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Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide
and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number
of SCC patients are diagnosed at advanced stages with local invasion and distant
metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in
cancer therapy via the targeting of immune checkpoint molecules such as programmed
cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies
directed against these immune targets have provide survival benefit in a growing list
of cancer types. Currently, there are two immunotherapy drugs available for cutaneous
SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block
PD-1 thereby promoting T-cell activation and/or function. However, the success rate
of these checkpoint inhibitors currently remains around 50%, which means that half of
the patients with advanced SCC experience no benefit from this treatment. This review
will highlight the mechanisms by which the immune checkpoint molecules regulate the
tumor microenvironment (TME), as well as the ongoing clinical trials that are employing
single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss
the regulation of additional pathways that might promote superior therapeutic efficacy,
and consequently provide increased survival for those patients that do not benefit from
the current checkpoint inhibitor therapies.

Keywords: cutaneous squamous cell carcinoma, immunotherapy, tumor microenvironment, checkpoint
inhibitors, regulatory T cell, macrophage, IL-33

INTRODUCTION

Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite
the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are
diagnosed at advanced stages with local invasion and distant metastatic lesions (Tromp et al.,
2005). Worldwide, 300,000 new cases are seen each year (Thomson, 2018; Stang et al., 2019).
The most significant risk factor for SCC includes sun exposure and age and is most common in
white male individuals (Que et al., 2018a). Microscopically, SCC can be subcategorized according
to the differentiation status of the epithelium and the presence of metastatic lesions (Que et al.,
2018a). Tumor diameter and perineural involvement are highly associated with mortality risk
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(Que et al., 2018a). The majority of cutaneous SCC can be
surgically removed, however, high risk and advanced SCC
management remained to be standardized (Que et al., 2018b).

The high risk of SCC development observed in
immunocompromised individuals highlights the critical
role of the immune system during skin carcinogenesis (Euvrard
et al., 2003; Asgari et al., 2017; Omland et al., 2018). Conversely,
increased infiltration of specific inflammatory cells, such as
neutrophils, macrophages, and T lymphocytes are associated
with aggressive SCC and metastasis (Duan et al., 2000; Seddon
et al., 2016; Jiang et al., 2019). Such discordant observations
are explained by the great capacity of tumor cells to modulate
the tumor microenvironment (TME) to become a supportive
niche thereby inhibiting anti-tumoral responses (Weber et al.,
2005; Moussai et al., 2011; Maalouf et al., 2012). The CD28-
related inhibitory receptors crucial for T cell regulation, namely
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
programmed cell-death protein-1 (PD-1), are highly expressed
in human SCC samples and associated with cancer progression
(Welsh et al., 2009; Gambichler et al., 2017). Blocking specific
immunosuppressive pathways seems to be the most promising
approach to fight cancer cells. Indeed, PD-1 blockade using
monoclonal antibody has been shown to increase the infiltration
of CD4+ and CD8+ T cells and delays SCC development in
mice (Belai et al., 2014), and the immunotherapy that blocks
the signaling pathway mediated by PD-1 has been approved
for cutaneous SCC. However, a significant proportion of SCC
patients receive no benefit from this therapy (Migden et al., 2018).
Such observations highlight the need for developing alternative
or combinatory targets, that take into account the complexity of
the immune system and the heterogeneity of tumor-infiltrating
leukocytes in SCC (Ji et al., 2020). For example, regulatory T cells
(Tregs) are observed in advanced cancers and also associated with
poor outcomes (Azzimonti et al., 2015). Pre-clinical model of
SCC development is also accompanied by infiltration of Tregs in
the skin and draining lymph nodes (LN), and depletion of these
cells using anti-CD25 significantly impaired SCC progression by
increasing the infiltration of activated CD4+ and CD8+ T cells
in the TME and the production of anti-tumor cytokines such
as IL-12 and IFN-γ (Ramos et al., 2012). Herein, we provide a
comprehensive overview of the interactions between tumor and
immune cells and highlight strategies to identify potential new
targets and biomarkers for immunotherapy in SCC.

