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ABSTRACT

ArDock (ardock.ibcp.fr) is a structural bioinformat-
ics web server for the prediction and the visualiza-
tion of potential interaction regions at protein sur-
faces. ArDock ranks the surface residues of a pro-
tein according to their tendency to form interfaces in
a set of predefined docking experiments between the
query protein and a set of arbitrary protein probes.
The ArDock methodology is derived from large scale
cross-docking studies where it was observed that
randomly chosen proteins tend to dock in a non-
random way at protein surfaces. The method pre-
dicts interaction site of the protein, or alternate inter-
faces in the case of proteins with multiple interaction
modes. The server takes a protein structure as in-
put and computes a score for each surface residue.
Its output focuses on the interactive visualization of
results and on interoperability with other services.

INTRODUCTION

As fundamental elements of life, proteins perform their bi-
ological functions through molecular interactions. Func-
tional interactions are regulated by protein availability and
localization, while new functions can emerge through tran-
sient or permanent interactions. Over the past decades,
tremendous efforts have been made to experimentally iden-
tify the molecular properties and functions of individual
proteins and complexes (1,2). However, the identification of
protein–protein complexes, let alone their structural char-
acterization, remains a challenging task that is difficult to
address accurately with high-throughput methods. These
limitations can be addressed with computational methods
for studying protein–protein interactions. Among the com-
putational approaches, docking methods aim at predicting
protein complexes starting from the individual structure of
the proteins. ‘Cross-docking’ studies are large scale dock-
ing experiments where the subunits of biological dimers are
separated and their structures all docked against each other

(3). These studies led to the conclusion that it was difficult to
separate biological and non-biological docking complexes
by current computational means (4). Nevertheless, the pro-
teins assembled by cross-docking tend to ‘arbitrarily’ dock
their cognate and non-cognate partners at similar regions
of their surface (5,6). As a consequence, arbitrary docking
was acknowledged as a viable tool to predict protein bind-
ing sites at the surface of a protein. Computational meth-
ods based on arbitrary docking are now being developed to
study proteins and predict their binding sites (7–9).

Meanwhile, experimental protein–protein complexes
have been extensively characterized in terms of physic-
ochemical, geometrical and sequence-related properties
(10,11). Data from these studies can be analyzed to derive
various features that can be mapped onto residues in order
to build binding-region predictors. Frequently used features
include sequence information (amino acid conservation
across homologs, sequence profiles or residue propensity),
side-chain physicochemical properties (hydrophobicity,
electrostatic potential) or geometrical properties (accessible
surface area, planarity). Predictors can be applied at the
single residue level, or extended to clusters of adjacent
surface residues (12). Protein-binding region predictors fre-
quently combine different kinds of features. A first group of
predictors based on machine-learning algorithms, includes
the following web services: Cons-PPISP (13), PROFISIS
(14), PresConst, SPPIDER (15) and PredUs (16). Another
class of predictors such as SHARP2 (17), WHISCY (18) or
PINUP (19) uses scoring function maximization. A third
class which comprises the JET2 (20) and ProMate (21)
servers uses clustering approaches. They all provide limited
interaction and visualization capabilities to the user. The
new ArDock web server proposed here is an original addi-
tion to this set of tools on two levels: methodologically, the
information provided by arbitrary docking calculations is
an addition to currently used features; in terms of the user
interface, the ArDock server provides rich and interactive
visualization of binding site predictions.
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Figure 1. (A) The ArDock user interface allows the manipulation of different proteins and set of protein chains, each opened in distinct tab. (B) Protein
chains can be selected or deleted before being analyzed by the server. (C) The amino acid sequence of each chain can be visualized, and individual amino
acids highlighted in the structure representation (here an aspartic acid colored in red). (D) Ribbon, ball-and-stick and surface representations are available.
The two icons on the right-end side allow to modify the background color and to take a snapshot of the structure.

