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Background: The objective of this study was to determine whether microRNA (miRNA) profiling of urine could identify the
presence of urothelial carcinoma of the bladder (UCB) and to compare its performance characteristics to that of cystoscopy.

Methods: In the discovery cohort we screened 81 patients, which included 21 benign controls, 30 non-recurrers and 30 patients
with active cancer (recurrers), using a panel of 12 miRNAs. Data analysis was performed using a machine learning approach of a
Support Vector Machine classifier with a Student’s t-test feature selection procedure. This was trained using a three-fold
cross validation approach and performance was measured using the area under the receiver operator characteristic curve (AUC).
The miRNA signature was validated in an independent cohort of a further 50 patients.

Results: The best predictor to distinguish patients with UCB from non-recurrers was achieved using a combination of six miRNAs
(AUC¼ 0.85). This validated in an independent cohort (AUC¼ 0.74) and detected UCB with a high sensitivity (88%) and sufficient
specificity (48%) with all significant cancers identified. The performance of the classifier was best in detecting clinically significant
disease such as presence of T1 Stage disease (AUC¼ 0.92) and high-volume disease (AUC¼ 0.81). Cystoscopy rates in the
validation cohort would have been reduced by 30%.

Conclusions: Urinary profiling using this panel of miRNAs shows promise for detection of tumour recurrence in the surveillance of
UCB. Such a panel may be useful in reducing the morbidity and costs associated with cystoscopic surveillance, and now merits
prospective evaluation.

Up to 15% of patients presenting with macroscopic haematuria are
diagnosed with urothelial carcinoma of the bladder (UCB) with the
figure for microscopic haematuria being 4.8% (Khadra et al, 2000).
UCB has a high propensity of recurrence and progression, which
necessitates extensive surveillance (Sylvester et al, 2006). There are
no non-invasive markers to predict recurrence, which currently
relies on invasive procedures such as cystoscopy. This has made the
treatment of UCB resource intensive and it is now the single most
expensive cancer to treat from diagnosis to death (Botteman et al,
2003; Avritscher et al, 2006). Furthermore, more than half of these

costs are towards treating the non-muscle invasive spectrum of the
disease (Sangar et al, 2005). The morbidity of cystoscopy is often
under-estimated and patient adherence with surveillance has been
reported to be as low as 40% (Schrag et al, 2003). In addition,
flexible cystoscopy has a definite false negative rate (Daniltchenko
et al, 2005).

There is a pressing need for an accurate non-invasive test to
assist diagnosis and surveillance of UCB. Urine is in direct contact
with bladder cancer cells, and hence is an ideal source for
investigation of non-invasive biomarkers of UCB. While many
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urinary markers have been studied, few, if any, of these markers
have been validated in independent cohorts (Sapre et al, 2014).
Even fewer have been deemed robust enough for incorporation
into clinical practice.

A class of biomarkers that has recently been investigated is
microRNAs. MicroRNAs (miRNAs) are B22-nucleotide long,
single-stranded, non-coding RNAs that bind to complementary
‘seed’ regions found in 30-untranslated region (UTR) of particular
messenger RNA (mRNA) species. MiRNAs modulate expression of
their mRNA targets, either marking them for destruction or
inhibiting their binding to translational machinery. MiRNAs
have been shown to be involved in a wide range of important
physiological and pathological processes including cell cycle
processes, development, survival, differentiation, growth, apoptosis
and immune response (Jansson and Lund, 2012).

There are several advantages of miRNAs as biomarkers in
biofluids. Biofluids such as plasma and urine are less invasive to
obtain compared with tissue, and miRNAs are frequently
deregulated in cancer and exhibit tissue-specific expression
(Garzon et al, 2009). In addition, their expression in blood and
urine is stable and can be quantified sensitively by quantitative
real-time polymerase chain reaction (qRT–PCR) (Hanke et al,
2010). Many have studied the regulation of miRNA species in
bladder cancer tissues (Catto et al, 2011). In addition, many of the
miRNAs involved in bladder cancer initiation, progression and
metastasis have been functionally characterised (Burk et al, 2008,
Adam et al, 2009, Mongroo and Rustgi, 2010). Recent work also
profiles miRNA species found to be up- or downregulated in urine
of bladder cancer patients (Hanke et al, 2010; Miah et al, 2012;
Wang et al, 2012; Yun et al, 2012). However, none of these studies
has investigated the use of these biomarkers in the surveillance
setting where patients who have all been previously diagnosed with
UCB are screened and few of these studies have performed
independent validation of the defined biomarkers. These limita-
tions typically preclude the clinical translation of biomarker studies
in the management of bladder cancer.

