
RESEARCH ARTICLE

Effects of population mobility on the COVID-

19 spread in Brazil

Eduarda T. C. Chagas1☯, Pedro H. BarrosID
1☯, Isadora Cardoso-Pereira1, Igor V. Ponte2,

Pablo XimenesID
2,3, Flávio Figueiredo1, Fabricio MuraiID

1, Ana Paula Couto da SilvaID
1,

Jussara M. Almeida1, Antonio A. F. Loureiro1, Heitor S. RamosID
1*

1 Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,

2 Department of Motor Vehicles, Government of the State of Ceará, Fortaleza, Ceará, Brazil, 3 School of
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Abstract

This article proposes a study of the SARS-CoV-2 virus spread and the efficacy of public poli-

cies in Brazil. Using both aggregated (from large Internet companies) and fine-grained (from

Departments of Motor Vehicles) mobility data sources, our work sheds light on the effect of

mobility on the pandemic situation in the Brazilian territory. Our main contribution is to show

how mobility data, particularly fine-grained ones, can offer valuable insights into virus propa-

gation. For this, we propose a modification in the SENUR model to add mobility information,

evaluating different data availability scenarios (different information granularities), and

finally, we carry out simulations to evaluate possible public policies. In particular, we conduct

a case study that shows, through simulations of hypothetical scenarios, that the contagion

curve in several Brazilian cities could have been milder if the government had imposed

mobility restrictions soon after reporting the first case. Our results also show that if the gov-

ernment had not taken any action and the only safety measure taken was the population’s

voluntary isolation (out of fear), the time until the contagion peak for the first wave would

have been postponed, but its value would more than double.

Introduction

In December 2019, a new virus from the coronavirus family, SARS-CoV-2, was reported in

China. The virus, which is responsible for the COVID-19 disease, quickly spread across

boundaries, affecting the whole world, and has become one of the most significant health chal-

lenges of the 21st century. A little more than a year later, in April 2021, 132 million cases and

2,8 million deaths have been officially reported worldwide [1]. While most of the world’s pop-

ulation are still in the vaccination process, global health experts expect more cases and deaths

in subsequent months. Brazil accounts for a large share of cases worldwide (it is about 20% on

August 6th, 2021) according to data from state governments [2].
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Since transmission occurs through direct contact between people, social isolation [3] is a

primary measure in combating virus dissemination. Therefore, a lower population mobility

may yield to a lesser spread of the disease in the community. Considering population mobility

as an essential factor for contagion spread, modeling the pandemic dynamics through mobility

data has been shown to be efficient and provide valuable insights to guide public service poli-

cies. For example, one of the earliest developments in this direction was performed by Krae-

mer et al. [4], who discussed the impact of travel restrictions in mainland China. Such

restrictions, alongside measures of social distancing and quarantine, have rapidly decreased

the force of infection and hence controlled the disease spread. Using human mobility data, the

authors observed this change immediately after an intervention by measuring the correlation

between the mobility indexes and the growth rate of the disease. In a similar approach, Chi-

nazzi et al. [5] also evaluated the impact of travel restrictions on the growth rate of the

COVID-19 disease in the Wuhan region, in China. Additionally, Du et al. [6] estimated the

probability of transportation of COVID-19 from Wuhan to other cities in China before the

first quarantine. These studies reached similar conclusions: restricting mobility between China

provinces has drastically reduced the virus spreading. In turn, Buckee et al. [7] discussed the

importance of aggregating distinct data from multiple sources to monitor social distancing

interventions, building reliable information in space and time and reflecting an approximation

of population-level mobility rather than individual patterns.

The studies of the spread of COVID-19 often rely on epidemiological compartmental mod-

els [8–10], such as the susceptible-exposed-infected-recovered (SEIR) model [11]. In these

models, a fixed population of individuals is divided into four different states (or compart-

ments) according to the following dynamics. All individuals who have not had contact with

the virus are in the susceptible state. The individuals in the exposed state are those who have

been infected, based on the force of infection, but have not yet become infectious themselves

due to the incubation period. After that period, those individuals become infected, moving to

the corresponding state. The recovery state covers all post-infection scenarios, i.e., the individ-

uals in this state may have recovered (and are unlikely to be reinfected) or died.

The COVID-19 spread was modeled by variations of the SEIR model as well. Li et al. [12]

used the Susceptible-Exposed-Infected-Confirmed-Removed (SEIQR) model with data about

patients that are laboratory-confirmed to show that an earlier lockdown in Wuhan would have

worsened the outbreak in the city but would have helped the rest of the world.

Davies et al. [13] modified the Susceptible-Exposed-Notified-Underreported-Removed

(SENUR) model to account for age-stratified transmission. The authors used the reported

cases and the age distribution of patients from different countries to concluded that regions

with an older population are likely to have more COVID-19 cases.

Specifically focused on Brazil, several studies investigated the impact of human mobility on

the spread of the disease using different types of data. For instance, some studies [14, 15] used

Brazilian census information about people and terrestrial vehicles as well as air transportation

data, basing the measurement of SARS-CoV-2 spreading patterns on data collected before the

pandemic. Other studies calculated such spreading patterns between cities through mobile

phone data [16–18]. Serafino et al. [19] implemented a protocol for optimized quarantines

based on the analysis of contact tracking networks, in order to dismantle the coronavirus

transmission chain with the minimum necessary interruptions. To monitor the evolution of

the transmission contact network before and after quarantines, a compilation of hundreds of

human mobility applications deployed in Latin America was used.

Inspired by this body of work, our objective is to investigate mobility’s impact on the

SARS-CoV-2 spread. To this, we modify the SENUR model to use mobility as part of its input,
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allowing us to study the effect of this new variable on the disease spread through simulated sce-

narios. To that end, we use two types of data:

1. Mobility data captured by vehicles before and during the pandemic outbreak;

2. Epidemiological data about the virus containing information such as the date of onset of

symptoms and the test performed.

Our main contribution in this work is to show how mobility data in different granularity

along with epidemiological data can offer valuable insights into virus propagation. Although

epidemiological compartmental models can satisfactorily model the pandemic behavior, they

cannot answer questions regarding the impact of mobility, such as quantifying how the gov-

ernment measures of mobility restriction affect the infection rate, which we investigate here.

Hence, we focus on answer the following questions:

How does people’s mobility affect the pandemic in Brazil? Here we seek to understand

the impact of mobility on the virus spread and, consequently, to measure this impact on the

numbers of infected individuals and deaths. To address this question, we analyze the effect

of mobility under the following different pandemic scenarios: 1) the individuals do not

change their mobility behavior, and the government does not restrict it in any way. In other

words, the mobility is stable during the pandemic; 2) the government enforces a lockdown

(and people adhere) right after the confirmation of the first case.

Which benefits do different mobility data granularities bring to the study of the pan-

demic effects? To answer this question, we evaluate mobility data in two different granular-

ities: city-level (or coarse) and neighborhood-level (or fine) granularity. For the former, we

are using the aggregated time-series data provided by Waze reports. For the latter, we use a

flow matrix obtained from Automatic License Plate Readers (ALPR) from the mobility data

of the State of Ceará Department of Motor Vehicles (DETRAN-CE). We emphasize that,

although fine granularity data can provide more details about urban mobility, potentially

allowing more precise models, they are harder to obtain because they come from public pol-

icy actions, such as traffic department road-level data. Hence, it is important to study other

granularities as well to assess the trade-offs between them.

In our results, we observed that models estimated with data from more/less restrictive pub-

lic policies present a lower/higher number of notified infected individuals when compared to

the model fit to real data. We noticed that the mobility factor of our epidemiological model

tends to capture the trend of the restriction measures applied by the governments. We also

observe that our model estimates a mobility quantifier, and it presents coherent results for the

cities analyzed regardless of the granularity of the mobility data used. Note that, with fine-

grained data, we can estimate local parameters that enable the design of public policies tailored

for each city region. Instead, for coarse-grained data, public polices will affect the whole city.