CELLULAR COMPOSITION OF THE
TUMOR MICROENVIRONMENT

The SCC microenvironment is comprised of cancerous
and normal epithelial cells, fibroblasts, endothelial cells
(ECs), melanocytes, plasmacytoid, and dendritic cells (DCs),
Langerhans cells, macrophages, myeloid-derived suppressor cells
(MDSCs), natural killer (NK) cells, CD4+ and CD8+ T cells, and
Tregs (Ji et al., 2020). Importantly, the frequency of each cell
type varies considerably between patients, suggesting that the
TME is not static and might be influenced by genetic and other
patient-derived intrinsic factors (Ji et al., 2020). The role of the

TME during SCC tumorigenesis and the mechanisms of immune
escape are summarized in Figure 1.

The stroma adjacent to SCC is composed mainly of ECs
and fibroblasts that create a fibrovascular niche (Ji et al., 2020).
The association between ECs and cancer is frequently studied
since angiogenesis is fundamental for SCC development (Tonini
et al., 2003; Florence et al., 2011; Figure 1A). In addition, it has
been demonstrated that tumor cell increased the expression of
CD200 in ECs, which in combination with its ligand, CD200R
(present in macrophages and DCs), might be a mechanism
leading to immunosuppression in the TME (Belkin et al.,
2013; Figure 1A). Fibroblasts are highly heterogeneous and
multifunctional mesenchymal-derived cells embedded within the
interstitial extracellular matrix that becomes activated during
wound healing, tissue inflammation, and organ fibrosis (Chen
and Song, 2019). Activated fibroblasts in the TME are named
cancer-associated fibroblasts (CAFs) and are identified by the
expression of α-smooth muscle actin (α–SMA), fibroblast-
activation protein α (FAPα), and ferroptosis suppressor protein
1 (FSP-1) (Öhlund et al., 2014). CAFs directly impact the
behavior of tumor cells by increasing the expression of laminin-
332 γ2 chain in tumor cells through activation of the TGF-
β signaling subsequently leading to enhanced cell invasion
(Siljamäki et al., 2020; Figure 1B). CAFs also have a role in
immunosurveillance and tumor escape via CD276 (B7-H3),
which augments Tregs and inhibit cytotoxic CD8+ T cell
responses (Ji et al., 2020) and promote tumor development
by enhancing monocyte chemoattractant protein-1 (MCP-1)–
dependent macrophage infiltration and chronic inflammation
(Zhang et al., 2011; Figure 1B). However, Zhang et al. (2013a)
demonstrated that CAFs can prevent carcinogen-derived tumor
formation by protecting epithelial cells from DNA damage,
suggesting an ambiguous role of CAFs in cutaneous SCC.

