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Coupling of Higgs and Leggett modes in
non-equilibrium superconductors
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In equilibrium systems amplitude and phase collective modes are decoupled, as they are

mutually orthogonal excitations. The direct detection of these Higgs and Leggett collective

modes by linear-response measurements is not possible, because they do not couple directly

to the electromagnetic field. In this work, using numerical exact simulations we show for the

case of two-gap superconductors, that optical pump–probe experiments excite both Higgs

and Leggett modes out of equilibrium. We find that this non-adiabatic excitation process

introduces a strong interaction between the collective modes, which is absent in equilibrium.

Moreover, we propose a type of pump–probe experiment, which allows to probe and

coherently control the Higgs and Leggett modes, and thus the order parameter directly. These

findings go beyond two-band superconductors and apply to general collective modes in

quantum materials.
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C
ollective excitation modes are a characteristic feature of
symmetry-broken phases of matter. These collective
excitations are due to amplitude and phase fluctuations

of the order parameters, which are decoupled in equilibrium
systems, as they represent mutually orthogonal excitations. The
properties of collective modes are of fundamental interest, as they
are a distinguishing feature of any symmetry-broken phase, such
as superconductors, charge-density waves or antiferromagnets.
For example, superconductors exhibit an amplitude Higgs mode
and a phase mode, which are the radial and angular excitations in
the Mexican-hat potential of the free energy. In two-band
superconductors there exists in addition a Leggett phase mode1,
which corresponds to collective fluctuations of the interband
phase difference.

As we show in this work, out-of-equilibrium excitations of
symmetry-broken phases lead to a direct coupling between phase
and amplitude modes, an effect which is absent in equilibrium
systems. Furthermore, we demonstrate that ultrafast pump–probe
measurements allow to directly probe and coherently control
collective excitation modes. Pump–probe measurements have
recently become a key tool to probe the temporal dynamics and
relaxation of quantum materials2–13. In particular, this technique
has been used to measure the oscillations of the amplitude Higgs
mode of the one-gap superconductor NbN. It has been shown,
both theoretically14–28 and experimentally2–4, that a short intense
laser pulse of length t much shorter than the dynamical time scale
of the superconductor tDCh/(2|D|) induces oscillations in the
order parameter amplitude at the frequency oH¼ 2DN/:, with
DN the asymptotic gap value.

Although non-equilibrium collective modes in conventional
single-gap superconductors are well understood, the investigation
of collective excitations in unconventional non-equilibrium
superconductors with multiple gaps, such as MgB2 or iron
pnictides, is still in its infancy29–31. These multicomponent
superconductors have a particularly rich spectrum of collective
excitations1,32,33. In this study, we simulate the pump–probe
process in a two-gap superconductor using a semi-numerical
approach based on the density-matrix formalism. This method is
exact for mean-field Hamiltonians15,21, captures the coupling
between the superconductor and the electromagnetic field of the
pump laser at a microscopic level and allows for the calculation of
the pump–probe conductivity, as measured in recent
experiments2,3. Two-gap superconductors exhibit besides the
amplitude Higgs34 and the phase modes35,36, also a Leggett
mode1, which results from fluctuations of the relative phase
of the two coupled gaps, that is, equal but opposite phase shifts
of the two-order parameters, see Fig. 1b. In equilibrium
superconductors, the Higgs and Leggett modes are decoupled,
as they correspond to mutually orthogonal fluctuations. In
contrast to the phase mode, both Higgs and Leggett modes are
charge neutral and therefore do not couple to the electromagnetic
field37. As a consequence, these excitations cannot be detected
directly with standard linear-response-type measurements.
Observation of these modes has only been possible in special
circumstance, for example, when they couple to another order
parameter, such as in charge density wave systems38–41.

Here we show that in a pump–probe experiment both Leggett
and Higgs modes can be excited out of equilibrium, and directly
observed as oscillations in the absorption spectra at their
respective frequencies. We find that the non-adiabatic excitation
process of the pump pulse induces an intricate coupling between
the two charge-neutral modes, which pushes the frequency of the
Leggett mode below the continuum of two-particle excitations.
Moreover, the frequencies of the Leggett and Higgs modes and
the coupling between them can be controlled by the fluence of the
pump pulse. Hence, by adjusting the laser intensity the two

modes can be brought into resonance, which greatly enhances
their oscillatory signal in the pump–probe absorption spectra.