The remainder of this paper is organized as follows. In the next section, we present in detail

the epidemiological and mobility data used throughout this work. Next, we discuss the applied

methodology, which includes the proposed compartmental model variant. The following sec-

tion presents our analyses and main results. Finally, we conclude our findings and discuss

future directions.

Data sources

This work explores data from five major Brazilian cities that have undergone mobility restric-

tion policies in 2020, namely: Fortaleza, Belo Horizonte, Porto Alegre, Rio de Janeiro, and São
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Paulo. These cities were select because of the diversity in terms of demographics as well as

political and social context within Brazil. Specifically, São Paulo, Rio de Janeiro, and Belo Hori-

zonte are the most populous metropolitan regions in Brazil. Moreover, in Brazil, the Southern

region was the most impacted by the H1N1 virus pandemic, commonly called Swine Flu [20].

Hence we chose a large city in that region (Porto Alegre) to assess how it was affected by the

new Coronavirus pandemic. Finally, thanks to an agreement between institutions, we obtained

data regarding the mobility of cars in Fortaleza, a large city in the Northeast of Brazil, allowing

us to perform a finer granularity analysis, as described below.

Specifically, recall that we here propose to use o mobility data at two different granularities

to study the COVID-19 spread, namely city and neighborhood-level granularity. For the study

at the city level, for all five cities, we use data collected by Waze and available in its Mobility

Report [21], from 02/25/2020 to 08/09/2020 (totaling 168 days). The data released by the

mobile application corresponds to the percentage of variation (aggregated and anonymized) in

the total distance traveled compared to a baseline. The baseline is defined by the Waze and cor-

responds to the average value calculated for each corresponding day of the week concerning

the period from 02/11/2020 to 02/25/2020 (the pre-pandemic period in Brazil).

To capture the mobility between different neighborhoods of a given city, we use data col-

lected by the Government of the DETRAN-CE. This data contains anonymized readings from

265 Automatic License Plate Readers (ALPR) in 52 neighborhoods in the city of Fortaleza,

from 01/16/2020 to 05/04/2020 (totaling 110 days). The anonymization procedures took place

in DETRAN-CE before researchers had direct access to the data. In addition, DETRAN-CE

employed suppression-based anonymization techniques by removing all vehicle-specific data

and replacing it with individual randomized tags [22]. This way, the resulting anonymization

process aimed to balance the dataset’s utility and privacy protections while prioritizing utility.

Besides all technical safeguards, researchers that had any direct involvement with the dataset

have signed a data-sharing agreement that, among other things, grants legal standing and pro-

tection for several ethical considerations.

However, DETRAN-CE’s dataset presents limitations, primarily due to its incomplete spa-

tial coverage of the city, since, as said before, the locations of the ALPR units do not favor

widespread tracking. Nevertheless, we assume that such data constitute a representative sample

of vehicular mobility behavior. In fact, through the Granger causality test [23], we show that

they are suitable to determine the strength of viral infection in a city (Section Case study II:
Fine-grained analysis). Besides, vehicle mobility can represent various individuals traveling in

predefined routes (such as buses). Hence, it does not consider the trip’s intention (e.g., taxis

usually travel when they have passengers, without a predefined travel routine). Moreover, as

such data generally present sensitive information, those datasets are commonly private and

difficult to obtain.

Moreover, we correlate the traffic information captured by DETRAN-CE’s ALPR data with

mobility indices provided by Google’s COVID-19 Community Mobility Reports [24]. This

report presents trends in people’s movement over time in geographic space (such as neighbor-

hoods), in different categories of locations, such as retail and recreation, supermarkets and

pharmacies, parks, transit stations, workplaces, and homes. Hence, this analysis allows us to

understand the activities captured by the traffic data, i.e., which activities people in Fortaleza

prefer to use vehicles to access.

Furthermore, we obtained statistics about the COVID-19 scenario in each city from two

different platforms of the Brazilian government:

1. Coronavirus Panel [2], which is the official disclosure channel used by the government and

provides daily statistics of cases and deaths, and
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2. Opendata SUS [25], a smaller dataset that includes more details on clinical (e.g., the date

of the first symptom presented by the patient and the patient’s clinical evolution) and

demographic (e.g., the patient’s residence) information of the cases. This second

dataset allows the estimation of the delay distribution between symptom onset and case

notification.

Finally, we aggregate the city’s neighborhoods in Fortaleza into sub-regions since it reduces

the number of variables of our method, increasing the model’s accuracy. We base the construc-

tion of these sub-regions on geographic connectivity and the human development index

(HDI). In Section Case study II: Fine-grained analysis we analyze the relationship between the

HDI of neighborhoods in Fortaleza and the recovery from COVID-19. To this study, we use

data obtained by the study carried out by the Fortaleza Municipal Secretaria for Economic

Development (SDE) [26]. These results used data from the last Brazil Demographic Census

carried out in 2010 as a basis.

Methodology

Estimating the delays between case onset and report

We assume that a person can infect others from the symptom onset. However, this date gener-

ally is delayed from the officially notified date for several reasons, such as difficulties inserting

the record in the system and delays in medical exams (collection and results). In any case, we

estimate such time delay between the officially notified date (in the Coronavirus Panel) and

symptom onset dates to obtain more reliable results, using the Opendata SUS platform dataset.

This dataset contains a subset of Brazil’s COVID-19 official cases, with Coronavirus Panel

being the complete set. However, the Opendata SUS platform provides both symptom onset

and the official registration dates. Following the methodology used by Abbott et. al. [27], we

performed a sampling process to estimate the probability distribution of the delay in the offi-

cially notified cases based on the Opendata SUS platform. Next, we projected the actual trans-

mission date for each infected individual presented in the Coronavirus Panel data. This

process consisted of sampling possible values for the delay and adjusting these samples

through distributions, described in detail in the following.

The symptom onset data were adjusted using the Gamma and Exponential distributions

with the statistical modeling program Stan [28]. We selected the best fit obtained among the

chosen distributions through the approximate criterion of leave-one-out cross-validation

(LOOCV) [29]. Hence, the distribution model most appropriate was the one with the lowest

LOOCV value (Gamma or Exponential). Finally, with the parameters of such distribution, we

rewind the dataset by resampling the data using bootstrap.

Thus, based on the empirical delay distribution, we could sample the expected delay values

and perform a temporal rewind of the Coronavirus Panel data. Fig 1 shows, for the Fortaleza

city, the empirical delay distribution, calculated using Opendata SUS data and the estimated

distribution of the delay (estimated by the Stan software). The vertical lines represent the mean

of the delay value in each distribution. Additionally, it also shows the distribution of notified

cases before and after data rewind. The data interval for all plots is from 03/20/2020 to 09/30/

2020.

We can see that rewinding data make it smoother. Before this pre-processing step, the data

presents many peaks, as we can see in the third plot (when looking from left to right). It is

likely to represent accumulated data delayed for some unknown reason, such as data collected

during weekends. Differently, we observed after pre-processing the gradual spread of the virus,

representing a more realistic distribution of the number of cases.
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Reproduction number

A fundamental question for public policy response during a pandemic is quantifying the trans-

missibility of the infectious disease. We calculate this measurement through the Reproduction

Number R(t), which is the average number of cases that a single infected person transmits, i.e.,

how many people a single individual could infect.

We based the calculation of R(t) in this work on Abbott et al. [27], which uses the Markov

Chain Monte Carlo (MCMC) [30] to quantify the pandemic’s spread uncertainty from all

inputs into the final parameter estimation. Note that the number of onset cases in a day is

defined as a random variable after rewinding.

SENUR model equipped with mobility information

Let Ni be the population of the region i in a city. For a given region i and time t, we have the

following states:

• Si(t): the number of susceptible individuals. These are the healthy individuals whom the dis-

ease can firstly infect.