During inflammation, neutrophils are among the first
phagocytes to infiltrate the tissue, mostly through CXC
chemokine-mediated chemotaxis, and these cells predominate
in the SCC invasive front (Kruger et al., 2015; Simonneau
et al., 2018; Khou et al., 2020). Progressive infiltration of tumor-
associated neutrophils (TANs) was observed during the evolution
of benign papillomas to established SCC lesions in a chemical
carcinogenesis model, and tumor escape mostly involved the
impairment of anti-tumor CD8+ T cell responses mediated by
high arginase activity, production of reactive oxygen species
(ROS), nitrite (NO), and the induction of PD-1 expression on
CD8+ T cells (Khou et al., 2020; Figure 1C). Similar to CAFs,
TANs can also play an anti-tumoral effect in SCC. Challacombe
et al. (2006) showed that neutrophil depletion increases SCC
development, suggesting their role in mediating anti-tumor
responses. In addition, neutrophils were necessary for the anti-
tumoral effects of the Ingenol 3-angelate in experimental SCC
(Challacombe et al., 2006). Such contradictory roles of these
cells might be explained by the fact that, in the TME, tumor-
derived factors can modulate their phenotype and function.
TANs may acquire either an anti-tumor activity (N1 neutrophils),
and/or a pro-tumoral activity (N2 neutrophils) mediated by TGF-
b signaling (Fridlender et al., 2009; Figure 1C). In a mouse
uterine cancer model, TANs exhibit N2 phenotype and promoted
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FIGURE 1 | Cellular composition of the SCC microenvironment. The SCC microenvironment is comprised of cancerous and normal epithelial cells, fibroblasts,
endothelial cells, and immune cells. Each one of them can exert pro- and/or anti-tumoral effects. (A) Tumor cells produce VEGF that promotes angiogenesis.
Endothelial cells (EC) provide oxygen and nutrients that are essential for tumor cells metabolism and promote immunosuppression via CD200R expression.
(B) Cancer-associated fibroblasts (CAF) impact immunosurveillance and tumor escape via CD276 (B7-H3), contributing to the activation of Tregs and inhibition
cytotoxic CD8+ T cells. CAFS also promote tumor development by increasing the influx of monocytes via MCP-1 release and TGF-β production. (C) Neutrophils are
recruited via CXCL8 chemotaxis. Neutrophils are polarized to N2 phenotype via TGF-β and promote SCC progression mostly by suppressing the activity of cytotoxic
T lymphocytes (CTL) via PD-1/PD-L1 signaling. (D) Tumor-associated macrophages (TAM) are recruited via CCL2 chemotaxis and contribute to the progression of
tumor by producing metalloproteinases (MMP) and recruiting regulatory T cells (Tregs). TAMs are polarized to a pro-tumor phenotype by IL-4, IL-13, and
tumor-derived exosomes. (E) By secreting TGF-β1, SCC inhibits dendritic cells (DC) migration and the ability of DC to mature into a potent T cell activator. Tumor
cells also promote immunosuppression by recruiting myeloid-derived suppressor cells via CXCL5 and M-CSF. (F) CD4+ T cells from a chemically-induced mouse
model of SCC preferentially produce IL-4 and IL-10, promoting immunosuppression by inhibiting Th1 responses and recruiting Tregs. Th17 cells are recruited to the
TME via CCL4 chemotaxis and promote the infiltration of myeloid cells and decrease the infiltration of IFN-γ-producing CD8+ T lymphocytes contributing to the
immunosuppressive niche during SCC.
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tumor growth through elastase release (Mahiddine et al., 2020).
The authors also demonstrated that hypoxia is crucial for N2
phenotype maintenance and tumor oxygenation can revert TANs
phenotype toward N1 (Mahiddine et al., 2020). Tumor-associated
macrophages (TAMs) also represent a significant percentage of
infiltrating phagocyte population in SCC (Kambayashi et al.,
2013; Amôr et al., 2018; Simonneau et al., 2018; Jiang et al.,
2019), and specific depletion of these cells inhibited tumor growth
(Takahashi et al., 2009). The recruitment of monocytes into
the SCC is mediated by CC chemokines such as CCL2 and,
once in the TME, monocyte-derived macrophages are polarized
toward a M1 or M2 phenotype (Pettersen et al., 2011; Caley
et al., 2020). Due to the abundance of Th2-related cytokines
such as IL-13, IL-4, and IL-10, the TME around SCC is often
predominated by M2 macrophages (Linde et al., 2012b; Caley
et al., 2020; Figure 1D). In addition to the TME cytokine profile,
macrophages can also be M2-polarized through the secretion of
tumor-derived exosomes. Exosomes derived from SCC promoted
M2-like macrophage polarization through ERK1/2 signaling
activation (Pang et al., 2020) besides promoting cell survival
after ionizing radiation in vitro (Mutschelknaus et al., 2016;
Figure 1D). Data from breast cancer also suggest that exosomes
are capable of inducing IL-6 secretion, and a pro-survival
phenotype in M2 macrophages, partially via gp130/STAT3
signaling (Ham et al., 2018). Interestingly, exosome-mediated
communication in the TME works in both ways. Macrophage-
derived exosomes increase cell migration and PD-L1 expression
contributing to the establishment of an immunosuppressive
TME (Bellmunt et al., 2019; Figure 1D). The contribution
of TAMs directly to tumor growth occurs in early stages of
carcinogenesis via malignant transformation and proliferation of
epidermal cells. These cells also contribute to the progression of
tumor by producing metalloproteinases (MMP) and increasing
angiogenesis, thus facilitating the dissemination of tumor cells
(Kerkelä et al., 2002; Linde et al., 2012a,b; Kambayashi et al., 2013;
Figure 1D). TAMs can facilitate tumor escape by recruiting Tregs
through the secretion of CXCL9/10/11 (ligands for CXCR3),
CCL4 (ligands for CCR4/8), and CCL20 (ligands for CXCR3
and CCR6), which will further suppress local anti-tumoral
immune responses (Ji et al., 2020; Figure 1D). Depletion of
CCR2-expressing monocytes or macrophages with anti-CSF1R
prevents the spontaneous development of SCC in transgenic mice
(Antsiferova et al., 2017). Similarly, VEGFR-3 ligand blockade
reduced SCC development by decreasing macrophage infiltration
(Alitalo et al., 2013). Together, these findings strongly indicate the
significant role of TAMs during SCC pathogenesis.