We wanted to systematically investigate the role of miRNAs as
urinary biomarkers for detection of UCB. The aim of this study
was to investigate if the profiling of a panel of miRNAs in the urine
of patients can distinguish the patients with cancer in their bladder
in the surveillance setting and to validate any significant findings in
an independent cohort of patients.

MATERIALS AND METHODS

Patient selection. In total, 131 patients were analysed in this study
comprising discovery and validation cohorts. Patients were selected for
the initial discovery cohort from three distinct groups:
(1) Patients without any previous history of UCB (n¼ 21). (2)
Patients with a previous history of UCB but exhibiting no recurrence
at cystoscopy (cancer-absent group, n¼ 30) and (3) patients with
active UCB at cystoscopy at initial diagnosis or during surveillance
(cancer-present group, n¼ 30) for a total of 81 patients. In the
independent validation cohort we screened urine samples from active
bladder cancer surveillance patients (n¼ 50), which included patients
from a cancer-present group (n¼ 25) and patients from a cancer-
absent group (n¼ 25). Tumours were classified according to the TNM
and WHO/ISUP staging and grading (Epstein et al, 1998). Tumours
larger than 3 cm were termed large or high-volume tumours.

MicroRNA panel selection. A systematic literature review was
conducted in PubMed to find microRNAs implicated in epithelial
cancer initiation, progression and metastasis using the terms
‘cancer’, ‘bladder cancer’ and ‘microRNA’ in January 2012. The
cited references of studies were checked for further articles of
interest. All articles including original articles, reviews and

abstracts were considered. Based on our review we chose a panel
of 12 microRNAs all of which had at least two independent studies
published showing involvement in epithelial cancer carcinogenesis,
with preference given to those with concomitant supporting
mechanistic data (Supplementary Table S1).

Nucleic acid extraction. Freshly voided urine was kept on ice and
stored in a biorepository at � 180 1C within 4 h. A volume of 500ml
of urine was thawed on ice for total RNA extraction using the
mirVana miRNA Isolation Kit (Ambion, TX, USA) according to the
following protocol. Volumes of reagents were as follows: urine:
500ml, lysis buffer: 750ml, 10% homogenate: 125ml, phenol
chloroform: 1250ml. On ice, 1.5� volume of lysis buffer olution
was added to the urine sample and vortexed for 30 s. On ice, 1/10
volume of miRNA homogenate additive was added, vortexed for
10 s and left on ice for 10 min. In the fume hood, an identical
volume of acid–phenol:chloroform as the initial lysate (urine input
þ lysis buffer) was added and vortexed for 30 s. The mixture was
centrifuged for 5 min at 10 000 g, and the upper aqueous phase
transferred to a new tube noting the volume. 1.25� volume of
100% ethanol was added to the aqueous phase. Aliquots of 700ml of
this solution were placed on a filter cartridge/collection tube, and
centrifuged at 10 000 g for 15 s. The flow-through was discarded and
the procedure repeated until all the sample had gone through. 700ml
miRNA wash solution 1 was added to the collection tube and
centrifuged for 10 s. The flow-through was discarded. A volume of
500ml wash solution 2/3 was added to the collection tube and
centrifuged for 10 s. Flow-through was discarded. A second wash
was performed with this solution. The collection tube was subjected
to a 1-min dry spin. The filter cartridge was transferred to a labelled
tube. A volume of 40ml pre-heated water was added to the filter and
centrifuged for 1 min. RNA elutions were frozen on dry ice and
stored in � 80 1C. RNA was concentrated using a Savant SpeedVac
(Thermo Fisher Scientific, NC, USA) at 45 1C at high pressure and
reconstituted in 15ml water.