• Ei(t): the number of exposed individuals, e.g., those who have been infected but are not yet

infectious (the disease is in the incubation period).

Fig 1. Probability distribution of the delay in the notified cases. The distributions of delay and number of cases estimated from the data notified by Opendata SUS

platform and the Coronavirus Panel before and after adjustments of the lag between symptom onset and official notification in Fortaleza/CE (Brazil). From right to

left, we have: empirical delay distribution (with μ = 25.72 and σ = 31.85), estimated delay distribution(with μ = 10.85 and σ = 9.61), cases distribution before fits, cases

distribution after fits. In addition, μ is the mean of the distribution and σ is the standard deviation and the vertical lines on the first and second plots represent the

mean of the delay value in each analyzed distribution.

https://doi.org/10.1371/journal.pone.0260610.g001
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• INi
ðtÞ: the number of (notified) clinical individuals. These individuals have been infected and

reported their cases to the health authorities (for instance, going to a hospital).

• IUi
ðtÞ is the number of underreported infected individuals. In this compartment, the individ-

uals have been infected, but they have not reported their cases.

• REi(t): the number of removed individuals. Such individuals have been infected and either

recovered or died from the disease.

It is worth noting that both INi
ðtÞ and IUi

ðtÞ states contain individuals who can transmit the

disease, i.e., infect susceptible individuals. The disease dynamics, that change an individual

from a state to another, is described as follows:

1. Each healthy individual can become contaminated in their region of origin, through local

transmission, or move to other geographically connected locations and be vulnerable to

global transmission. The infection rate of a healthy individual (residing in the i region) at

time t is given by the force of infection λi(t).

2. A healthy individual, infected with a λi(t) rate, moves from the susceptible to the exposed

compartment.

3. Once exposed, the individual has a yi(t) probability of presenting symptoms, looking for a

hospital, having access to care, and being notified, thus going to the clinically infected state

(notified); otherwise, they may not be reported (e.g., asymptomatic cases), going to the sub-

clinically infected state (underreported). We consider that both clinical and subclinical

individuals have the same transmission rate.

4. After being infected, the individual is moved to the removed compartment. We consider it

as the last stage in the spread of an infectious disease. Although we have scientific evidence

that possible reinfections may occur, for simplicity, we assume in our modeling that when

in the removed compartment, the individual is immune (i.e., cannot be re-infected), being

removed from the system. Moreover, our proposal considers a constant population, ignor-

ing demographics. We also do not consider the arrival of individuals.

Fig 2 summarizes the aforementioned dynamics. Additionally, we can describe the dynam-

ics of the SENUR model used in this work through the set of the following equations:

dSiðtÞ
dt
¼ � liðtÞSiðtÞ; ð1Þ

dEiðtÞ
dt
¼ liðtÞSiðtÞ � yiðtÞd

� 1

E EiðtÞ � ½1 � yiðtÞ�d
� 1

E EiðtÞ; ð2Þ

dINi
ðtÞ

dt
¼ yiðtÞd

� 1

E Ei � INi
ðtÞd� 1

N ;
ð3Þ

dIUi
ðtÞ

dt
¼ ½1 � yiðtÞ�d

� 1

E EiðtÞ � IUi
ðtÞd� 1

U ; ð4Þ

dREiðtÞ
dt

¼ d� 1

N INi
ðtÞ þ IUi

ðtÞd� 1

U ; ð5Þ

where d� 1
E represents the transition rate from exposed individuals Ei(t) to infected individuals

INi
ðtÞ and IUi

ðtÞ; d� 1
N represents the transition rate from notified infected individuals INi

ðtÞ to
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removed individuals REi(t); and d� 1
U represents the transition rate from underreported infected

individuals IUi
ðtÞ to the removed individuals REi(t).

Although SENUR models can satisfactorily model the pandemic behavior, they cannot

answer questions regarding the impact of mobility. For instance, we cannot quantify the

decrease in mobility that may occur when the government decrees measures of mobility

restriction. Therefore, we propose in this work an extension of this model to investigate

human mobility’s influence on the spread of the COVID-19 pandemic.

We assume that the element Cij represents the city’s daily mobility. The impact of mobility

on the virus spread at time t is given by the matrix Wij(t) = qtCij, where qt 2 [0, 1] is a scalar,

time-dependent parameter estimated by the model to quantify the influence of mobility on

pandemic dynamics. Hence, we model the virus transmission by capturing people’s mobility

as they move from one neighborhood to another and exploring its relationship to the spread of

the disease. Thus, for this work, we know a prior that mobility before the periods of isolation

measures are more significant than the period analyzed in the article, thus justifying the choice

of 0� qt� 1. However, we can adopt a less restrictive range without losing the generalizability

of the technique. So, the model estimates a qt for this period, a value similar to that found in

the experiment where 0� qt� 1 (0.381).

Moreover, we consider that the mobility parameter qt changes according to government

policies regarding social distance. Thus, q0 = 1 when the mobility is as usual. In other words, q0

= 1 in the data available before the first notified case of COVID-19. We calculate the qt values

as a proportion of the normal mobility. The simulation’s details are in section Model Solving.

The probability of a healthy individual resident of cluster i becoming infected, that is, the

force of infection of cluster i considering local and global transmission factors, is

liðtÞ ¼ mi �
X

j

WijðtÞ �
INj
ðtÞ þ IUj

ðtÞ

Ni

 !" #

;

where μi is a regularization term that defines how nonpharmaceutical interventions (NPIs)

affect the virus transmissibility rate in the cluster i, i.e., μi models the actual virus transmissibil-

ity rate between the susceptible individuals from i (Ni) and the infected individuals from j
(INj
ðtÞ þ IUj

ðtÞ). For instance, if the population uses masks and applies other NPI measures,

the μi value must decrease.

Fig 2. SENUR model. Schematic for the SENUR model used in this work.

https://doi.org/10.1371/journal.pone.0260610.g002
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This model can also be applied to an index when using only the region. When using the

mobility index, we consider all the paths of individuals in the analyzed region, regardless of

their origin or destination (coarser spatial granularity). So, we can simplifies the force of infec-

tion equation to:

lðtÞ ¼ mi �WðtÞ �
INðtÞ þ IUðtÞ

N

� �

:

The granularity of the resulting model is directly associated with the data granularity. Thus,

if we only have mobility information about one region, we can only use our model to make

inferences about this single region. Otherwise, if the mobility data contain information that

break downs the region into smaller areas (e.g., neighborhoods in a city), we can make infer-

ences at a finer granularity.

An overview of the methodology applied in this article is shown in Fig 3.

The first step is the rewind data process, which consists of estimating the delay between

case onset and report. In step 2, we estimate the reproduction number R(t) and check the

Granger-causality with the mobility data.

If the mobility intensity, represented by the number of vehicles observed, Granger-causes R
(t), we proceed with the modeling process. In Step 3, we use our SENUR adapted model,

which includes the mobility information, to estimate all parameters. After those steps, our

model is ready to be used.

Fig 3. Methodology scheme. Overview of the methodology used for the evaluation of the mobility effects on transmission and control of COVID-19.

https://doi.org/10.1371/journal.pone.0260610.g003
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Model solving

To solve the described model, we used the Bayesian inference based on a sampling distribution

via MCMC. Let PrðX jΘÞ be the probability of a model with parameters Θ generate data X .

Hence, the Bayesian framework can characterize the posterior distribution as PrðΘjXÞ, that

represents the probability that X data was generated by a model with parameters Θ [31]. By

Bayes’ rule, we have PrðΘjXÞ / PrðX jΘÞ PrðΘÞ, where Pr(Θ) is the prior distribution of the

model with parameters Θ, containing the information about the parameters before observing

the data.