Given the importance of DCs in the skin, these cells are
often thought to be the first immune cells to encounter tumor
antigens from SCC (Valladeau and Saeland, 2005). SCC-derived
DCs strongly induce CD4+ and CD8+ T-cell proliferation and
IFN-γ production, thereby promoting the anti-tumoral response
(Fujita et al., 2012). A significant decrease in DC infiltration
has been reported in SCC and this is likely an important
mechanism for tumor escape. By secreting TGF-β1, SCC inhibits
DC migration and the ability of DC to mature into a potent
T cell activator (Figure 1E; Halliday and Le, 2001; Weber
et al., 2005). Further, in vitro stimulation of SCC-derived DCs

showed an impaired ability of these cells to express costimulatory
molecules when compared with DCs derived from normal skin,
suggesting that SCC microenvironment display mechanisms
that contribute to negative regulation in anti-tumor immune
responses (Bluth et al., 2009). In SCC patients, this might be
explained by the high expression of PD-L1 and PD-L2 in DCs
(Jiao et al., 2017) or by the proximity of DCs to Tregs (Jang,
2008). Another myeloid cell that exerts a significant role in
TME is the MDSCs, which promotes tumor progression by
suppressing the effector function of anti-tumor immune cells
from early to advanced stages of SCC (Figure 1E). Elevated
circulating numbers of MDSCs were associated with high-grade
SCC (Seddon et al., 2016). During early stages of tumor initiation
in mice, Maalouf et al. (2012) reported an increased influx of
MDSCs driven by the secretion of epidermal-derived CXCL5
and macrophage colony-stimulating factor (M-CSF) (Figure 1E).
MDSCs were also found in advanced stages of SCC; these cells
express high levels of CD200R+ that may interact with CD200+

tumor cells conferring immune privilege and favoring metastasis
development (Stumpfova et al., 2010).

CD8+ T lymphocytes can directly eliminate tumor cells
through the secretion of cytolytic enzymes, which are essential
mediators of the anti-tumoral response (Nasti et al., 2015).
However, SCC lesions display low frequencies of CD8+ T
cells (Freeman et al., 2014) due, in part, to the presence of
TGF-β, which inhibits CD8+ T cells infiltration and induces
the expression of T cell exhaustion markers such as Tim-3,
CTLA-4, and PD-1 (Weber et al., 2005; Linedale et al., 2017;
Figure 1E). Blockade of PD-1 with monoclonal antibody was
shown to increase tumor-infiltrating cytotoxic T lymphocytes
(CTLs) resulting in anti-tumor activity against SCC growth
(Belai et al., 2014), however, the depletion of CD8+ abrogated
the efficacy of the anti-PD1 mAb treatment (Dodagatta-Marri
et al., 2019), suggesting an association between the efficacy of
PD-1 blockade therapies and the frequency of PD-1+ CD8+

T cells in the TME (Gros et al., 2014; Kansy et al., 2017;
Kumagai et al., 2020).

Mice lacking CD4+ T cells and submitted to UVB-induced
carcinogenesis displayed higher tumor growth associated with
increased inflammation and increased number of p53+ tumor
cells, demonstrating that this subset of T cells has an important
role in controlling inflammation-associated carcinogenesis
(Hatton et al., 2007). During skin carcinogenesis, CD4+ T cells
are recruited via CXCL9- and CXCL10-mediated chemotaxis
(Winkler et al., 2011). However, tumor cells can escape from
T helper-mediated immune responses by polarizing CD4+