cDNA library preparation and preamplification. Reverse tran-
scription was performed on a thermal cycler (Applied Biosystems,
CA, USA) using the Taqman microRNA Reverse Transcription Kit
using a modification of the manufacturer’s small RNA assay
protocol using 7 ml concentrated RNA, 100 mM deoxynucletide
triphosphates, 50 Uml� 1 Multiscribe Reverse Transcriptase, 10�
reverse transcription buffer, 20 U ml� 1 RNAse inhibitor and
nuclease-free water. Validated primers were pooled according to
the manufacturer’s instructions (Taqman, Applied Biosystems)
using 10 ml 5� primer for each primer to a total volume of 1 ml
using nuclease-free water. This reaction was subjected to the
following conditions: 30 min at 16 1C, 30 min at 42 1C and 5 min at
85 1C. cDNA was stored at � 20 1C. Preamplification of the
synthesised cDNA was performed according to the manufacturer’s
instructions. Briefly 2.5 ml cDNA was added to 12.5 ml preampli-
fication MasterMix, 3.75 ml primer pool and 6.25 ml nuclease-free
water. This reaction was heated to 95 1C for 10 min, 55 1C for 2 min
and 72 1C for 2 min followed by 12 cycles of amplification before
heating to 99 1C for 10 min. The amplified reaction products were
diluted to 200 ml using 0.1� Tris-EDTA buffer (pH¼ 8).

Polymerase chain reaction and microRNA detection. RT–qPCR
was perfomed on the ViiA 7 (Applied Biosystems) using 0.5 ml
20� miRNA assay, 0.1ml preamp product, 5.0 ml TaqMan Fast
Universal PCR Master Mix (2� ), 4.4 ml nuclease-free water were
combined for a 10-ml PCR reaction. PCR was conducted under the
following conditions: 50 1C for 2 min followed by 40 cycles of
amplification. Thresholds for the PCR runs were set using RQ
Manager (Applied Biosystems) and checked manually to ensure
the Ct corresponded to the midpoint of the logarithmic
amplification. All reactions were performed in triplicate and the
median included in the final analysis.
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Histopathological confirmation. The core of bladder tissue
was OCT embedded and sectioned at � 24 1C in a cryostat (Leica
Microsystems). A 5-mm section was cut on to a slide and then
deparaffinised with xylene then washed with a decreasing ethanol
series (100, 95 and 70%) and water. Slides were haematoxylin and
eosin stained and again immersed in an increasing ethanol series
(70, 95 and 100%). Tumour status confirmation was obtained by
an uropathologist prior for use in downstream experiments.

Tumour tissue processing and nucleic acid extraction. DNA and
RNA were simultaneously extracted from tumour specimens using
the Allprep Microkit (Qiagen, Melbourne, VIC, Australia). The
frozen tissue core was placed in a tube containing 700 ml of Buffer
RLT Plus and 10 ml ml� 1 mercaptoethanol. The TissueRuptor
(Qiagen) was used to produce a homogenous lysate in three 10 s
bursts. The homogenate was allowed to stand on ice for 15 min
until foam settled and then transfer to a microcentrifuge tube. The
lysate was centrifuged for 3 min at full speed and the supernatant
carefully removed by pipetting and transferring it to an Allprep
DNA spin column placed in a 2-ml collection tube. This was
centrifuged for 30 s at 10 000 r.p.m. The Allprep spin column was
placed in a new 2 ml collection tube and stored at 4 1C for later
DNA purification. The flow-through was used for RNA purifica-
tion. The flow-through was added to 700 ml of 70% ethanol and
mixed well. The sample was then transferred to an RNEasy
MinElute spin column placed in a 2-ml collection tube and
centrifuged for 15 s at 10 000 r.p.m. and the flow-through
discarded. A volume of 700 ml Buffer RW1 was added to the
RNEasy MinElute spin column and centrifuged for 15 s at
10 000 r.p.m. and flow-through discarded. After DNase digestion
on column for 15 min, this step was repeated with 500 ml of buffer
RPE and 500 ml of 80% ethanol to RNEasy MinElute spin column
and centrifuged for 2 min at 10 000 r.p.m. to wash the spin column
membrane. This was followed by a 5-min dry spin.
A volume of 15 ml of RNase-free water was added to the centre
of the spin column and centrifuged for 1 min at full speed to elute
the RNA. This step was repeated again to obtain a final elution
volume of 30 ml. RNA was stored at � 80 1C.