Results
Pump-excitation process. In pump–probe measurements, the
pump laser pulse excites a high density of quasiparticles above the
gap of the order parameter, thereby modifying the Mexican-hat
potential of the free energy F (Fig. 1). As a result, the amplitude
of the order parameter decreases, reducing the minimum of the
free energy. If the pump-pulse-induced changes in F occur on a
faster time scale than the intrinsic response time of the sym-
metry-broken state, the collective modes start to oscillate at their
characteristic frequencies about the new free-energy minimum
(see Fig. 1a). In this work we study this non-adiabatic excitation
mechanism for two-band superconductors perturbed by a short
and intense pump pulse.
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Figure 1 | Illustration of Leggett and Higgs modes. (a) Illustration of the

excitation process for a one band superconductor. The pump laser pulse

modifies the free energy F on different time scales depending on the pulse

duration t. For tch/(2|D|) the superconductor can follow the change in F
adiabatically, resulting in a monotonic lowering of the order parameter |D|

(orange trace in inset (II)). For short pulses with tth/(2|D|), on the other

hand, the superconductor is excited in a non-adiabatic manner, which

results in oscillations of |D| about the new minimum of F (red trace in inset

(I)). The blue and cyan lines in the two insets represent the Gaussian

profiles of the pump pulses. (b) Effective free-energy landscape F for a

two-gap superconductor, with green and red representing the Mexican-hat

potentials of the smaller and larger gaps, respectively. The amplitude Higgs

modes and the phase modes are indicated by red and blue/black arrows,

respectively. The Leggett mode corresponds to out-of-phase fluctuations of

the phase difference between the two gaps.
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The Hamiltonian describing the two-band superconductor
coupled to the pump laser field is given by H¼HBCSþHlaser,
with the two-band Bardeen-Cooper-Schrieffer (BCS) mean-field
Hamiltonian

HBCS ¼ H0þ
X
k2W

X2

l¼1

ðDlc
w

kl"c
w
� kl# þD�l c� kl#ckl"Þ; ð1Þ

where H0 ¼
P

kls eklc
w

klsckls denotes the normal state Hamilto-
nian and c w

kls creates electrons with momentum k, band index l
and spin s. The first sum in equation (1) is taken over the setW
of momentum vectors with |ekl|r:oc¼ 50 meV, oc being the
cutoff frequency. The gaps D1 and D2 in the two bands are

determined at each temporal integration step from the BCS gap
equations with the attractive intraband pairing interactions V1

and V2, and the interband coupling V12¼ uV1. Motivated by the
numbers for MgB2 (ref. 42), we fix V1 and V2 such that the gaps
in the initial state take on the values D1(ti)¼ 7 meV and
D2(ti)¼ 3 meV, and study the dynamics of the two-gap super-
conductor as a function of the relative interband coupling u. Hlaser

represents the interaction of the pump laser with the super-
conductor and contains terms linear and quadratic in the vector
potential of the laser field, which is of Gaussian shape with central
frequency :o0¼ 8 meV, pulse width t¼ 0.4 ps and light-field
amplitude |A0|. We determine the dynamics of Hamiltonian (1) by
means of the density matrix approach and solve the resulting
equations of motion using Runge–Kutta integration (see Methods).