Therefore, for transmission parameters Θ ¼ fliðtÞ; yiðtÞ; d� 1
E ; d

� 1
U ; d

� 1
N g and initial con-

straints, a compartmental model defines a solution for each compartment. In this context, we

want to associate the solution generated by the model with the observed data, i.e., the infected

individuals reported by the health organizations each day. We consider that INi
ðtÞ, represent-

ing these notified cases, is a counting distribution (Negative Binomial). This distribution

allows us to use INi
ðtÞ as a random variable and account for over-dispersion through the

parameter φ, as XðtÞ � NegBinðSðtÞ; �Þ; where SðtÞ ¼
PN

i¼1
INi
ðtÞ.

As described before, we estimate the empirical distribution of the delay, i.e., the time for an

exposed individual to present the first symptoms. Thus, we use the empirical distribution to

estimate the number of individuals exposed (and the date of exposure).

We started our simulations by scattering the first exposed individuals randomly in the ana-

lyzed regions. We used as a prior distribution of our analyzed variables d� 1
E � Gð3; 4Þ,

d� 1
N � Gð2:1; 4Þ, d� 1

U � Gð3:2; 3:7Þ, yiðtÞ � Uð0; 1Þ, where Γ and U denote the Gamma and

Uniform distributions, respectively. We used these models in accordance to [13, 32, 33]. For

the parameter of mobility influence qt, we only consider that the value was in the intervals

[0, 1], and therefore, use qt � Uð0:1Þ as a prior distribution. We performed 4000 repetitions of

the simulation (through the MCMC) to estimate the model’s parameters distribution.

To summarize, a Bayesian model couples a mathematical model of what we know about the

parameters in the form of a prior and a sampling distribution. We implement it using PyStan

[34], which consists of a Python library to use the Stan language.

Results and discussion

Case study I: Coarse-grained analysis

To evaluate the model, we use the mobility data released by the Waze platform. It contains the

overall distance traveled by vehicles in a city relative to a baseline calculated in a period before

the pandemic. Therefore, this dataset only allows a coarse-grained analysis since we do not

have information about the mobility among the regions of a city.

Our model represents human mobility by the parameter qt, estimated for each time t via

MCMC. Table 1 shows how we assign qt to different periods in all cities studied. For instance,

for Fortaleza, q0 corresponds to the period before FO0 (the first notified case), q1 to the period

before FO1 (trade closure), and so forth. Initially, we noticed that all cities analyzed had

reduced mobility with the appearance of the first quoted case of COVID-19. This behavior is

expected because people tend to naturally reduced mobility due to the fear of contagion after

the appearance of the first notified case. Furthermore, we observe that São Paulo has the high-

est q1 mean, probably because it was the first case reported in Brazil.

We observed some general behaviors for the cities analyzed. For example, after adopting

trade closure measures, the qt average showed a reduction, thus showing evidence about the

effectiveness of this measure. It is worth noting that we do not have data about the control

case, i.e., how does the pandemic behave if the trade was not closed? However, we only have
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Table 1. Periods used to estimate the mobility parameter qt for different cities. The table presents the periods used

in our model to estimate the different values of the mobility parameter qt alongside the qt sample mean. We collected

these periods from news provided by the government of each city in 2020. The description describes the main events

related to the period.

Start Finish Label q Description

Fortaleza

– 03/15 – q0 = 1.000 Before first notified case of COVID-19 at Fortaleza

03/15 03/20 FO0 q1 = 0.417 First notified case of COVID-19 at Fortaleza

03/20 05/05 FO1 q2 = 0.009 Trade closure

05/05 05/30 FO2 q3 = 0.121 Lockdown

05/30 06/08 FO3 q4 = 0.232 Reopening of activities (work and trade)

06/08 07/27 FO4 q5 = 0.206 Reopening of trade

07/27 09/01 FO5 q6 = 0.355 Return of public transport

09/01 09/20 FO6 q7 = 0.612 Reopening of bars

Belo Horizonte

– 03/16 BH0 q0 = 1.000 Before first notified case of COVID-19 at Belo Horizonte

03/16 03/18 BH1 q1 = 0.352 First notified case of COVID-19 at Belo Horizonte

03/18 04/06 BH2 q2 = 0.253 Decree defining agglomeration closure and public events)

04/06 04/16 BH3 q3 = 0.227 Decree defining the closure of trade

04/16 05/22 BH4 q4 = 0.266 Mandatory use of masks in public spaces

05/22 06/26 BH5 q5 = 0.345 Preventive measures in public transport

06/26 07/24 BH6 q6 = 0.303 Suspend some preventive measures to return activities

07/24 08/04 BH7 q7 = 0.432 Reopening of football matches (without fans in stadiums)

08/04 09/13 BH8 q8 = 0.447 Reopening of trade

Porto Alegre

– 03/16 PA0 q0 = 1.000 Before first notified case of COVID-19 at Porto Alegre

03/11 03/17 PA1 q1 = 0.638 First notified case of COVID-19 at Porto Alegre

03/17 04/22 PA2 q2 = 0.403 Trade closure and cancellation of major events

04/22 05/03 PA3 q3 = 0.585 Reopening of civil construction trade activities

05/03 05/20 PA4 q4 = 0.423 Reopening of some strategic commercial sectors

05/20 06/15 PA5 q5 = 0.417 Reopening of trade

06/15 07/04 PA6 q6 = 0.252 Re-closing of large-scale activities

07/04 08/06 PA7 q7 = 0.121 Closure of amusement parks and beaches

08/06 08/20 PA8 q8 = 0.206 Reopening of outdoor fairs and beauty salons

08/20 09/25 PA9 q9 = 0.237 Reopening of shopping malls and shopping centers

Rio de Janeiro

– 03/05 RJ0 q0 = 1.000 Before first notified case of COVID-19 at Rio de Janeiro

03/05 03/20 RJ1 q1 = 0.598 First notified case of COVID-19 at Rio de Janeiro

03/20 03/24 RJ2 q2 = 0.447 Closure of intercity public transport

03/24 04/18 RJ3 q3 = 0.343 Closing of trade

04/18 05/06 RJ4 q4 = 0.242 Mandatory use of masks

05/06 05/24 RJ5 q5 = 0.201 Partial lockdown

05/24 06/27 RJ6 q6 = 0.144 Suspension of classes

06/27 08/12 RJ7 q7 = 0.248 Reopening of trade

08/12 09/09 RJ8 q8 = 0.247 Reopening of small and medium-sized events

09/09 09/13 RJ9 q9 = 0.316 Return of intercity public transport

São Paulo

– 02/26 SP0 q0 = 1.000 Before first notified case of COVID-19 at São Paulo

02/26 03/14 SP1 q1 = 0.913 First notified case of COVID-19 at São Paulo

03/14 03/20 SP2 q2 = 0.795 Suspension of medium and large events

03/20 03/24 SP3 q3 = 0.562 Suspension of public transport

(Continued)
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evidences, in this case it is correlation, about the effectiveness of the measures. We are not able

to make any causal inference to state that the trade closure indeed yields to a decrease of the

pandemic.

We also see some interesting individual behaviors. Porto Alegre had two periods of inter-

vention. At first, we noticed that in the reopening of civil construction activities, the city had a

q4 = 0.423. However, in the second moment, the intervention measure proved to be much

more effective, indicating q7 = 0.121, corresponding to the period of closing of parks and

beaches. Furthermore, we see that Porto Alegre has the lowest mobility index value at the end

of our analysis (q9 = 0.237). This number shows evidence that as Porto Alegre was heavily

affected by the H1N1 previous pandemic, the population may be more alert to the new pan-

demic (COVID-19), and thus, reacts earlier.

The cities of São Paulo and Rio de Janeiro reopened bars and restaurants and we observed

an increase of qt after the adoption of these measures.