Data analysis

MicroRNA pre-processing. Thresholds for the PCR runs were set
using RQ Manager (Applied Biosystems) and manually checked to
ensure the Ct corresponded to the midpoint of the logarithmic
amplification. All observed Ct values greater than 35 were considered
not expressed and set to 35. Any undetermined Ct values were also
set to 35. As each miR was profiled in triplicate, any replicate value
more than 20% different from the remaining two values was
considered an outlier and removed from analysis. The mean Ct value
was then determined for each sample and miR across replicates.

Normalisation. No endogenous control was used for normal-
isation in this study. Instead, urine concentrations as measured by
urine osmolality dosm were used to normalise the Ct values of each
miR so that they were comparable across patients by taking into
account natural variation in urinary volumes and solute concen-
trations. To that end we set baseline osmolality d0¼ 532.17 (¼ the
mean osmolality in the discovery cohort), then for each sample we
added the correction � log2(dosm/d0) to each miR measured for
that sample. This means that if dosm4d0 for a particular sample,
then each Ct value for this sample was decreased by the equivalent
of log2(dosm/d0) cycles; if opposite, i.e., dosmod0, then the Ct for
each miR was increased by log2(d0/dosm).

Differential expression analysis. The mean Ct of samples
belonging to the cancer-present group or cancer-absent group
was used to calculate fold-change for each miR as
2(mean(Ct_present)�mean(Ct_absent)). For fold-changes less than 1, the

negative inverse was taken and the fold change reported as negative
(i.e., expressed less in the cancer-present group compared with
cancer-absent group). A Student’s t-test was used to calculate the
significance of the difference of each miR’s expression between
cancer present and absent groups and the P-value was adjusted for
multiple testing correction using the Benjamini–Hochberg method
(Benjamini, 1995).

Feature selection and classification. We assume the data is given
as a matrix [xij], N features (miRs) for M samples i.e., 1pipn and
1pjpm with the label vector [yi]¼±1 arranged in such a way
that [yj]¼±1 for 1pjpmþ [yi]¼ � 1 for the remaining samples
mþojpm. We have used the Student’s t-test for selection/
ordering of features/miRs from most to the least ‘discriminating’.
The Student’s t-test, which allocated to the i-th feature the score

ti ¼
�xþi��x�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
þiþs2

�i

q ;
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1
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denote the variances of the i-th variable for samples of the both
groups of interest, respectively. Then the features are ranked in the
descending order of absolute values of the statistic |ti|, for
i¼ 1,2,...,n.

For various subsets of t top features xi1 ; xi2 ; . . . ; xit
ð Þ, we

generated linear classifiers

f ðtÞðxÞ ¼
Xt

k¼1

wkxik
þb;

for a sample x¼ (x1,...,xn), using a support vector machine
algorithm, which selected weights wk and the intercept b by
minimising the following functional:

wk; bð Þ ¼ arg min wk;bð Þ
Xt

k¼1

w2
kþ

C

m

Xm

j¼1

yj�
Xt

k¼1

wkxik;j�b

 !2

:

Here C is adjustable regularisation constant, with a relatively weak
impact on the final result in our case. The results reported have
used C¼ 1.

The classifier trained was then applied systematically to the
validation group samples and samples labelled as ‘positive’ or
‘negative’. Sensitivity and specificity of the test were calculated by
comparing the results with gold standard cystoscopy.

Adjusting for batch effects. Standard batch correction procedures
such as Combat attempt to adjust the measurements of genes
across different batches before any further analysis is completed
(Kupfer et al, 2012). This approach was applicable in our setting
when attempting to apply the classifier trained on the miRNA
discovery cohort, to the validation cohort. However, an equally
viable approach in this setting is to simply recalibrate the threshold
of the score output by the classifier to achieve the best sensitivity
and specificity on the validation cohort. We applied both
approaches (data not shown) and both yielded similar perfor-
mance. The results presented in this manuscript rely on
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recalibration of the classifier score, however, in a clinical setting,
where the outcome of a sample is not known, standard batch
correction methods should be used.