MATERIALS AND METHODS

Docking of arbitrary peptide probes

The protein submitted to the ArDock server is docked
against 25 molecular probes. Each probe is docked inde-
pendently by the Hex software (22). The 10 best computed
protein-probe conformations, as scored by the Hex energy
function, are used to count the number of times that each
surface residue of the protein is found at a protein-probe
interface. The protein residues are considered to form the
interface when their solvent accessibility changes from the
initial to the probe-bound conformation. The solvent ac-
cessibility of the amino acids is computed with NACCESS
(23). The surface amino acids are finally assigned a normal-
ized score:

S = x − x̄
σ

Where x is the number of protein-probe interface in which
the amino acid is found, x̄ is the averaged value of x over all
the surface amino acids and � the estimated standard devi-
ation. The set of small molecular probes was culled from the
Nh3D (24) database. The probes cover a range of structures
at the Topology level of the CATH structural classification
database (25). Details of the culling procedure can be found
in an earlier publication (5).

Input

A protein structure file complying with the Protein Data
Bank (26) format can be submitted to the server. Only nat-
ural amino acids are currently supported, any other molec-
ular component will be discarded. The submitted coordi-
nates are processed in the navigator by two JavaScript com-

ponents: a parser (https://github.com/glaunay/pdb-lib) and
the NGL (27,28) webGL renderer. This allows the user to
interactively select amino acid chains before their analysis
by the server. It is important to note that different com-
binations of protein chains can lead to distinct results be-
cause the ArDock method is sensitive to the overall shape of
the protein. Additionally, different protein structures can be
submitted to the same session. We plan to extend the treat-
ment to nucleic acids and to modified protein residues.

Client interface

The interface has a tabular scaffold. A top-level tab is cre-
ated upon PDB file submission. Multimeric proteins can be
split into subcomplexes (see Figure 1) and each subcomplex
will be open in a dedicated sub-tab for further inspection.
The top-right necklace menu gives access to the sequence
representation of the protein. The sequence of each protein
chain is displayed in a dedicated draggable window. This is
a scrollable one-letter code representation of the protein se-
quence in fasta numbering. Clicking on a given amino acid
will highlight its position in the three-dimensional (3D) rep-
resentation of the protein (see Figure 1).

Server implementation

The protein coordinates with the desired set of chains are
sent to the server backend, on which 25 docking simulations
are performed in parallel by our NodeJS cluster scheduler
(https://github.com/glaunay/nslurm). The docking software
is the version 8.0.0 of the HeX program (hex.loria.fr/).
Computations use the shape complementarity scoring func-
tion with a ligand–receptor maximum range of 40Å and
scan steps of 0.75Å, the complete list of parameters can be

https://github.com/glaunay/pdb-lib
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found in a previous publication (5). All the tasks required
by the ArDock procedure are organized in an asynchronous
pipeline. When a task is finished, its results are streamed in
the pipeline but can also be captured immediately by the
application server. Thus, full completion of the pipeline is
not required to begin visualization and any relevant inter-
mediate results can be passed to the web client. The commu-
nication between the server and the client is two ways and
is built upon the socket.io framework (http://socket.io/).
This allows for a real-time update of the web client every
time a protein probe docking experiment is completed on
the server. The protein molecular representation is continu-
ously colored as probes are being docked at its surface.

DISCUSSION

Visualizing binding regions

When the server analysis of the protein surface is com-
pleted, results are displayed on the molecular surface and
in an interactive data table (see Figure 2). Each line of
the table refers to a particular amino acid. The three left-
hand columns correspond to the amino acid type, number
and chain. The two right-hand columns correspond to the
amino acid raw and normalized scores. While the initial or-
der of the lines respects the amino acid sequence, the user
can reorder the table by clicking on a column header. If the
user clicks on a line in the data table, the structure of the
corresponding amino acid will be highlighted in the molec-
ular structure. By default, the amino acids with the highest
scores (those most susceptible to form protein–protein in-
terface) are colored in red. A button at the bottom of the
table triggers the downloading of the results as a tabulated
file. Additionally, results can also be downloaded as a PDB
format file with raw scores in the B-factor field.

Resuming analysis and interoperability

Upon job submission, a center console dedicated to data
saving and export appears. The right-end button of the con-
sole displays a personal key that allows future access to the
job results. If the user is forced to quit at this stage, the com-
putations will be carried out and remain accessible. To re-
sume the analysis the user will paste his personal key into
the restore procedure accessible from the welcome page. The
client will then fetch all relevant data from the server and re-
store the proper 3D rendering and the tabular results.