Pump response. Pumping the two-band superconductor with a
short laser pulse of length t5tD excites a non-thermal distribu-
tion of Bogoliubov quasiparticles above the gaps Di, which in turn
leads to a rapid, non-adiabatic change in the free-energy land-
scape F (Fig. 1). As a result, the collective modes of the super-
conductor start to oscillate about the new minima of F . This is
clearly visible in Fig. 2, which shows the temporal evolution of the
gap amplitudes |Di| and of the phase difference F1–F2 between
the two gaps. From the Fourier spectra in Figs 2d–f we can see
that three different modes (and their higher harmonics) are
excited at the frequencies oH1, oH2 and oL. The two modes at
oH1 and oH2 only exist in the dynamics of D1(t) and D2(t),
respectively, and their peaks are located at the energy of the
superconducting gaps oHi ¼ 2jD1i j=‘ , where D1i denotes the
asymptotic gap value14–20. This holds for all parameter regimes,
even as the laser fluence is increased far beyond the linear
absorption region (see Fig. 5). We therefore assign the peaks at
oH1 and oH2 to the Higgs amplitude modes of the two gaps. The
higher Higgs mode oH1 is strongly damped, because it lies within
the continuum of Bogoliubov quasiparticle excitations, which is
lower bounded by 2D12 . For the lower mode oH2, on the other
hand, the decay channel to quasiparticles is small, as oH2 is at the
continuum threshold. This is similar to the non-equilibrium
Higgs mode of the single-gap superconductor NbN, whose
oscillations have recently been observed over a time period of
about 10 ps by pump–probe measurements2,3.
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Figure 2 | Leggett phase mode and amplitude Higgs mode oscillations. Numerical simulation of the gap dynamics of a two-gap superconductor after a

non-adiabatic excitation by a short intense laser pulse of width t¼0.4 ps, pump energy �ho0¼8 meV and light-field amplitude |A0|¼ 10� 10� 8 Js (Cm)� 1.

(a) Phase difference F1–F2 between the two gaps as a function of time t for various interband coupling strengths u. (d) Fourier spectrum of the oscillations

in a. The frequency of the non-equilibrium Leggett mode oscillation is indicated by oL. (b,c) Gap amplitudes |D1| and |D2| as a function of time t for different

interband couplings u. (e,f) Fourier spectra of the amplitude mode oscillations in b,c, which display the following frequencies: oH1 and oH2 are the

frequencies of the non-equilibrium Higgs modes of gap D1 and D2, respectively; oL is the frequency of the non-equilibrium Leggett mode; and higher

harmonics of the non-equilibrium Leggett mode are denoted by 2oL and 4oL.
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Figure 3 | Leggett phase mode oscillations versus relative interband

coupling. Fourier spectrum of the phase mode F1–F2 as a function of

relative interband coupling v for a two-band superconductor perturbed by

the same laser pulse as in Fig. 2. The amplitude of the phase fluctuations is

indicated by the colour scale with dark red and light yellow representing the

highest and lowest amplitudes, respectively. The blue open circles mark the

frequency of the non-equilibrium Leggett mode oL. The blue solid line

represents the frequency of the equilibrium Leggett mode described by

equation (2). The dashed grey line indicates the frequency of the Higgs

mode oH2, which coincides with the boundary to the continuum of

Bogoliubov quasiparticle excitations, given by twice the asymptotic gap

value of the second band 2D12 . The inset shows a zoom-in of the blue frame

in the main panel.
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Interestingly, two-band superconductors exhibit a third
collective mode besides the two Higgs modes at a frequency oL

below the quasiparticle continuum. This mode is most clearly
visible in the dynamics of the phase difference F1–F2 (Fig. 2a)
and displays a striking dependence on interband coupling
strength u. With decreasing u its frequency rapidly decreases,
whereas its intensity grows. In the limit of vanishing u, however,
the third mode oL is completely absent. We thus identify oL as

the Leggett phase mode, that is, as equal but opposite oscillatory
phase shifts of the two coupled gaps. Remarkably, the Leggett
phase mode is also observable in the time dependence of the
gap amplitudes D1(t) and D2(t) (Figs 2b,c), which indicates that
Higgs and Leggett modes are coupled in non-equilibrium
superconductors.