cells toward to a pro-tumor phenotype, characterized by Th2,
Th17, and Treg cytokine profiles (Girardi et al., 2004; Zhang
et al., 2013b; Figure 1F). IL-10-depleted mice are protected
from UV-induced skin cancer due to their increased amounts
of IFN-γ and enhanced numbers of CD4+ T cells, indicating
a strong Th1-driven immune response (Loser et al., 2007).
CD4+ T cells from a chemically-induced mouse model of SCC
preferentially produced IL-4 and IL-10 (typical of Th2-type
immunity) and these cells promote immunosuppression by
inhibiting Th1 responses and recruiting Tregs (Yusuf et al.,
2008; Nasti et al., 2011; Figure 1F). Th17 cells are recruited
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to the TME via CCL4 chemotaxis (Ortiz et al., 2015) and
Wang et al. (2010) demonstrated that IL-17 contributes to
skin tumorigenesis directly by increasing hyperproliferation
of epithelial cells. Finally, IL-17 promoted the infiltration of
myeloid cells, and decreased the infiltration of IFN-γ-producing
CD8+ T lymphocytes contributing to the immunosuppressive
niche during SCC (Wang et al., 2010; Figure 1F).

EVASION OF THE IMMUNE RESPONSE:
POTENTIAL TARGETS FOR
IMMUNOTHERAPIES

As discussed above, an effective immune response is critical
to control SCC development and progression (Burton et al.,
2016). To efficiently eliminate SCC, leukocytes must infiltrate the
TME, initiate cell-to-cell interactions so as to exert effective anti-
tumoral functions (Halliday and Le, 2001; Weber et al., 2005;
Ortner et al., 2017). T cell activation involves the engagement
of receptors and co-receptors (Dustin and Shaw, 1999), but this
activation is countered by a series of molecules called immune
checkpoints that are responsible for controlling T cell function
and induce self-tolerance (Yao et al., 2013; Waldman et al., 2020).

CTLA-4 and PD-1 are the most well-studied examples of
T cell immune checkpoint molecules and tumor cells exploit
these molecules to evade host immunity (Miao et al., 2019).
Ipilimumab, an anti-CTLA-4 blocking monoclonal antibody,
was the first immune checkpoint inhibitor to be tested and
approved for the treatment of cancer (Phan et al., 2003). CTLA-
4 is a transmembrane molecule that competes with the co-
receptors B7-1 and B7-2 for CD28 binding and negatively
regulates T cell activation (Brunet et al., 1987; Linsley et al., 1992;
Figure 2A). During photocarcinogenesis, mice treated with anti-
CTLA-4 developed significantly fewer tumors (Loser et al., 2005).
Moreover, mice treated with anti-CTLA-4 developed long-lasting
protective immunity, and in vitro CTLA-4 blockade inhibited the
suppressor activity of UV-induced Tregs, suggesting that anti-
CTLA-4-treated mice were protected from tumor growth due
to the inhibition of Treg function in the TME (Loser et al.,
2005; Figure 2A). Despite the beneficial effects of this therapy
been observed in pre-clinical models of carcinogenesis, and in
patients with melanoma (Hodi et al., 2010), there is presently
only one ongoing (recruiting) clinical trial assessing the efficacy
of ipilimumab in cutaneous SCC (NCT04620200).

T cell activation is also regulated by PD-1 and is mediated
by the interaction with its ligands, PD-L1 and PD-L2 (Freeman
et al., 2000; Latchman et al., 2001), both of which are highly
expressed in SCC (Belai et al., 2014; Varki et al., 2018).
Blocking PD-1 resulted in a potent anti-tumoral response
in a chemically induced SCC model characterized by the
infiltration of activated CD4+ and CD8+ T cells, IFN-γ levels,
and reduced levels of the immunosuppressor cytokine TGF-β
(Belai et al., 2014; Figure 2B). Currently, two FDA-approved
immunotherapies for SCC (i.e., pembrolizumab and cemiplimab)
target the interaction between PD-1/PD-L1 molecules. Despite
reports of adverse events in this trial, approximately half the
patients with advanced SCC responded to cemiplimab therapy

(Migden et al., 2018). Immune checkpoints-based therapies are
of great relevance especially for patients with advanced and
metastatic disease that are not ideal candidates for surgical
excision. A retrospective analysis showed that PD-1 inhibition
produces durable responses among patients with advanced or
metastatic SCC (In et al., 2020). In a multicenter study, the
overall response rate obtained among patients with advanced
SCC was even higher (Salzmann et al., 2020). In both studies, the
dose used was well tolerated and the response rate satisfactory,
therefore adding evidence and encouraging the implementation
of immune checkpoint therapies for patients with advanced and
unresectable SCC lesions.