The left-hand button of the console will establish a
communication with the ENDscript (29) server (http://
endscript.ibcp.fr). The structure file annotated with the Ar-
Dock result will be passed to the ENDscript server and
a dedicated tab will open in the browser. The ENDscript
server will provide the user with additional tools to study
protein sequences and structures. Hence, the user can auto-
matically generate a multiple sequence alignment from the
query, which is colored according to residue conservation
and adorned with secondary structure elements of each ho-
mologous protein of known structure. Potential interaction
regions identified by ArDock are shown with colored bars
at the bottom of sequence blocks. The user can also gener-
ate an interactive 3D PyMOL representation of the query,

whose main chain is depicted as a tube whose radius is pro-
portional to the differences in C� between the query and all
homologous proteins of known structures. Potential inter-
action areas will be highlighted anew with colored meshes.

Prediction performances

The predictive performance of arbitrary docking was ex-
plored in our previous studies (5,30). Here, we present the
performance of the ArDock server on the protein bench-
mark created for the critical assessment of on-line resources
for the prediction of protein interface residue (31). The
dataset is made of 90 target proteins crystal complexes,
which were obtained from the Protein Docking Bench-
mark Set 4.0 (32) the following way : (i) excluding com-
plexes for which the receptor (i.e. longer chain) is shorter
than 50 or longer than 600 residues; (ii) discarding com-
plexes with more than two chains, and interfaces smaller
than 20 residues; (iii) interface residues were defined using a
5Å distance cutoff. Accessible residues (relative accessibility
greater than 5%) were classified as interface or non-interface
depending on their arbitrary docking score. By varying the
cutoff, we were able to compute a receiver operating charac-
teristic (ROC) curve and the area under the curve (AUC).
For a given cutoff, we collected the number of true posi-
tives (TP: interface residues predicted as such), true nega-
tives (TN: non-interface residues predicted as such), false
positives (FP: non-interface residues predicted as interface)
and false negatives (FN: interface residues predicted as non-
interfaces). We then computed the usual performance in-
dicators: accuracy (ACC), precision or positive predictive
value (PPV), sensitivity or true positive rate (TPR), speci-
ficity (SPC), false positive rate (FPR) and Matthew’s corre-
lation coefficient (MCC):

ACC = (TP + TN)/(TP + TN + FP + FN)

PPV = TP/(TP + FP)

TPR = TP/(TP + FN)

SPC = TN/(FP + TN)

FPR = FP/(FP + TN)

MCC = (TP ∗ TN − FP ∗ FN)
√

(TP + FP)(TP + TN)(FP + FN)(TN + FN)

Following the original benchmark study, we present
the indicators computed with the score threshold that
maximizes the MCC value, see Table1. We also com-
puted the number of predicted interfaces by ArDock with
TPR > 15%, in line with the work of Ripoche et al. (20):
it is equal to 88.9%. The corresponding AUC is 0.664. The
statistics were computed over the BM90C benchmark (31)
composed of 22 076 exposed residues in 90 proteins.

According to the benchmark and classification of Ma-
heshwari et al. (31), the ArDock server achieves the best
performances among the web servers based on residue fea-
tures (group I) and physicochemical and structural features
(group III). Aside from one meta-predictor, ArDock is only
outperformed by two template-based methods (16,31) and a
machine learning method (13). In contrast to these methods
which use sequence statistics or supervised classification,

http://socket.io/
http://endscript.ibcp.fr
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Figure 2. ArDock results display: (A) individual amino acid scores are presented in the left-hand table. This table has searchable and sortable functionalities.
(B) The table content can be downloaded in a tabulated format. (C) An upper center console provides save and resume functionalities as buttons. Buttons
(left to right): communication of the results to the ENDscript server, download of the results as a PDB file and copying of the job-specific key for later
reload. (D) In order to easily inspect an amino acid in the structure, the whole structure transparency is increased and only the inspected amino acid
remains fully opaque (in this case, threonine 105 of chain A).