To obtain a more detailed picture, we plot in Figs 3 and 4 the
energies of the amplitude and phase mode oscillations against the
relative interband coupling u. This reveals that for small u the
non-equilibrium Leggett mode oL shows a square root increase,
which is in good agreement with the equilibrium Leggett
frequency1,43

o0
L ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11 D12

u
V2� u2V1

ð 1
r1
þ 1

r2
Þ

s
; ð2Þ

where r1 and r2 denote the density of states on the two bands.
Indeed, as displayed by the inset of Fig. 3, equation (2) represents
an excellent parameter-free fit to the numerical data at low u. For
larger u, on the other hand, the non-equilibrium Leggett mode
deviates from the square root behaviour of equation (2). That is,
as oL approaches the Bogoliubov quasiparticle continuum, it is
repelled by the lower Higgs mode oH2, evidencing a strong
coupling between them. As a result, the non-equilibrium Leggett
mode is pushed below the continuum and remains nearly
undamped for a wide range of u, which is considerably broader
than in equilibrium. Moreover, owing to the dynamical coupling
among the collective modes, oL and its higher harmonics are
observable not only in the phase difference F1–F2 but also in the
dynamics of the gap amplitudes Di(t) (blue and green circles in
Fig. 4).

A key advantage of measuring collective modes by pump–
probe experiments is that the frequencies of the Higgs modes can
be adjusted by the pump fluence. This is demonstrated in Fig. 5,
which plots the dynamics of Di(t) and F1–F2 as a function of
integrated pump pulse intensity |A0|2t. With increasing pump
fluence, more Cooper pairs are broken up and superconductivity
is more and more suppressed, as reflected in the reduction of the
gap amplitudes. At the same time, the frequency of the Higgs
oscillations decreases, as it is controlled by the superconducting
gaps after pumping. Hence, it is possible to tune the lower Higgs
mode oH2 to resonance with oL, which strongly enhances the
magnitude of the collective-mode oscillations (Fig. 5a,c,e). A

a

0

2

4

6

8

10

12

14

16

- h�
 (

m
eV

)
- h�

 (
m

eV
)

+0.0

+0.2

+0.4

+0.6

+0.8

+1.0

b

0 0.05 0.1 0.15 0.2 0.25 0.3
�

0

2

4

6

8

10

12

14

+0.0

+0.2

+0.4

+0.6

+0.8
�H1

�H1

�H2

�H2

�L

�L

2�L

2�L

4�L

4�L

Figure 4 | Amplitude mode oscillations versus relative interband

coupling. Fourier spectrum of the amplitude mode oscillations as a function

of relative interband coupling u for (a) the superconducting gap D1 in the

first band and (b) the superconducting gap D2 in the second band. The

parameters of the laser pump pulse are the same as in Fig. 2. The amplitude

of the oscillations is indicated by the colour scale with dark red and light

yellow representing the highest and lowest amplitudes, respectively. The

open circles represent the frequencies of the non-equilibrium Leggett mode

oL and its higher harmonics denoted by 2oL and 4oL. The frequencies of

the non-equilibrium Higgs mode of the first and second band, oH1 and oH2,
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similar enhancement is obtained when oH2 is brought into
resonance with twice the frequency of the Leggett mode
(Fig. 5b,d,f).

Pump–probe signal. Finally, let us discuss how the Higgs and
Leggett modes can be observed in pump–probe spectroscopy. In
view of the recent THz pump–THz probe experiments of refs 2–4,
we focus on the dynamics of the optical pump–probe con-
ductivity s(dt, o)¼ j(dt, o)/[ioA(dt,o)], where dt is the delay
time between pump and probe pulses, j(dt, o) denotes the current
density and A(dt, o) represents the vector potential of the probe
pulse. As the probe pulse has a weak intensity, we neglect terms of
second order and higher in the probe field A(dt, o). Similar to
recent experiments2–7, we take the probe pulse to be very short
with width tpr¼ 0.15 ps and centre frequency :opr¼ 5.5 meV
(see Methods). With this choice, the probe pulse has a broad
spectral bandwidth such that the dynamics of the superconductor
is probed over a very wide frequency range.