Fig 4 shows the estimated values of q1 and q2 using MCMC and their resulting distribu-

tions. Fig 4(a) and 4(b) show, respectively, the sampling distribution of q1 and q2 parameters

for Fortaleza. We note that q1 average is higher than q2. This behavior is probably due to citi-

zens following social distancing restrictions ahead of government actions when they notice the

pandemic starting. Hence, with citizens staying in their homes, mobility decreased, and, conse-

quently, there is a lower spread of the virus through mobility.

Given the inferred distributions of the mobility parameters qt for each period, we use our

model to estimate the number of people infected over time. Fig 5 shows how the growth in the

number of infected people has changed as the government imposed actions in an attempt to

flatten the curve. Different colors represent the different periods used to estimate qt, presented

in Table 1. Shaded areas represent the confidence regions at 95% of significance. We observe

that the proposed model can accurately capture the behavior of the curve representing the

number of cases for all cities studied.

Furthermore, we use the inferred distribution of qt to make predictions for the 7-day win-

dow following the data used in the parameter estimation. The red dots represent this predic-

tion in Fig 5. We consider a relatively short window since long-term predictions can become

unreliable due to the dynamical behavior of the model’s parameters. Even with the increase in

uncertainty and, consequently, in the confidence regions, the data points are still within the

expected values (i.e., within the confidence interval). Although compartmental models have an

exponential characteristic, Fig 5 shows that we managed to keep the reported values within the

confidence interval, including São Paulo, which is the city with the highest number of conta-

gions registered in Brazil. Note that, in Fig 5, our model estimates the accumulated value of

infected for each city. However, However, as shown in Fig 6, our model also captures daily

cases.

Additionally, we used our model to simulate scenarios aiming to analyze the impact of

mobility in the infection spread. Thus, we analyzed the pandemic behavior for two hypotheti-

cal scenarios of increasingly restrictive interventions, namely:

Table 1. (Continued)

Start Finish Label q Description

03/24 05/27 SP4 q4 = 0.346 Trade closure

05/27 05/31 SP5 q5 = 0.252 Presentation of the reopening plan

05/31 06/06 SP6 q6 = 0.551 End of partial lockdown

06/06 09/20 SP7 q7 = 0.567 Reopening of bars

https://doi.org/10.1371/journal.pone.0260610.t001
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Scenario I. We assume that the government did not take any preventive measure, and the

population did not change their mobility behavior. The value of the mobility

coefficient is considered q0 = q1 = 1 during the whole period analyzed.

Scenario II. We assume that, upon the occurrence of the first notified case, the government

enforced the closing of the trade. We consider that each government of each ana-

lyzed city decided different times to this closing; hence, the value of q2 is different

for each city.

In these experiments, we analyze the ratio between the number of infected individuals

under a given scenario and the number of infected individuals estimated by our model. Ratios

smaller (resp. greater) than 1 represent a decrease (resp. increase) in the number of infected

individuals under the hypothetical scenario relative to what took place in reality.

Scenario I resulted in a steep increase in the number of infected individuals of 27.85 times

for Fortaleza (Fig 7(a)), 75.62 times for Rio de Janeiro (Fig 7(c)) and 66.31 times for São Paulo

(Fig 7(e)) at the end of the analyzed period, relative to the actual numbers at that same point in

time. Initially, at the beginning of the pandemic, the number of infected is tiny. Thus, even

using the same set of parameters for q0, the ratio is exactly 1.

In Scenario II we observe a different behavior when compared to Scenario I. Due to mobil-

ity restrictions were enforced when the first case occurred, we notice a decrease in the number

of infected people notified, up to 0.70 times in Rio de Janeiro, for instance. We observe in Fig 7

(b), 7(d) and 7(f) that, according to our model, the infection would be significantly reduced

with a severe mobility restriction since the first sights of the infection. This experiment high-

lights the importance of joint actions between the government and population to mitigate the

adverse effects associated with the COVID-19 pandemic.

Fig 4. Mobility parameters estimated by our model for Fortaleza. Estimated values of mobility parameters q1 and q2 via MCMC and their resulting distributions. (a)

q1 (From 03/15 to 03/20). (b) q2 (From 03/20 to 05/05).

https://doi.org/10.1371/journal.pone.0260610.g004

PLOS ONE Effects of population mobility on the COVID-19 spread in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0260610 December 7, 2021 13 / 27

https://doi.org/10.1371/journal.pone.0260610.g004
https://doi.org/10.1371/journal.pone.0260610


It is worth noting that, although the trade closure may be considered a highly restricted

measure, if it is well planned, it has the potential to quicken the end of the pandemic. Further

studies to show that such a restriction may lead to fasten the economic recovery are still neces-

sary. It is also worth noting that although the model output indicates that the pandemic would

Fig 5. Simulation results for coarse-grained data. Number of infected people estimated by our model for the cities of Belo

Horizonte, Porto Alegre, São Paulo, Rio de Janeiro, and Fortaleza when analyzed in the context of Waze mobility indexes. The

shaded areas represent the 95% confidence region provided by the model; the black line represents the average model prediction and

the points the official values released. (a) Belo Horizonte. (b) Porto Alegre. (c) São Paulo. (d) Rio de Janeiro. (e) Fortaleza.

https://doi.org/10.1371/journal.pone.0260610.g005

PLOS ONE Effects of population mobility on the COVID-19 spread in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0260610 December 7, 2021 14 / 27

https://doi.org/10.1371/journal.pone.0260610.g005
https://doi.org/10.1371/journal.pone.0260610


be at its ending by May 2020, even without adopting mobility restriction measures, this would

cost millions of deaths and a total collapse of the health system, as the number of infections

would rise dramatically. This result does not consider new variants, mutations, or new waves

of infection, which could prolong the pandemic.

Case study II: Fine-grained analysis

We used a dataset of DETRAN-CE’s ALPRs logs in Fortaleza to analyze the influence of

human mobility in the spread of the COVID-19 in finer granularity. Using this data, we can

account for the mobility among neighborhoods since we can reconstruct vehicle routes. Since

the dataset was anonymized, we only used the start and endpoints of the vehicle’s route to esti-

mate vehicle flows among different regions.

Our dataset comprises annotations informing when a given vehicle passed by the

DETRAN-CE’s ALPR sensing location. Thus, for the construction of trajectories, we use the

checkpoints of the DETRAN-CE’s ALPR as follows. We defined the upper limit (ts) when a

vehicle passes through a DETRAN-CE’s ALPR, but no other DETRAN-CE’s ALPR identifies it

for an extended period. It probably happened due the vehicle used an alternative route that

does not have any DETRAN-CE’s ALPR from our dataset. Similarly, the lower limit (ti) is

when a vehicle passes two or more DETRAN-CE’s ALPR in a short period. This behavior is

because the vehicle did not stop anywhere between the DETRAN-CE’s ALPRs. Hence, we con-

structed a trajectory when the measurement between two DETRAN-CE’s ALPRs is in the

interval [ti, ts], indicating that the vehicle stopped at a location between them. We manually

investigated the threshold values, and for this work, we use ti = 1 hour and ts = 10 hours.

The first step in carrying out the fine-grained analysis was to group the city’s neighbor-

hoods into sub-regions. It increased the model’s accuracy compared to using the

Fig 6. Simulation results for daily infected cases reported. Number of infected people estimated by our model for the cities of (a) Belo

Horizonte and (b) São Paulo. The shaded areas represent the 95% confidence region provided by the model and the points the official daily

values released.

https://doi.org/10.1371/journal.pone.0260610.g006
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neighborhoods alone since the number of variables to be estimated is reduced, making us bet-

ter capable of capturing the impact of contagious transitions and outbreaks between regions.

Evaluating the contagion curve of COVID-19 in Brazil, we observed that there is a relation

between the mortality rate in a public Intensive Care Unit (ICU) and private hospitals [35].