Besides T cell exhaustion, SCC development is also associated
with the generation of effector Tregs (Clark et al., 2008). Tregs are
characterized by CD4, CD25, and transcription factor forkhead
box P3 (FOXP3) expression and, once activated, these cells
suppress exacerbated immune responses and maintain self-
tolerance (Sakaguchi et al., 2010; Figure 2C). The depletion of
CD25+ Tregs significantly reduced SCC development in mice
(Ramos et al., 2012). Further, the presence of Tregs within
the TME and the levels of PD-1 expression by Tregs directly
correlate with immune evasion (Kumagai et al., 2020) and worse
outcome (Azzimonti et al., 2015). Increased percentage of tumor-
infiltrating Tregs was associated with loss of inflammasome
activation, and SCC development in mice (Gasparoto et al., 2014).
Tregs can be either locally differentiated by TGF-β (Chen et al.,
2003) or recruited via the CCL4/CCL5-CCR5 axis (de Oliveira
et al., 2017; Figure 2C). Tregs inhibitory function is mediated
by IL-10 (Loser et al., 2007), and by the inhibition of CD4+ and
CD8+ T cells proliferation and IFN-γ secretion (Lai et al., 2016;
Figure 2C). Importantly, in mice, anti-TGF-β monotherapy
was more efficient (approximately 20% of complete regression)
than anti-PD-1 monotherapy (<3% of complete regression)
and promoted long-term immunity against SCC (Dodagatta-
Marri et al., 2019), therefore inhibition of Tregs recruitment
or differentiation using antagonistic antibodies against CCR5
or neutralizing antibodies against TGF-β are relevant strategies
for immunotherapy (Figure 2D). Moreover, although anti-PD-
1 monotherapy elevates immunosuppressive Tregs in chemically
induced SCC, 60% of complete regression in established
tumors was achieved when combined with anti-TGF-β therapy,
highlighting the benefits of combinatory immunotherapies for
SCC (Dodagatta-Marri et al., 2019). It has recently been
demonstrated that PD-1 blockade induces both recovery of
dysfunctional PD-1+ CD8+ T cells and enhanced PD-1+ Treg
cell-mediated immunosuppression (Kumagai et al., 2020). This
study suggests that the balance of PD-1 expression between
CD8+ effector T cells and Tregs in the TME should be considered
as a clinically meaningful biomarker to predict the efficacy of
PD-1-blocking immunotherapy in various cancers including SCC
(Aksoylar and Boussiotis, 2020; Kumagai et al., 2020).

Another recently emerging area in cancer immunotherapy has
focused on macrophages since these cells frequently infiltrate
solid tumors, including SCC, and have a significant impact
on prognosis (Takahara et al., 2009; Li, 2016; Figure 2E).
Indeed, colony-stimulating factor 1 (CSF-1) is a key regulator
of monocyte/macrophage recruitment and differentiation in the
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FIGURE 2 | Continued
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FIGURE 2 | Evasion of the immune response and potential targets for immunotherapies. (A) Via the interaction between PD-1/PD-L1 and CTLA-4/B7, SCC cells
inhibit CD8+ T cell activation and escape from immunosurveillance. (B) Monoclonal antibodies block PD-1 (pembrolizumab and cemiplimab) and CTLA-4
(ipilimumab) thereby promoting T-cell activation and/or function. (C) Tregs are recruited to TME via CCL4 and CCL5 or locally differentiated by TGF-β. The presence
of Tregs within the TME and their levels of PD-1 expression directly correlate with immune evasion. (D) To overcome Treg-induced immunosuppression it is
necessary to block its recruitment and/or local differentiation by inhibiting CCL4-5/CCR5 signaling or by neutralizing TGF-β. (E) Monocytes are recruited into the TME
via CCL2 and CSF-1 chemotaxis. Macrophages promote SCC progression by creating an immunosuppressor microenvironment. (F) Pexidartinib and trabectedin
are two molecules known for inhibiting macrophage recruitment into the TME. Another macrophage-based therapy involves the induction and sustained polarization
of macrophages toward anti-tumoral phenotype M1. (G) In mice, IL-33 promotes SCC development by increasing M2 macrophage infiltration and inhibiting NK cell
cytotoxicity. (H) Using the soluble form of the IL-33 receptor, sST2, it is possible to disrupt the IL-33/ST2 signaling and promote anti-tumor immune response
mediated by M1 macrophages and NK cells.

