Il platforms. We obtained 5,106,074 high-quality reads
through the Illumina MiSeq platform and 996,186 reads through the PacBio RS I
platform. The coverage of the sequence reached 263X. All reads produced with the
lllumina MiSeq were de novo assembled using Newbler version 2.8 (20110517_1502) (6),
and those produced with the PacBio RS Il were assembled with FALCON-integrate
version 0.3.0. The annotation of the complete genome sequence was conducted using
the NCBI Prokaryotic Genome Annotation Pipeline (http://www.ncbi.nlm.nih.gov/
genome/annotation_prok). The clustered regularly interspaced short palindromic repeats
(CRISPRs) were predicted with the CRISPR recognition tool (CRT) (7). The PHAge search tool
(PHAST) was utilized to find the prophages (8). The analysis of carbohydrate-active enzymes
was carried out using the Carbohydrate-Active enZYmes database (9). Genomic islands
were predicted using IslandViewer (10). The secondary metabolisms were predicted with
antiSMASH (11) version 3.0.5 (http://antismash.secondarymetabolites.org).

The circular chromosome of B. paralicheniformis MDJK30 consists of 4,352,468 bp,
and the G+C content is 45.94%. A total of 4,363 genes were annotated, including 4,134
coding genes, 110 RNA genes, and 119 pseudogenes. The RNA genes were composed
of 24 rRNAs, 81 tRNAs, and 5 ncRNAs. Two CRISPRs and one prophage were
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discovered. The analysis of the genome showed that 166 genes were related to
code carbohydrate-active enzymes, 71 genes coding auxiliary activities, 39 genes
related to carbohydrate-binding modules, 9 genes coding carbohydrate esterases,
34 genes relevant to glycoside hydrolases, 5 genes coding glycosyl transferases, and
25 genes coding polysaccharide lyases. A total of 22 genomic islands were pre-
dicted, and 220 annotated genes were found in them. Eleven gene clusters related
to secondary metabolism were predicted. The gene cluster (BLMD_02100-BLMD_
02320) was 100% similar to that of lichenysin biosynthesis genes. The gene cluster
(BLMD_12845-BLMD_13070) was 100% similar to that of bacitracin biosynthesis
genes. These two gene clusters both belonged to nonribosomal peptide syntheta-
ses. The other gene clusters might be related to the production of new antimicro-
bial compounds. The complete genome of B. paralicheniformis MDJK30 will be
helpful for studying the mechanisms of plant growth promotion and biocontrol at
the molecular level.

been deposited at GenBank under the accession number CP020352.
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