RNA-seq analysis. Samples were sequenced with 100 bp single-
end reads using Illumina HiSeq 2000. Raw sequencing data from
different lanes were merged per sample. The sequence data was
clipped for Illumina adapter sequences using Trimmomatic (Lohse
et al, 2012). Reads were aligned to the 1000 genomes hg19 build 37
reference annotation using Tophat (Kim et al, 2013) v2.0.4 with
default parameters and Bowtie (Langmead et al, 2009) v0.12.8.

Gene-level read counts were performed using genomeCover-
ageBed from Bedtools (Quinlan and Hall, 2010) v2.16.2 using
RefSeq gene annotations. Differential expression was performed
using the R Bioconductor package edgeR (Robinson et al, 2010).
The significance threshold used was FDR (Benjamini–Hochberg
adjusted P-value) of 0.05.

Prediction of miR targets. miRNA target genes were identified
using a suite of five prediction algorithms (miRanda, miRDB,
miRWalk, RNA22 and TargetScan) included as the default search
set in miRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/
mirwalk/). For each miRNA, potential target genes were selected
on the basis of being identified by three or more prediction
algorithms and downregulated more than two-fold in our UCB
expression analysis. As it is becoming apparent that a particular
gene can be regulated by the coordinated action of a number of
miRNAs (Krek et al, 2005), we decided to compile a list of genes
that were also targeted by at least three of our six miRNAs.

RESULTS

To determine the viability of our selected panel of miRNAs as
biomarkers for detecting UCB recurrence, we profiled a panel of 12

miRNAs using RT–qPCR in 81 patient samples (clinical char-
acteristics summarised in Supplementary Table S2). These included
patients with active UCB (n¼ 30; cancer-present group) and
patients with a history of UCB but no recurrence at cystoscopy
(n¼ 30; cancer-absent group). A benign control group (n¼ 21)
was used as a reference panel to establish baseline levels of miRNAs
present in benign urine. Figure 1 shows that all miRNAs except for
miR129 were present at detectable levels in at least one sample
from the cancer cohorts. All but one sample showed at least one
miRNA at detectable levels in the urine. Unsupervised hierarchical
clustering in Figure 1 also demonstrates a reasonable separation of
patients with active UCB from non-recurrers. To explore this
further, we used a comparison of the expression of each of the
miRNAs between those patients with active UCB (tumour present)
and those with a history of UC but no recurrence (tumour absent)
as a measure of suitability of these miRNAs to detect the presence
of a tumour in urine during follow-up. Differential expression
analysis of the miRNAs (Supplementary Table S3), between the
tumour present and tumour absent groups showed that 8 of the 12
miRNAs showed significantly higher expression in the tumour
present group than the absent group suggesting that these miRNAs
may be useful as biomarkers to distinguish the two groups.

An accurate and robust clinical test for detecting the presence of
a tumour may not require measurement of all of these miRNAs,
but rather a subset given that related miRNAs in the set may
provide redundant information. Therefore, to determine the
minimum number of miRNAs for accurate prediction of the
presence of a tumour, we carried out a procedure whereby we built
and tested the performance of different classifiers using increasing
numbers of miRNAs. This analysis showed that performance in
terms of AUC and accuracy did not increase significantly beyond
the use of six miRNAs (Figure 2A). Therefore, we opted to build
our biomarker test using these six miRNAs. To find the precise set
of miRNAs that provided the best performance when
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Figure 1. Heatmap of miRNA expression in urine (Ct, denoted as value) for patients with active UCB (tumour present) and patients with a
previous history of UCB that have not recurred (tumour absent).
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distinguishing samples with tumour present vs those with tumour
absent, we applied a three-fold classification scheme, repeated 100
times to measure those miRNAs which were most important for
each iteration. Supplementary Table S4 provides a summary of the
number of times each miRNA was used in these classifiers. From
this, we were able to derive that miR16, miR200c, miR205, miR21,
miR221 and miR34a provided the ability to predict the presence of
a tumour with an AUC¼ 0.85 (Figure 2B).

Next, we validated these six miRNAs in an independent cohort
of bladder cancer patients to check the reproducibility of this
performance. The clinical and pathological characteristics of the
validation cohort are shown in Supplementary Table S5. Both the
groups were age and sex matched. The majority (52%) of tumours
were Ta tumours with 40% and 60% low-grade and high-grade

tumours, respectively. No patients who had a negative cystoscopy
had tumour recurrence within 12 months.