In Fig. 6a we plot the real part of the pump–probe response
Re[s(dt, o)] as a function of frequency for fixed dt. The non-
equilibrium Leggett mode oL and the Higgs-mode oH2 reveal
themselves in the pump–probe signal as sharp peaks. Figure 6b
shows Re[s(dt, o)] versus delay time dt and frequency o. Clear
oscillations are seen as a function of delay time dt. These are most
prominent at the frequencies of the lower Higgs and the Leggett
modes, oH2 and oL, where s(dt, o) displays sharp edges as a
function of o (Fig. 6a). Fourier transforming with respect to dt
shows that the dominant oscillations are oH2 and oL (and its
higher harmonics) (Fig. 6b). We therefore predict that both the
lower Higgs mode oH2 and the Leggett mode oL can be observed
in THz pump–THz probe experiments as oscillations of the
pump–probe conductivity, in particular at the gap edge 2D12 =‘
and the Leggett mode frequency oL. The higher Higgs mode oH1,
on the other hand, is not visible in the pump–probe signal, as it is
strongly damped by the two-particle continuum.

Discussion
Using a semi-numerical method based on the density matrix
approach, we have studied the non-equilibrium excitation of
Higgs and Leggett modes in two-band superconductors. Although
the amplitude Higgs and the Leggett phase mode are decoupled in
equilibrium, we find that the out-of-equilibrium excitation
process leads to a strong coupling between these two collective
modes. As a result, the Leggett phase mode oL is pushed below
the Bogoliubov quasiparticle continuum and remains undamped
for a wide range of interband couplings (Figs 3 and 4). Likewise,
the lower Higgs mode oH2 is only weakly damped, as its
frequency is at the threshold to the quasiparticle continuum. To
maximize the oscillatory signal of these collective modes in the
pump–probe spectra, it is necessary to choose the experimental
parameters as follows: (i) the pump-pulse duration t should be
smaller than the intrinsic response time of the superconductor
h/(2|Di|), such that the collective modes are excited in a non-
adiabatic manner; (ii) the pump-pulse energy needs to be of the
order of the superconducting gap (that is, in the terahertz
regime), so that Bogoliubov quasiparticles are excited across the
gap, but modes at higher energies :oc|Di| are not populated;
and (iii) the pump-pulse intensity must not exceed a few
nJ cm� 2, to ensure that the superconducting condensate is only
partially broken up, but not completely destroyed. We have
predicted that under these conditions both Higgs and Leggett
modes can be observed as clear oscillations in the time-resolved
pump–probe absorption spectra (Fig. 6). Similarly, we expect that
collective mode oscillations are visible in other pump–probe-type
experiments, for example, in time-resolved photoemission
spectroscopy or time-resolved Raman scattering.

Our findings apply beyond the scope of two-band super-
conductors to general collective modes in quantum materials.
That is, we expect that out-of-equilibrium excitations lead to the
coupling of collective modes in any symmetry-broken phase.
It would be particularly intriguing to study this in more detail
for the case of unconventional exotic superconductors, where
several competing orders are present, such as heavy fermion
superconductors or high-temperature cuprate and pnictide
superconductors. In these systems the pump pulse could be
used to induce a transition from one competing order to
another. Furthermore, the unconventional pairing symmetries
of these superconductors, such as the dx2 � y2 -wave pairing of the
cuprates, give rise to a multitude of new Higgs modes44.
Our work indicates that pump–probe experiments will allow
to coherently excite and control these novel Higgs modes,
which await to be further explored both theoretically and
experimentally.
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Methods
Model definition. The gap equations for the BCS Hamiltonian HBCS (see
equation (1) in the main text) are given by45

D1 ¼
1
N

X
k02W
ðV1hc� k0 ;#;1ck0 ;";1iþV12hc� k0 ;#;2ck0 ;";2iÞ;

D2 ¼
1
N

X
k02W
ðV2hc� k0 ;#;2ck0 ;";2iþV12hc� k0 ;#;1ck0 ;";1iÞ;

ð3Þ

where N is the number of lattice points, V1 and V2 denote the intraband
interactions and V12¼ uV1 is the interband coupling. The two-band
superconductor is brought out of equilibrium via the coupling to a pump pulse,
which is modelled by

HLaser ¼
e‘
2

X
k;q;s;l

ð2kþ qÞAqðtÞ
ml

cwkþ q;s;lck;s;l

þ e2

2

X
k;q;s;l

ð
P

q0 Aq-q0 ðtÞAq0 ðtÞÞ
ml

cwkþ q;s;l ck;s;l ;

ð4Þ

where ml is the effective electron mass of the lth band and Aq(t) represents the
transverse vector potential of the pump laser. We consider a Gaussian pump pulse
described by

AqðtÞ ¼ A0e�ð
2
ffiffiffi
ln2
p

t
t Þ

2

ðdq;q0
e� io0 t þ dq;� q0

eio0 tÞ; ð5Þ
with central frequency o0, pulse width t, light-field amplitude A0¼ |A0|êy and
photon wave vector q0¼ q0êx.