TME and promotes malignancy (Lin et al., 2001; Figure 2E).
In a syngeneic mouse model of melanoma, pexidartinib, a
potent inhibitor of the CSF-1 receptor (CSF-1R), conferred
anti-tumoral response associated with TAMs reduction (Mok
et al., 2014; Figure 2F). Pexidartinib is approved for the
treatment of tenosynovial giant cell tumor (Lamb, 2019) and
is currently being tested in several clinical trials, none of them
for SCC but with great potential (Benner et al., 2020). CCL2,
also known as MCP-1, is another monocyte chemoattractant
that promotes carcinogenesis by recruiting TAMs and inducing
immune evasion through PD-1 signaling (Yang et al., 2020;
Figure 2E). A phase II trial of trabectedin, a small molecule
that specifically inhibits CCL2 synthesis, showed effectiveness
as a single agent in platinum-sensitive patients with advanced
recurrent ovarian cancer (Krasner et al., 2007; Figure 2F).
Although trabectedin has been used to treat ovarian and
breast cancer as well as soft tissue sarcomas (D’Incalci and
Zambelli, 2016), its effect against SCC has yet to be investigated.
While inhibition of macrophage recruitment might seem
promising, M1-polarized macrophages exert potent anti-tumoral
immune responses. Accordingly, M1-polarization of TAMs
reversed the immunosuppressive state of TAMs and promoted
tumor regression in models of ovarian cancer, melanoma,
and glioblastoma (Zhang et al., 2019; Figure 2F). However,
macrophage-based therapies remain highly challenging due to
the plasticity of these cells (i.e., M1 macrophages can easily
switch for M2 phenotype upon stimulus) (Linde et al., 2012a).
To overcome this, sustained M1 differentiation is required and
nanoparticles containing IL-12 promote macrophage conversion
from the M2 to the M1 phenotype in the TME. Notably, this
strategy has protected mice from melanoma development (Wang
et al., 2017; Figure 2F). Shields et al. (2020) also successfully
demonstrated that sustaining the M1 phenotype in the TME
effectively controlled melanoma progression. Interestingly, this
research team developed discoidal particles called “backpacks”
that attach to macrophages and constantly deliver IFN-γ to
sustain the M1 phenotype (Shields et al., 2020; Figure 2F).

Lastly, but still of considerable importance, soluble
components of the TME, such as cytokines, chemokines,
and growth factors exert a critical role during tumorigenesis
(Dranoff, 2004). For example, IL-33 is abundantly expressed
in epithelial cells and several other cell types (Hammad and
Lambrecht, 2015), and as such it appears to be a great target for
cutaneous SCC therapy. Due to its central role in mediating type
2 innate and adaptive immunity via the ST2 receptor, IL-33 has
been extensively studied in cancer and inflammatory diseases
(Liew et al., 2016). In mice, IL-33 promotes SCC development

by increasing M2 macrophage infiltration and decreasing NK
cell cytotoxicity (Amôr et al., 2018; Figure 2G). IL-33 promotes
differentiation of macrophages that in turn, send paracrine
TGF-β signals to tumor cells consequently inducing invasive
behavior (Taniguchi et al., 2020; Figure 2G). In addition, IL-33
can acts directly on tumor cells to enhance chemoresistance
(Fang et al., 2017), highlighting that IL-33/ST2 targeting should
be considered further for SCC therapies (Figure 2G). One
possible way to disrupt the IL-33/ST2 signaling is via the
soluble form of the IL-33 receptor, sST2, which acts as a decoy
receptor and prevents the binding of IL-33 to ST2L on the
cell surface (Hayakawa et al., 2007; Griesenauer and Paczesny,
2017; Figure 2H). Although the effects of sST2 administration
have not been tested in SCC, its potential therapeutic benefits
were demonstrated in colorectal carcinoma (Akimoto et al.,
2016). The reduced tumor growth observed in sST2-treated mice
was associated with decreased angiogenesis, and inhibition of
macrophage infiltration and M2 polarization (Akimoto et al.,
2016; Figure 2H).