The miRNAs were detected in a high proportion of samples
with miR 16, 21 and 200c detected in all samples in both cohorts.
All miRNAs showed higher expression in the recurrence group as
represented by lower logarithmic amplification thresholds (Ct)
(Figure 3). We applied our classifier for predicting bladder cancer
recurrence trained on the discovery cohort to the validation cohort
resulting in an AUC¼ 0.74, showing that our panel of six miRNAs
provide a robust and reproducible biomarker (Figure 4). In
addition, we also tested the ability of the miRNAs to predict the
presence of tumours for different subsets of our samples to deduce
the effect of tumour size, presentation, T stage and grade on
performance of the classifier. The best performance was observed
when attempting to detect T1-stage tumours (AUC¼ 0.92)
(Figure 5). The most difficult tumours to detect were those with
low-volume (AUC¼ 0.69) disease. For prediction of recurrence in
a clinical setting the most appropriate operational point on the
ROC curve from the validation cohort is at sensitivity 88% and
specificity 48%. This results in a negative predicted value of 75%
and positive predicted value of 63%. This implies that if all patients
who would have been correctly predicted as not having cancer
recurrence, could have been spared a cystoscopy, cystoscopy rates
in the independent validation cohort would have been reduced by
30%. Of all significant tumours (large, invasive or high grade), only
two high-grade cancers would have been missed.

In order to determine the biological relevance of these miRNAs
we conducted a complementary study using RNA-seq-based UCB
gene expression profiling, miRNA target prediction analysis, and
database mining. Changes in gene expression between normal
bladder epithelia and UCB were identified by RNA-seq analysis of
an independent cohort of 21 patients (clinical characteristics
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summarised in Supplementary Table S6). Using the six miRNAs as
part of our biomarker panel, we used a suite of miRNA target
prediction tools to determine the set of genes targeted by the six
miRNAs, to derive a predicted set of 82 candidate genes predicted
to be regulated by the six miRNAs. Given that these miRNAs were
all upregulated in samples, which had UCB present, we would
expect that the majority of the targets of these miRNAs would have
downregulated expression in tumour tissues, relative to benign
tissues. To test this, we observed the expression of these target
genes in our gene expression study, as well as three other bladder

cancer expression studies (Dyrskjøt et al, 2004; Sanchez-Carbayo
et al, 2006; Lee et al, 2010) using data downloaded from Oncomine
(Rhodes et al, 2007). These studies provide comparative gene
expression information for an additional 311 UCB samples
(superficial and infiltrating) against 81 normal epithelial controls.
Unsupervised hierarchical cluster analysis of our 82 candidate
genes co-coordinately regulated miRNA targets revealed that the
vast majority exhibit a significant reduction in both superficial and
infiltrating UCB across the three studies (Figure 6). We ranked the
degree of gene dysregulation across all studies by average percentile
to identify those candidates that were most likely to contribute to
UCB initiation and/or progression. Within the top 11 targets, we
found five that have been shown to exhibit a tumour suppressor
role in various cancers including RECK (Hirata et al, 2012), DMD
(Schmidt et al, 2011), FOXF1 (Lo et al, 2010), ITIH5 (Veeck et al,
2008) and PTCH1 (Li et al, 2012). Interestingly, when the miRNA
regulatory candidates were ranked according to our expression
studies there are 6 genes in the top 25 that do not have expression
data recorded in Oncomine and 3 of these also have potential
tumour suppressor roles including PI16, (Crawford et al, 2008),
AHRR (Zudaire et al, 2008) and FAT3 (Katoh, 2012).