Fig 7. Results of hypothetical scenarios for coarse-grained data. The model response when simulating two

hypothetical scenarios: I) the population and neither the government prioritized measures to restrict mobility and II)

after the first case notified in the city, the government decreed the closure of trade. Here we analyze the ratio between

the number of infected individuals in the analyzed scenarios and the actual number of infected individuals to observe

the curve trend over time.

https://doi.org/10.1371/journal.pone.0260610.g007
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Analyzing the HDI of neighborhoods in Fortaleza, we note some characteristics about the

virus spread. As we can see in Fig 8, a higher rate of infected people occurred in regions with

the highest HDIs, confirming the worldwide trend. However, these regions with the highest

HDIs also have a lower index of home treatment, indicating that such patients had more access

to the emergency units and ICUs than residents of less favored regions. With more access to

specialized hospital treatment, we also see a higher recovery rate among these individuals.

Since our objective here is to aggregate similar regions, we assume a relationship between

the HDI and the recovery from the disease. The social clusters applied in this work were built

based on two local characteristics: geographic connectivity, and the HDI. We group 52 neigh-

borhoods present in DETRAN-CE’s dataset into 16 regions formed by adjacent neighborhoods

that have similar HDI and mobility indexes. Table 2 presents the aggregated regions and their

respective neighborhoods.

Note that, to calibrate the values of regions with final granularity, we use Opendata SUS.

Therefore, we consider the ratio INi
ðtÞ=INj

ðtÞ for calibration/sensitivity of the qi(t) element,

where INj
ðtÞ is the number of infected individuals notified from the region with the lowest

number of cases for a day t. In other words, our model estimates the parameters so that its pre-

diction keeps the ratio adopted in the Coronavirus Panel data. We adopt the relative value

since the Opendata SUS dataset has a small sample of data. Furthermore, we consider for cali-

bration only the days where INj
ðtÞ > 10.

Due to the characteristics of the analyzed disease, we expected that a change in human

mobility dynamics impacts the infection rate with a specific time lag. In other words, changes

in mobility do not immediately impact the infection rate. As seen in Fig 10, as the reproduc-

tion number decreases, the normalized value of the daily trajectory frequency presents an

increasing behavior. We can verify this relationship through cross-correlation tests, where we

find a maximum correlation when lag = −1, as can be seen in Fig 9.

This result means that when we backward the data corresponding to the vehicle flow in one

day, we can see a negative correlation of 44.9% between mobility and the COVID-19

Fig 8. Social analysis of the pandemic spread to the city of Fortaleza. Results of the social analysis of the spread of the virus under the context of HDI in the

neighborhoods of the city of Fortaleza. As we can see, we found that the higher the HDI, the higher the percentage of infected people in the region, as well as the higher

recovery, which we believe is directly associated with the greater number of patients with access to quality private hospital treatment. On the other hand, in regions

with the lowest HDI rates, we observed the highest percentage of treatments performed independently, which can be explained by the lack of access to public service.

https://doi.org/10.1371/journal.pone.0260610.g008
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transmission (calculated with the data adjusted by the time-variation delay). This behavior is

likely to happen because when the infection rate decreases, individuals tend to feel more confi-

dent about getting out of social isolation and consequently increasing their mobility. As can be

seen in Fig 10, as the virus transmission rate decreases, we observe an increase in the vehicle

flow, indicating greater mobility of the population.

By performing cross-correlation tests between the aggregate vehicle flow frequency from

DETRAN-CE’s data and the indices in the different categories of places present in Google

COVID-19 Community Mobility Reports, we can better understand what type of mobility

behavior these data capture. In Fig 10, we see correlated patterns between the data from

DETRAN-CE and some other mobility categories. The highest correlation indexes presented

were obtained with lag = 0 in recreational areas (with 78.9%), parks (with 74.9%) and grocery

stores (with 61.1%). Thus, we observed that the greater the vehicle flow captured by

DETRAN-CE’s ALPR, the greater the mobility in outdoor leisure areas and supermarkets,

indicating a greater preference of the population for getting around with automotive vehicles

to/from such environments.

Given the type of movement captured by our data, our next step was to investigate the

causal direction between two variables analyzed using the Granger causality test. We were able

to verify that the past of the vehicle flow, delayed 1 day, helps to predict the present value of R
(t) of COVID-19, indicating a causal sense among them. So, the flow of vehicles “Granger

causes” the reproduction number R(t) delayed by 1 day, i.e., even after the temporal re-align-

ment of the data, we have to correct DETRAN-CE’s vehicle flow data in one unit.

To evaluate the model, we investigate the usefulness of our methodology for bounding the

number of cases in the near future. Specifically, we identified three critical events by evaluating

our model on 16 regions in the city of Fortaleza from 03/15/2020 to 05/04/2020:

• (03/15/2020)—Occurrence of the first notified case of COVID-19.

• (03/20/2020)—Government enforces the trade closure.

• (05/05/2020)—Beginning of a lockdown.

Table 2. Descriptions of the regions and their respective neighborhoods used in the proposed model.

Regions Neighborhoods

RE1 Parque dois irmãos, Arvoredo pequeno Mondubin, Parque novo Mondubin, Castelão and Passaré

RE2 São João do Tauape, Sapiranga, Edson Queiroz and Manoel Dias Branco

RE3 Antônio Bezerra, Padre Andrade, Jardim Guanabara and Alvaro Weyne

RE4 Barra do Ceará, Cristo Redentor and Jardim Iracema

RE5 João XXIII and Bom Sucesso

RE6 Parangaba, Itaperi and Maraponga

RE7 Serrinha, Alto da balança and Cajazeiras

RE8 Bom futuro, Jardim Américo and Rodolfo Teofilo

RE9 Benfica, Damas, Centro and Parquelândia

RE10 José Bonifácio, joaquim Tavora, Fátima and Parreão

RE11 Praia de Iracema, Dionisio Torres, Aldeota and Meireles

RE12 Farias Brito, Monte Castelo, Jacarecanga and Alagadiço novo

RE13 Barroso

RE14 Engenheiro Luciano Cavalcante

RE15 Moura Brasil

RE16 Vicente Pizon

https://doi.org/10.1371/journal.pone.0260610.t002
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Considering these events and the availability of trajectory data for Fortaleza up to 05/04/

2020, we define three periods for investigation: before the pandemic, between the first notified

case and the trade closure, and between the trade closure and the beginning of a lockdown. To

avoid the potential effects of the COVID-19 news on mobility during the weeks preceding the

first notified case, we set the first period to be the interval between 01/16/2020 and 02/29/2020.

Thus, the flow matrix Cij is obtained through the frequency of daily trajectories between the

analyzed regions.

For each period, we estimate the corresponding mobility parameter q. More specifically, we

set:

• q = q0: Mobility indicator that represents the typical behavior of the population of Fortaleza,

hence q0 = 1.

Fig 9. Cross-correlation between mobility data and disease spread. Representation of the cross-correlation between R(t) is the cars’ flow obtained

by DETRAN-CE. We observe that, the correlation is maximum (in module) for lag = −1.

https://doi.org/10.1371/journal.pone.0260610.g009
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Fig 10. Aggregate flow of vehicles and the reproduction number between the dates 03/20/2020 and 05/04/2020.

Plots in the left show mobility indexes extracted from the Google report, and plots in the right depict the R(t) estimated

from DETRAN-CE’s data. We can see similarities between trends in DETRAN-CE’s data and the mobility indexes

extracted from the Google report. The highest cross-correlation results are in places labeled as retail and recreation,

grocery and pharmacy, and parks.

https://doi.org/10.1371/journal.pone.0260610.g010
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• q = q1: Mobility indicator that represents the period between the first case notified in the city

of Fortaleza and the closing of the trade.

• q = q2: The mobility indicator represents the period between the closing of the trade and the

lockdown.

To investigate the adherence of our model to the data, we again removed the last 7 days

present in our dataset and analyzed the model’s response, as depicted in Fig 11.