CONCLUDING REMARKS AND
PERSPECTIVES

Growing evidence highlights the crucial contribution of immune
and non-immune cells during SCC pathogenesis, most notably
in the TME, and the targeting of this supportive tumor niche
is an important part of emerging therapies in this cancer. As
the understanding of the mechanistic events that permit tumor
evasion from immunosurveillance emerges, comprehensive
treatment methods that enhance anti-tumor immunity and the
sensitivity of tumor cells to chemotherapies will revolutionize
the therapy landscape in SCC. Although emerged as the
advent for cancer treatment, one of the major limitations
of immunotherapy is the development of acquired resistance
to treatment due to triggering of compensatory mechanisms
resulting in tumor relapse/progression. For example, in SCC, the
anti-PD-1 treatment that is supposed to reduce T cell suppression
also promotes the infiltration of Tregs, which are known to
directly assist tumor escape in experimental SCC (Dodagatta-
Marri et al., 2019). Similarly, in head and neck SCC (HNSCC),
PD-1 blockade culminated in Tim-3 upregulation, supporting
a circuit of compensatory suppressor signaling allowing tumor
escape (Shayan et al., 2017). Therefore, combinatory therapies
are the more promising future strategies in SCC therapy. Clinical
data have shown that melanoma patients treated with anti-PD-1
and anti-CTLA-4 monoclonal antibodies (mAb) presented tumor
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reduction (Wolchok et al., 2013; Postow et al., 2015).
Similarly, simultaneous blockade of GITR and PD-L1
demonstrated safety and efficacy against advanced solid
tumors (Heinhuis et al., 2019). Results from over 50% of
patients with recurrent or metastatic HNSCC have shown
disease stabilization after treatment with motolimod, an
agonist of TLR8 which stimulates NK, DC, and monocytes,
in combination with cetuximab in a phase Ib clinical trial
(Chow et al., 2017). Altogether, these studies represent
an exciting new horizon that could be also tested for
cutaneous SCC treatment.

Additionally, the next-generation sequencing (NGS)
technology has emerged as one of the most powerful tools for
cancer research since enables efficient and accurate detection
of somatic mutations frequently associated with treatment
resistance (Łuksza et al., 2017). Using the NGS approach,
Lobl et al. (2020) identified the co-occurrence of ERBB4 and
STK11 mutations in localized cutaneous SCC, which prompted
the researchers to suggest a new therapeutic approach by
inhibiting CDH1 and the Wnt pathway. Besides identification
of tumor mutational burden, NGS also allows the prediction of
response and development of a personalized treatment that might
significantly improve outcomes for cancer patients (Holbrook
et al., 2011; Roychowdhury et al., 2011; Chen et al., 2019).
Based on that, NGS could and should be incorporated to assess
mutations not only in tumor cells but also in immune cells of SCC
patients that will help to overcome the differences of response rate
observed among patients with similar malignancy and treatment,
leading to the development of personalized therapies improving
clinical outcomes.

Herein, we provide a range of alternative targets focused on
the regulation of immune cells beyond T cells to promote anti-
tumoral responses. However, a reasonable amount of the work
regarding immunological therapeutic strategies remains to be
evaluated against SCC, highlighting opportunities for therapeutic
intervention. Since the composition of the TME is heterogeneous
and result in different TME subclasses not only among patients
or tumor types but also within a patient’s tumor, it is important

to consider the differences in the spatial localization, density, and
functional orientation of immune cells in the TME, in order to
predict and improve the clinical benefits [reviewed extensively by
Pérez-Ruiz et al. (2020)]. Most exciting to us are experimental
strategies around macrophage- and/or IL-33-based therapies in
SCC. We concede that most of the data regarding these strategies
are derived from experimental models with little clinical insight,
but animal models do provide key early insights into the role
of immune cells and soluble factors in SCC tumorigenesis.
We contend that these limitations will be lessened as further
translational investigations using human subjects and clinical
trials are implemented to better assess the efficacy of alternative
strategies for SCC immunotherapy.
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