DISCUSSION

A lack of urinary biomarkers and reliance on cystoscopy for
detection of bladder cancer underpin the high cost and morbidity
of bladder cancer detection and surveillance. In this study, we have
shown that profiling for miRNAs in urine can yield a signature that
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Figure 5. ROC curves for prediction using the six miRNA panels for different subsets of samples split by tumour characteristics.
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shows promising performance for non-invasive detection of
bladder cancer especially in the surveillance setting. When
comparing patients with active bladder cancer to non-recurrers,
a 6-miRNA signature (miR 16, 21, 34a, 200c, 205, 221) was able to
predict presence of active cancer with impressive performance
(AUC¼ 0.85) and this validated successfully in an independent
cohort (AUC¼ 0.74). The performance of this miRNA classifier
was significantly better for larger tumours (AUC¼ 0.81 vs
AUC¼ 0.69), and in tumours with higher T-stage (AUC¼ 0.92
vs AUC¼ 0.72).

Non-invasive blood and urine-based biomarkers are being
investigated in several cancers. However, as the majority of bladder
cancers are superficial, blood-based markers are less likely to be
useful to detect tumours. In addition, since bladder tumours are in
direct contact with urine, it represents the ideal body fluid
for profiling of non-invasive biomarkers of bladder cancer.
Gene-based biomarkers are likely to show significantly better
performance in this regard as thousands of genetic changes can be
accurately detected at once compared with lower throughput
protein-based biomarkers. Protein-based biomarkers are also more
likely to be affected by benign conditions such as infection and
inflammation, which are very common in the lower urinary tract.

Other studies profiling miRNA expression in urine of bladder
cancer patients have been performed, however, they have shown
mixed results regarding the utility of miRNAs as urinary biomarkers
of cancer. While these studies compared bladder cancer with non-
cancer control populations and found that miRNA can sensitively
distinguish the bladder cancer samples from controls, this comparison
is not a clinically relevant setting for predicting tumour recurrence
(Hanke et al, 2010; Miah et al, 2012; Wang et al, 2012; Yun et al,
2012). Rather, a comparison of urine from patients with a recurrence
vs those who have had a previous history of bladder cancer but are
disease free at time of collection, is a more suitable cohort. In addition,
the specificity in several studies has been low and this may be due to
heterogeneous control groups, which include patients with haema-
turia, other benign urological conditions, benign inflammatory and
infective changes.

To our knowledge, few studies have assessed biomarkers for
bladder recurrence using a suitable patient cohort. Yun et al
(2012), provided the first indication that miRNAs could be used in
a surveillance setting, showing that miR-200a provided prognostic
potential in predicting recurrence, however, these findings were
not validated in an independent cohort. Su et al (2014) reported
the first attempt to predict bladder cancer recurrence using
methylation profiling of three target genes in urine from a clinically
relevant surveillance patient cohort. In this important study, they
analysed 368 urine sediment samples serially collected from 90
patients for the methylation status of the three targeted regions and
found an impressive discrimination between patients with and
without cancer with AUCs of 0.90 and 0.95, sensitivities ranging
from 80 to 86% and specificities from 89 to 97% from their testing
and validation sets, respectively. However, as the validation set
was derived from the same patient cohort from which, the classifier
was generated, there remains the possibility that the performance
of the model may be artificially inflated due to over-fitting, a
phenomenon that can only be avoided with a truly independent
validation group.

We attempted to address these problems by using balanced
cohorts of recurrers to non-recurrers, as well as using an
independent validation cohort. The importance of independent
validation of gene expression signatures has been highlighted
previously (Lauss et al, 2010) and remains one of the central
reasons that despite many promising investigational biomarkers,
none has been translated to the clinic in the management of
bladder cancer (Hong et al, 2014; Sapre et al, 2014). We also
employed a principled approach for selection of miRNAs for
profiling. As is seen in Supplementary Table S1, the miRNAs
selected for profiling in this study systematically represent a diverse
range of processes that contribute to tumourigenesis such as
differentiation, apoptosis, cell cycle control, invasion and metas-
tasis. Selected miRNAs were also expressed in several other
epithelial cancers, with 10 having previous studies reporting
involvement in bladder carcinogenesis and hence is likely to be
more biologically relevant. Bladder cancer is a heterogeneous
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Figure 6. Heatmap of predicted miRNA target genes. The heatmap represents fold changes for predicted miRNA target genes in superficial vs
infiltrating expression sets. Our RNA-seq data set (Sapre; unpublished) is shown compared with data sets obtained from Oncomine (Dyrskjøt et al,
2004; Sanchez-Carbayo et al, 2006; Lee et al, 2010). Genes were clustered using hierarchical clustering using Euclidian distance and complete
agglomeration.

