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Abstract

Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of
activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback
and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons
between predicted and observed consequences of motor commands produce two forms of prediction error. How do these
errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when
high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory
prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their
predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring
motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became
more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor
commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only
locally. Because we found that there was a within subject correlation between generalization patterns and sensory
remapping, it is plausible that during adaptation an individual’s relative reliance on sensory vs. reward prediction errors
could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only
sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.
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Introduction

Our motor commands generally produce two kinds of

consequences: a sensory consequence in terms of activity in our

primary sensory organs (e.g., vision, proprioception), and a

rewarding consequence in terms of forming a subjective measure

of utility or usefulness of these sensations (e.g., release of

dopamine). For example, while dancing, the motor commands

that move our body produce proprioceptive feedback, while

internal evaluation of that feedback indicates a pleasurable

experience. These two consequences of the motor command form

the basis for two kinds of prediction error: a sensory prediction

error, and a reward prediction error. In principle, learning from

sensory prediction error should alter an internal model that

predicts the sensory consequences of motor commands, i.e., a

forward model [1,2]. In contrast, learning from reward prediction

error should alter the valuation of the sensory states that are the

consequence of those motor commands, i.e., a value function.

Motor adaptation studies often focus on learning from sensory

prediction error [1,2,3,4,5,6,7], despite the fact that people are

also rewarded for each movement. Similarly, studies that focus on

learning from reward prediction error (e.g., decision making tasks)

often do not consider potential sensory prediction errors [8,9,10].

It seems rational that most learning would rely on both kinds of

error. Here, we focus on a simple motor adaptation task and

consider a mathematical framework in which both reward and

sensory prediction errors could contribute to the trial-to-trial

change in the motor commands. We attempt to ask whether

learning from these two distinct signals can be behaviorally

dissociated.

Our idea is that while motor commands might change because

of sensory or reward prediction errors, only in the former case

would there also be a change in the map that predicts the sensory

consequences of the motor command. We focus on a well studied

motor adaptation protocol: reaching in the context of visuomotor

perturbations. While there have been numerous models of motor

adaptation [4,5,11,12,13,14], to our knowledge all current models

assume that the process of motor adaptation is driven by sensory

prediction errors. Our objective is to test the hypothesis that

during motor adaptation, learning from sensory prediction errors

leaves a behavioral signature that is distinct from learning from

reward prediction errors.

Results

Consider a typical adaptation task in which the learner

experiences a perturbation. The limb is covered by a screen to

prevent direct observation of the hand, and a cursor that
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represents hand position undergoes a kinematic rotation so that

when the hand moves straight ahead, the cursor moves slightly to

the left (Fig. 1A). Reward is provided if the cursor passes through

the target area. In this reach adaptation task there are two kinds of

error: the difference between the expected and observed visual

feedback of the hand (i.e. visual cursor), and the difference

between the expected and observed success of the reach. Our

hypothesis is that learning mechanisms engaged by the two types

of error may be behaviorally dissociable.

To examine this hypothesis, we recruited two groups of subjects

in Experiment 1. One group (RWD) was provided only with

information regarding whether they succeeded or failed at each

trial (reward r = 1 or 0), indicated by explosion of the target, and

received no other visual feedback regarding their movement

(Fig. 1B). Another group was provided with full visual feedback of

the cursor as well as the reward so that they were able to use both

potential error signals (ERR). We asked two questions: 1) In the

ERR paradigm in which sensory consequences of motor

commands were available, would adaptation of the motor

commands accompany a change in the motor-sensory map (i.e.,

a change in the perceived sensory consequences of motor

commands), and 2) in the RWD paradigm in which sensory

consequences of motor commands were unavailable, would

adaptation of the motor commands take place but without a

change in the motor-sensory map.

Fig. 1C shows data from representative subjects in the ERR and

RWD paradigms. In this figure, the yellow line in the ERR group

is the ideal reach angle (shifts gradually up to 8u). The gray area

indicates the region that provided reward, which shifts with the

Author Summary

It is thought that motor adaptation relies on sensory
prediction errors to form an estimate of the perturbation.
Here, we present evidence that motor adaptation can be
driven by both sensory and reward prediction errors. We
found that learning from sensory prediction error altered
the predicted consequences of motor commands, leaving
behind a sensory remapping, whereas learning from
reward prediction error produced comparable change in
motor commands, but did not produce a sensory
remapping. It is possible that the neural basis of learning
from sensory and reward prediction errors are distinct
because they produce different generalization patterns.