Although SENUR model without mobility can satisfactorily capture the pandemic behavior,

it cannot answer questions regarding the impact of mobility. For instance, we cannot quantify

how the government measures of mobility restriction impact on the infection rate. Therefore,

we propose in this work an extension of this model to investigate human mobility’s influence

on the spread of the COVID-19 pandemic. We can observe in Fig 11(a) that the confidence

interval is wider than the one presented in Fig 11(b). It is an evidence that our model captures

part of the variability of the model by estimating the mobility. Therefore, although both models

can be satisfactorily used, our model is more expressive in terms of mobility and it is more

accurate for the analyzed data.

As we are using a regional approach, we can stratify the information for each region indi-

vidually. In this way, we infer how the pandemic affects the city of Fortaleza with finer granu-

larity and, by doing so, we can analyze how each of these regions influences the pandemic

through its R(t). We see in Fig 12 that the regions have different behaviors and, thus, allows us

to optimize actions individually to contain the pandemic, such as proposing more severe

restrictions in high-risk regions or those more geographically connected. For instance, we

observe that around 04/06/2020, region RE1 presents an increase of R(t) steeper than region

RE11. Other regions present similar behavior.

We can see the peak in the graphs in Fig 12. After an investigation, we observed that Forta-

leza changed the perception of Covid-19 after the death of a 3-month-old baby (on 03/04)

Fig 11. Model results. Our model applied to data from the city of Fortaleza. The shaded areas represent the 95% confidence region provided by

the model; the black line represents the average model prediction and the points the official values released.

https://doi.org/10.1371/journal.pone.0260610.g011
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[36]. On 04/04, the state government released a statement [37] about this fact and reinforced

the pandemic’s seriousness. The great commotion is likely to be related to the steep drop in the

value of the observed R(t).
Therefore, governments can use this kind of knowledge to design public policies to contain

the pandemic. This kind of analysis is possible by using our model on fine-grained data.

Fig 12. R(t) estimate for all 16 regions of the city of Fortaleza. We use the number of infected cases estimated by our

model for each of the regions. (a) BARROSO. (b) CAVALCANTE. (c) MOURA. (d) PINZON. (e) RE1. (f) RE2. (g)

RE3. (h) RE4. (i) RE5. (J) RE6. (k) RE7. (l) RE8. (m) RE9. (n) RE10. (o) RE11. (p)RE12.

https://doi.org/10.1371/journal.pone.0260610.g012
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To analyze the mobility impact, we again investigate the pandemic behavior for two hypo-

thetical scenarios of increasingly restrictive interventions, as can see in section Case study I:

Coarse-grained analysis. Scenario I increased the number of infected individuals concerning

the actual number of 9.15 times at the end of the analyzed period—Fig 13(a). On the other

hand, in scenario II, we observed the reduction in the number of infected individuals to 0.52

times of the actual infected number—Fig 13(b). In this hypothetical scenario, the risks would

be more negligible, and the curve would flatten. We also observe that with a more restrictive

measure, since 03/11/2020, the number of infected cases would decrease; hence, we can say

that the pandemic would be under control.

Governments may use the analysis shown in Fig 12 to monitor the behavior of the pan-

demic and relax the restriction measures. Every time the R(t) of any region starts to increase,

the government must rapidly decree restrictive measures to prevent the pandemic from

increasing.

Sensitivity analysis

In this work, we estimate a mobility factor qt from our model to quantify the mobility dynam-

ics of the COVID-19 pandemic in some Brazilian cities. In order to assess the sensitivity of our

proposal, we compared our mobility quantifier with some real mobility data, as shown in Fig

14.

Initially, we compared qt with the flow of vehicles in the city of Fortaleza. Then, we com-

pared the estimated values of qt in section Case study II: Fine-grained analysis, with the peri-

ods analyzed at the average normalized number of DETRAN-CE daily trajectories. We

observed the trend between these two components, where in the first period q0 = 1, we have

the value of 0.8651 found in the normalized mean series of the vehicle flow, which is the high-

est value among the analyzed periods. As the mobility index value decreases, as we can see in

Fig 13. Results of hypothetical scenarios for fine-grained data. Model’s response when simulating hypothetical scenarios in Fortaleza when we

apply fine-grain spatial mobility data.

https://doi.org/10.1371/journal.pone.0260610.g013
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q1 = 0.351 and q2 = 0.0106, we find that the average normalized of the vehicle flow also

decreases to 0.4537 and 0.2966, respectively.

We also analyzed the case with coarse granularity. In this case, we compared the value of qt

with the normalized mean of the Waze mobility index. In this case, we observe the same trend,

i.e., excluding the period 06/08 to 07/27 (q5), as the value of qt increases/decreases, the value of

the normalized mobility index of the Waze increases/decreases respectively.

Furthermore, it is worth noting that for the period used in the two figures, the values of qt

are corresponding; that is, for the case of fine granularity, we find q1 = 0.371 and q2 = 0.0106

while for the case of coarse granularity we have q1 = 0.417 and q2 = 0.009, indicating that our

technique estimates similar values for the same period, even using different modeling and data

sources.

It is worth noting that the qt is a parameter estimated by our model. In our analysis, we esti-

mated qt every time a mobility restriction/release was announced, however, qt can be estimated

periodically in the case it is more adequate. For instance, qt can be estimated daily, weekly or

biweekly, similarly to the usual R(t) estimation.

Conclusion

This work proposes investigating the benefits of analyzing mobility under different granulari-

ties in disseminating COVID-19 in the Brazilian territory. We also observed the importance of

mobility and isolation measures in determining the infection curve through the simulation of

hypothetical data and correlation and causality tests. Without restrictions, social isolation

based on the fear of contagion would only delay the peak of the contamination curve. On the

other hand, when the mobility restrictions were introduced shortly after the confirmation of

Fig 14. Sensitivity analysis. Comparison between our mobility quantifier with some real mobility data used in our work.

https://doi.org/10.1371/journal.pone.0260610.g014
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the first case of contagion, in addition to delaying the occurrence of the peak, the resulting

curve was significantly flatter than in the other scenarios.

Because of this, we found that the finer-grained mobility information can significantly sup-

port the public policy decision-making process, making governments take decisions that pre-

vent the collapse of the health system and, consequently, preserve people’s health. Besides,

governments can have more information to make decisions to prevent economic harm. We

are aware that fine-grained data are difficult to access; however, we also presented an alterna-

tive study based on public data provided by large Internet companies.

As future work, we leave the investigation of different vaccination scenarios in the current

context of the Brazilian territory. In this scenario, it would be necessary to stratify the model

by different age groups, making it possible to study the priority groups for vaccination and

model the estimates of immunization effectiveness and time.

Acknowledgments

The authors sincerely thank Cristopher G. S. Freitas and Alejandro C. Frery for their helpful

comments on the present research.

Author Contributions

Conceptualization: Eduarda T. C. Chagas, Pedro H. Barros, Isadora Cardoso-Pereira, Pablo

Ximenes, Flávio Figueiredo, Fabricio Murai, Ana Paula Couto da Silva, Jussara M. Almeida,

Antonio A. F. Loureiro, Heitor S. Ramos.

Data curation: Igor V. Ponte, Pablo Ximenes, Antonio A. F. Loureiro, Heitor S. Ramos.

Formal analysis: Eduarda T. C. Chagas, Pedro H. Barros, Isadora Cardoso-Pereira, Flávio

Figueiredo, Fabricio Murai, Ana Paula Couto da Silva, Jussara M. Almeida, Heitor S.

Ramos.

Funding acquisition: Heitor S. Ramos.

Investigation: Eduarda T. C. Chagas, Pedro H. Barros, Isadora Cardoso-Pereira.

Methodology: Eduarda T. C. Chagas, Pedro H. Barros, Isadora Cardoso-Pereira, Flávio Figuei-

redo, Fabricio Murai, Ana Paula Couto da Silva, Jussara M. Almeida, Antonio A. F. Lour-

eiro, Heitor S. Ramos.