BRITISH JOURNAL OF CANCER Urinary microRNAs in bladder cancer

460 www.bjcancer.com | DOI:10.1038/bjc.2015.472

http://www.bjcancer.com


disease especially at different spectra of the disease and such a
multi-marker strategy representing various pathways and processes
is more likely to yield suitable biomarkers for bladder cancer
(Bartsch et al, 2010; Mitra et al, 2013).

We have also used some novel ways of normalising data in this
study. Initial use of RNU48 as an endogeneous control showed that
the expression of RNU 48 was more varied amongst samples than
the cancer miRNAs (data not shown). One of the reasons, RNU48
was unable to be used as an endogeneous control as in previous
tissue studies could be due to the fact that the amount of RNA
isolated from urine is very small compared with mRNA expression
or the amount of miRNA isolated from tissue studies. Hence the
novel approach of normalising to osmolality was chosen as urine
osmolalities are significantly different based on clinical circum-
stance and can make large differences when measuring small
amounts of biomarkers such as miRNAs in urine. Batch correction
using prinicipal components analysis was used to correct for
systematic errors in sample processing and analysis.

By employing these procedures and ensuring a high sensitivity
(88%) for detection of recurrers, albeit at the expense of a less-
specific test (48%), we believe we provide a robust test that shows
promise for use in a clinical setting. In addition, we also provide
evidence for the functional implications of these miRNAs in
disease recurrence. There is a growing body of evidence which
indicates that a particular gene will be co-ordinately regulated
by multiple miRNAs (Krek et al, 2005). Therefore we used gene
expression profiles in a cohort of bladder cancer patients, to link
our miRNA biomarkers, with their putative target genes. In order
to select targets that were functionally relevant to UCB we only
screened those genes that were downregulated in our expression
analysis and then ranked them according to three other global
UCB gene expression studies. Within the top 10% of ranked
targets, nearly half have been shown to exhibit tumour suppressor
function. Regardless of whether these are bona fide miR targets, the
fact that they are both downregulated and operate in disparate
pathways is supportive of a multifactorial etiology for UCB.
Broader examination of the target list revealed five highly
disregulated genes that are involved in hedgehog (HH) signalling,
namely PCTH1, FOXL1, BCL2, CCND2 and ZEB2. PCTH1 acts as
the canonical HH receptor and FOXF1, BCL2, CCND2 and ZEB2
are targets of GLI1 transcription factor that mediates HH signalling
(Katoh, 2009). It has been shown that the HH signalling pathway is
constitutively activated in many urothelial cell lines and correlates
with UCB progression (Fei et al, 2012). From this it would be
expected that the downstream elements FOXL1, BCL2 CCND2
and ZEB2 should be upregulated. The fact that there are
downregulated, however, is supportive of posttranscriptional
regulation, perhaps by a mechanism that involves miRNA.
In further considering the role of FOXF1, this gene also functions
as an inhibitor of DNA replication, a process that increases the
incidence of chromosomal aberrations including DNA rearrange-
ments. Genomic instability is an early hallmark of UCB that
distinguishes Ta from XT1 tumours. In addition to deregulation of
a number of tumour suppressor genes we also observed repression
of a number of oncogenic genes, particularly in the BCL2 and FGF
(FGF2, FGF23, FGFR1, FGF7) pathways. While we feel that this is
not likely to influence progression of UCB it is informative about
the type of therapies that are unlikely to be effective for UCB
treatment or management.

CONCLUSION

This study reveals the merits of screening for specific combinations
of miRNAs in urine from bladder cancer patients in the
surveillance setting as a potential tool for reducing the morbidity

and costs associated with current procedures, and now merits
prospective evaluation. Limitations of this study include a small
amount of samples taken from patients with initial presentation
and the limited number of samples used in the cohorts. A larger
prospective study in the surveillance cohort is currently planned.

As far as we are aware this is also the first study to validate
findings in an independent surveillance patient cohort and
correlate it to gene expression in data from independent groups.
This suggests that future validation studies with this panel of
miRNAs as well potentially in combination with other urinary
biomarkers (Su et al, 2014) may hold real promise for clinical
translation in the not too distant future.
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