Figure 1. Experimental setup. (A) In the reaching task, subjects held a handle of a robotic arm and made ‘shooting’ movements to move a cursor
through a target at 10 cm. The arm was covered by a screen. During adaptation, the cursor-hand relationship was perturbed so that the cursor
position was rotated around the center at the start position. The coordinate system is drawn on the left side of the robot (invisible for subject) where
the clockwise rotation around the start is positive. The cumulative score of each block was provided to the subject. In the localization task, subjects
pointed with their left hand over the screen to the remembered location of their right hand as it crossed the (unseen) target area in the previous trial.
In the localization task, the start box was not visible. (B) Experimental paradigms. In ERR, full visual feedback about the cursor position was provided
as well as the animation and the sound indicating target explosion regarding success or failure of the task. In EPE, while the cursor was unseen during
the shooting movement, it was presented for 200 ms as the hand crossed an imaginary circle with the radius equal to the target, providing endpoint
error with respect to the target. The reward signal was also provided as in the ERR condition. In RWD, no visual feedback about the cursor was
provided. All information that subjects were able to use was the success or failure of the task. (C) Reach angles of three representative subjects during
the adaptation phase. The yellow line in the ERR group is the ideal reach angle, which shifted gradually up to 8 degrees by the visual rotation. The
gray area indicates the reward region, which shifted with the same schedule in the three groups. (D) Reach variability in the final 100 trials for each
group. There are the significant differences between ERR and EPE (t-test, p,0.003) as well as between EPE and RWD (t-test, p,0.001). (E) Results of
the localization task for the three subjects. The reach trajectory is plotted for the POST condition. Red line is for the RWD subject, blue line is for the
ERR subject, and green line is for the EPE subject. The circle around the reach trajectory is the averaged pointing location in the localization trial.
doi:10.1371/journal.pcbi.1002012.g001
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same schedule in both groups. The subjects were provided with

different kinds of error feedback, but updated their motor

commands by roughly the same amount (group data, mean

change in reach direction, 7.49u for RWD and 7.63u for ERR, not

significantly different from each other p.0.8, t-test). The total

amount of adaptation of the two groups was comparable.

However, the variability of reach angles was larger for the

RWD subject (Fig. 1C), and this was consistent across the entire

group (Fig. 1D).

Before and after this adaptation task (PRE and POST

adaptation), we measured how subjects predicted the sensory

consequences of their motor commands. In this localization part of

the task, after subjects completed a reach with their right hand,

their hand was returned to the center location, and they were then

asked to estimate the location of their right hand in the previous

trial by pointing with their left hand over the screen (Fig. 1A).

During the localization neither the cursor nor the target was

projected. The localization data for representative subjects are

shown in Fig. 1E. As a consequence of adaptation, the subject in

the ERR group had a sensory remapping in which she estimated

her hand to be to the left of its actual position. In contrast, the

subject in the RWD group had little or no sensory remapping,

suggesting that the changes in the motor commands did not

accompany a change in the motor-sensory map.

Fig. 2A shows the group data for the localization task. We

compared the change in the estimate of hand position from the PRE

to the POST adaptation condition and found that the subjects in the

ERR group estimated their hand position to have changed by

8.8u+/20.6u to the left of actual position. In contrast, in the POST

condition of the RWD group, the subjects had no significant change

in their sensory estimates (there was a significant difference between

PRE and POST in the ERR group p,0.0001, whereas the

difference in the RWD group was not significant p = 0.8).

If the sensory and reward prediction errors engage learning in

distinct neural structures, then adaptation might result in distinct

generalization patterns [15,16,17,18]. To test this idea, we

recruited subjects for Experiment 2 and quantified the patterns

of generalization that accompanied adaptation. In the adaptation

session, the target was projected at 0u (straight ahead). In the pre

and post adaptation periods the target appeared randomly at

various angular displacements (230 to 30 deg). For these

generalization targets, we provided neither the cursor nor reward

information. Fig. 2B plots the average reach angle across subjects

for each target direction. We found that the RWD group had a

narrower generalization function than the ERR group (ANOVA,

F(1,126) = 9.632, p = 0.005). In summary, in the RWD condition

the learning that produced changes in the motor commands

accompanied a narrow generalization function and no change in

the map that predicted the sensory consequences of motor

commands. In contrast, in the ERR paradigm the learning that

produced changes in the motor commands accompanied a broad

generalization function and a significant change in the perceived

sensory consequences of motor commands.