Table 1. Comparison of the performance of the ArDock server and 11 web services for the prediction of protein interface residues

MCC TPR FPR SPC PPV ACC

Pseudo-meta 0.481 0.692 0.094 0.905 0.417 0.887
PredUs 0.383 0.701 0.156 0.843 0.302 0.831
eFindSitePPI 0.375 0.396 0.045 0.954 0.459 0.905
cons-PPISP 0.247 0.279 0.052 0.947 0.338 0.888
ArDock 0.189 0.595 0.319 0.682 0.206 0.671
SPPIDER 0.173 0.340 0.125 0.875 0.208 0.827
ProMate 0.165 0.526 0.295 0.704 0.210 0.684
WHISCY 0.164 0.130 0.025 0.975 0.334 0.900
PIER 0.118 0.066 0.012 0.987 0.342 0.906
VORFFIP 0.117 0.531 0.401 0.598 0.337 0.579
PSIVER 0.103 0.645 0.463 0.536 0.118 0.546
InterProSurf 0.100 0.435 0.291 0.709 0.163 0.677

Data for the other web services were taken from Maheshwari etal. (31).
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Figure 3. ArDock interface prediction of the human cell division control
protein 42 (PDB code: 1GRN). Amino acids that are part of the experi-
mental interface are colored in green if they are also predicted as interface
residue by ArDock. Amino acids that part of the experimental are colored
in orange if they were not predicted as interface residue by ArDock.

ArDock does not require any training or prior knowledge.
More importantly, ArDock identifies interface residues us-
ing a structural information which is not taken into account
by any other available method. The information provided
by ArDock is hence orthogonal to the one provided by other
comparable web services. This makes of ArDock an accu-
rate tool on its own but also a significant addition to the
current set of on-line resources for the detection of protein
interaction site.

Experimental interface detection examples

In addition, to these global performance indicators, the use
of ArDock can be illustrated on specific examples. Here,
two complexes were taken from the aforementioned bench-
mark and only one partner in each complex was processed
by the ArDock server. We now present the accuracy of Ar-
Dock at detecting the interaction surface of these partners
that form the interface in their corresponding complexes.
The first case is the human cell division control protein 42
(CDC42). This protein is a small GTPase of the Rho fam-
ily. In the crystal structure of the benchmark (PDB code:
1GRN) a monomer of CDC42 forms a complex with a do-
main of its specific GTPase-activating protein. Their surface
of interaction is 2332.2Å2 for a total of 65 interchain residue
contacts. A set of 22 residues from CDC42 participates in
the experimental interface. As it can be seen in Figure 3,
ArDock analyzed the surface of the CDC42 monomer and
predicted 21 of these 22 residues as interacting residues.

The second case is a hydrolase/inhibitor complex. The
enzyme is a yellow meal worm �-amylase. The experimen-

Figure 4. ArDock interface prediction of a glycosylase, the yellow meal
worm �-amylase (PDB code: 1TMQ). In this case, the experimental inter-
face is larger and a similar color code is used. The experimental interface
residues are colored in green if they are also predicted as interface residue
by ArDock and colored in orange if they were not predicted as interface
residue by ArDock.

tal structure (PDB code: 1TMQ) displays an interface of
2401.0Å2. A total of 32 enzyme residues participates in 70
interchain residue contacts. The enzyme monomer was pro-
cessed by the server (see Figure 4). ArDock successfully pre-
dicted 29 surface residues of the enzyme out of the 32 that
form the experimental interface.

CONCLUSION

We present the ArDock server. Working from a PDB in-
put file, this web resource detects protein surface residues
likely to be involved in protein–protein interactions. The
server uses an approach based solely on physical proper-
ties that helps to identify biologically relevant protein inter-
faces. ArDock does not perform explicit clustering of sur-
face residues to predict interaction patches, unlike other ef-
fective prediction methods (33). ArDock will benefit from
the future addition of a clustering procedure and the inte-
gration of additional residue properties. In its current state,
the ArDock web service targets a large audience. It uses
a friendly interactive interface for the visualization of an-
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notated protein structures. It is built on an asynchronous
pipeline on the server side and has a modular organization
of the software on both the client and server sides. This ar-
chitecture will support future extensions to include the cal-
culation and interactive visualization of additional amino
acid properties (physicochemical or sequence-based).
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