Project administration: Fabricio Murai, Ana Paula Couto da Silva, Jussara M. Almeida, Hei-

tor S. Ramos.

Resources: Heitor S. Ramos.

Software: Eduarda T. C. Chagas, Pedro H. Barros.

Supervision: Flávio Figueiredo, Fabricio Murai, Ana Paula Couto da Silva, Jussara M.

Almeida, Antonio A. F. Loureiro, Heitor S. Ramos.

Validation: Eduarda T. C. Chagas, Pedro H. Barros, Flávio Figueiredo, Fabricio Murai, Ana

Paula Couto da Silva, Jussara M. Almeida, Antonio A. F. Loureiro, Heitor S. Ramos.

Visualization: Flávio Figueiredo, Fabricio Murai, Ana Paula Couto da Silva, Jussara M.

Almeida, Heitor S. Ramos.

Writing – original draft: Eduarda T. C. Chagas, Pedro H. Barros, Isadora Cardoso-Pereira.

PLOS ONE Effects of population mobility on the COVID-19 spread in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0260610 December 7, 2021 25 / 27

https://doi.org/10.1371/journal.pone.0260610


Writing – review & editing: Eduarda T. C. Chagas, Pedro H. Barros, Isadora Cardoso-Pereira,

Igor V. Ponte, Pablo Ximenes, Flávio Figueiredo, Fabricio Murai, Ana Paula Couto da

Silva, Jussara M. Almeida, Antonio A. F. Loureiro, Heitor S. Ramos.

References
1. Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE; 2020. Available from: https://

gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

[cited 2021-03-19].

2. Painel de casos de doen¸ca pelo coronavırus 2019 (COVID-19) no Brasil; 2020. Available from: https://

covid.saude.gov.br/ [cited 2021-03-19].

3. Kissler SM, Tedijanto C, Lipsitch M, Grad Y. Social distancing strategies for curbing the COVID-19 epi-

demic. medRxiv. 2020.

4. Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility

and control measures on the COVID-19 epidemic in China. Science. 2020; 368(6490):493–497. https://

doi.org/10.1126/science.abb4218 PMID: 32213647

5. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions

on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020; 368(6489):395–400.

https://doi.org/10.1126/science.aba9757 PMID: 32144116

6. Du Z, Wang L, Cauchemez S, Xu X, Wang X, Cowling BJ, et al. Risk for transportation of coronavirus

disease from Wuhan to other cities in China. Emerging infectious diseases. 2020; 26(5):1049 https://

doi.org/10.3201/eid2605.200146 PMID: 32053479

7. Buckee CO, Balsari S, Chan J, Crosas M, Dominici F, Gasser U, et al. Aggregated mobility data could

help fight COVID-19. Science. 2020; 368(6487):145–146. https://doi.org/10.1126/science.abb8021

PMID: 32205458

8. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of

the royal society of london Series A, Containing papers of a mathematical and physical character. 1927;

115(772):700–721.

9. Hethcote HW. The mathematics of infectious diseases. SIAM review. 2000; 42(4):599–653. https://doi.

org/10.1137/S0036144500371907

10. Goel R, Singh A, Ghanbarnejad F. Modeling competitive marketing strategies in social networks. Phy-

sica A: Statistical Mechanics and its Applications. 2019; 518:50–70. https://doi.org/10.1016/j.physa.

2018.11.035

11. Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L. A mathematical model for simulating the phase-

based transmissibility of a novel coronavirus. Infectious diseases of poverty. 2020; 9(1):1–8 https://doi.

org/10.1186/s40249-020-00640-3 PMID: 32111262

12. Li MT, Sun GQ, Zhang J, Zhao Y, Pei X, Li L, et al. Analysis of COVID-19 transmission in Shanxi Prov-

ince with discrete time imported cases. Mathematical Biosciences and Engineering. 2020; 17(4):3710.

https://doi.org/10.3934/mbe.2020208 PMID: 32987551

13. Davies NG, Klepac P, Liu Y, Prem K, Jit M, Pearson CAB, et al. Age-dependent effects in the transmis-

sion and control of COVID-19 epidemics. Nature Medicine. 2020; 26(8):1205–1211. https://doi.org/10.

1038/s41591-020-0962-9 PMID: 32546824

14. Coelho F, Lana R, Cruz O, Codeco C, Villela D, Bastos L, et al. Assessing the potential impacts of

COVID-19 in Brazil: Mobility, morbidity and impact to the health syste m. medRxiv. 2020.

15. Costa GS, Cota W, Ferreira SC. Outbreak diversity in epidemic waves propagating through distinct geo-

graphical scales. Physical Review Research. 2020; 2(4):043306. https://doi.org/10.1103/

PhysRevResearch.2.043306

16. Candido DS, Claro IM, De Jesus JG, Souza WM, Moreira FR, Dellicour S, et al. Evolution and epidemic

spread of SARS-CoV-2 in Brazil. Science. 2020; 369(6508):1255–1260. https://doi.org/10.1126/

science.abd2161 PMID: 32703910

17. Peixoto PS, Marcondes D, Peixoto C, Oliva SM. Modeling future spread of infections via mobile geolo-

cation data and population dynamics. An application to COVID-19 in Brazil. PloS one. 2020; 15(7):

e0235732. https://doi.org/10.1371/journal.pone.0235732 PMID: 32673323

18. Castro MC, Kim S, Barberia L, Ribeiro AF, Gurzenda S, Ribeiro KB, et al. Spatiotemporal pattern of

COVID-19 spread in Brazil. Science. 2021; 372(6544):821–826. https://doi.org/10.1126/science.

abh1558 PMID: 33853971

19. Serafino M, Monteiro HS, Luo S, Reis SD, Igual C, Neto ASL, et al. Superspreading k-cores at the cen-

ter of COVID-19 pandemic persistence. arXiv preprint arXiv:210308685. 2021.

PLOS ONE Effects of population mobility on the COVID-19 spread in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0260610 December 7, 2021 26 / 27

https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://covid.saude.gov.br/
https://covid.saude.gov.br/
https://doi.org/10.1126/science.abb4218
https://doi.org/10.1126/science.abb4218
http://www.ncbi.nlm.nih.gov/pubmed/32213647
https://doi.org/10.1126/science.aba9757
http://www.ncbi.nlm.nih.gov/pubmed/32144116
https://doi.org/10.3201/eid2605.200146
https://doi.org/10.3201/eid2605.200146
http://www.ncbi.nlm.nih.gov/pubmed/32053479
https://doi.org/10.1126/science.abb8021
http://www.ncbi.nlm.nih.gov/pubmed/32205458
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1016/j.physa.2018.11.035
https://doi.org/10.1016/j.physa.2018.11.035
https://doi.org/10.1186/s40249-020-00640-3
https://doi.org/10.1186/s40249-020-00640-3
http://www.ncbi.nlm.nih.gov/pubmed/32111262
https://doi.org/10.3934/mbe.2020208
http://www.ncbi.nlm.nih.gov/pubmed/32987551
https://doi.org/10.1038/s41591-020-0962-9
https://doi.org/10.1038/s41591-020-0962-9
http://www.ncbi.nlm.nih.gov/pubmed/32546824
https://doi.org/10.1103/PhysRevResearch.2.043306
https://doi.org/10.1103/PhysRevResearch.2.043306
https://doi.org/10.1126/science.abd2161
https://doi.org/10.1126/science.abd2161
http://www.ncbi.nlm.nih.gov/pubmed/32703910
https://doi.org/10.1371/journal.pone.0235732
http://www.ncbi.nlm.nih.gov/pubmed/32673323
https://doi.org/10.1126/science.abh1558
https://doi.org/10.1126/science.abh1558
http://www.ncbi.nlm.nih.gov/pubmed/33853971
https://doi.org/10.1371/journal.pone.0260610


20. Como o Brasil foi afetado pela pandemia de H1N1, a 1ª do século 21?; 2020. Available from: https://
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