Density matrix formalism. To simulate the non-equilibrium dynamics of the two-
band superconductor (1), we use a semi-numerical method based on the density
matrix formalism. This approach involves the analytical derivation of equations of
motions for the Bogoliubov quasiparticle densities ha w

k;lak0 ;li, hb w
k;lbk0 ;li, hawk;lb

w
k0 ;li

and hak;lbk0 ;li, which are then integrated up numerically using a Runge Kutta
algorithm. The Bogoliubov quasiparticle densities are defined in terms of the fer-
mionic operators ak,l and bk,l, with

ak;l ¼ uk;l ck;l;" � uk;lc
w
� k;l;#; ð6Þ

bk;l ¼ uk;l c
w

k;l;" þ uk;l c� k;l;#; ð7Þ

where uk;l ¼ DlðtiÞ=jDlðtiÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Ek;l=Ek;lÞ=2

p
, uk;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Ek;l=Ek;lÞ=2

p
and

Ek;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

k;l þ jDlðtiÞj2
q

. We emphasize that the coefficients uk,l and uk,l do not

depend on time, that is, the temporal evolution of the quasiparticle densities is
computed with respect to a fixed time-independent Bogoliubov-de Gennes basis in
which the initial state is diagonal. The equations of motion for the quasiparticle
densities are readily obtained from Heisenberg’s equation of motion. Since
equation (1) represents a mean-field Hamiltonian, this yields a closed system of
differential equations and hence no truncation is needed (for details, see refs
17,29,23,25).

Pump–probe response. All physical observables, such as the current density
jqpr
ðdt; tÞ, can be expressed in terms of the quasiparticle densities. For the current

density we find that

jqpr
ðdt; tÞ ¼ � e‘

X
k;l;s

2kþ qpr

2mlV
hc w

k;l;sckþ qpr ;l;s
iðdt; tÞ

� e2
X

k;l;q;s

Aqpr � q

mlV
hc w

k;l;sckþ q;l;siðdt; tÞ;

where Aqpr
ðdt; tÞ and qpr¼ |qpr|êx are the vector potential and the wave vector of

the probe pulse, respectively. With this, we obtain the pump–probe conductivity
via23,46

sðdt;oÞ ¼ jðdt;oÞ
ioAðdt;oÞ ; ð9Þ

where j(dt,o) and A(dt,o) denote the Fourier transformed y components of the
current density jqpr

ðdt; tÞ and the vector potential Aqpr
ðdt; tÞ, respectively. To

compute the effects of the probe pulse, we neglect terms of second order and higher
in the probe field Apr(t), as the probe pulse has a very weak intensity.

Numerical discretization and integration. To keep the number of equations of
motion manageable, we have to restrict the number of considered points in
momentum space. The first restriction is that we only take expectation values with
indices k and kþ qAW into account. This means that we concentrate on the k-
values where the attractive pairing interaction takes place. Furthermore, as the
external electromagnetic field may add or subtract only momentum nq0, it is
sufficient to consider expectation values with indices (k, k þ nq0), where nAZ. For

small amplitudes jAq0
j the off-diagonal elements of the quasiparticle densities

decrease rapidly as n increases, as ðk; kþ nq0Þ ¼ OðjAq0
jjnjÞ. Thus, we set all

entries with n44 to 0. With this momentum–space discretization, we obtain of the
order of 105 equations, which we are able to solve numerically using high-efficiency
parallelization. Further, technical details can be found in refs 23,25.

Data availability. All relevant numerical data are available from the authors upon
request.
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