In the RWD paradigm the binary feedback signal carried much

less information than the continuous sensory error signal available

in the ERR paradigm. This may have forced the subjects to adopt

a completely new strategy, making the learning that we see in the

RWD paradigm irrelevant for a typical adaptation paradigm. In

Experiment 3 we considered a paradigm (EPE) in which the visual

cursor was available only at the endpoint of the movement and

was otherwise invisible during the reach. In this new experiment

we measured the localization change (as in Exp. 1) and the

generalization (as in Exp. 2), attempting to test the results of

experiments 1 and 2 in the same population.

Fig. 1C shows the reach angles of a representative subject in the

EPE group. The adaptation in the EPE group was comparable

with the ERR group (mean change in reach direction, t-test,

p = 0.64), i.e., the motor commands in the three groups adapted by

approximately the same amount. Interestingly, in the localization

task the subject in the EPE group had a sensory illusion that was in

between the ERR and RWD groups (Fig. 1E). In the group data in

the POST adaptation condition, the strength of the localization

illusion in the EPE group was weaker than in the ERR group (t-

test, p,0.007), but stronger than the RWD group (t-test, p,0.006)

(Fig. 2A). The generalization of the EPE group appeared to be in

between ERR and RWD (we did not see a significant difference

from either ERR or RWD, Fig. 2B). In Experiment 2 we had

found that learning from reward produced a narrow generaliza-

tion, while in Experiment 1 we had found that learning from error

produced a motor-sensory remapping. In Experiment 3 we had

the means to test a crucial prediction: across subjects, individuals

who relied more on reward (narrow generalization) should show a

smaller motor-sensory remapping. Indeed, we found a significant

correlation between the amount of generalization and the

localization illusion across subjects (Fig. 2C). That is, it appeared

that when a subject had a larger sensory illusion (suggesting that

learning was driven more by sensory prediction errors), they also

had a wider generalization.

To explore the mechanism behind these findings, we considered

a model of adaptation that relied on both sensory and reward

prediction errors (Fig. 3A). Suppose that the brain generates a

motor command u, resulting in a change in the state of the hand h,

which also depends on a perturbation p. The nervous system

senses the resulting motion of the limb y as well as whether that

motion was rewarded r. Here, we considered a learner who

updates motor command u to maximize reward. In theory,

producing the motor commands that maximize probability of

reward may rely on two kinds of learning: forming an optimal

action selector, and forming an optimal state predictor (Fig. 3B).

On trial k, action selector outputs motor commands u(k). This

depends on the estimated perturbation p̂p(k) (which depends on

sensory prediction error y(k){ŷy(k)), as well as the reward

prediction error dk. Therefore, in theory the trial-to-trial change

in the motor commands is driven by two different error signals: the

state estimator updated by the sensory prediction error, and the

action selector updated by the reward prediction error.

An important prediction from this model is that reliance on the

sensory prediction error is modulated by the Kalman gain, which

is the ratio of estimation uncertainty to observation uncertainty.

Therefore, if the uncertainty of visual feedback is large, the credit

on the sensory prediction error becomes small, which makes the

credit on the reward prediction error larger.

Fig. 3C shows results of simulations for different uncertainty

levels of visual feedback. When the learner is provided with high

quality visual feedback y (analogous to ERR condition, Fig. 3C left

column), it updates its estimate of perturbation p̂p(k), resulting in a

motor-sensory remapping. As a result, the estimated hand position

ĥh is near the location of the cursor and different from actual hand

position h. In contrast, when the learner is provided with uncertain

visual feedback (analogous to EPE condition, middle column in

Fig. 3C), the learner alters the motor commands using both the

sensory prediction error and the reward prediction error. In this

case, the adaptation produces a partial sensory remapping (h is not

very different from ĥh in the middle column of Fig. 3C). Finally,

when the learner is provided with extremely poor visual feedback

(analogous to RWD condition, right column of Fig. 3C), all that is

available to the learner is success or failure (r = 0 or 1). The

learner still alters the motor commands to compensate for the

Learning from Sensory and Reward Prediction Errors
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perturbation, but the adaptation does not produce a sensory

remapping (h is not different from ĥh in the right column of Fig. 3C).

These three different patterns of sensory remapping generated

by the model help explain the reason why we observed different

patterns of sensory remapping in the three different paradigms. In

the ERR condition in which high quality sensory feedback was

available, adaptation produced large change in the state predictor,

producing the sensory remapping. In RWD condition in which the

visual feedback of the cursor was not available, adaptation focused

on the action selector, which was updated by reward prediction

error. Because this process did not involve a sensory remapping,

we did not observe a change in the localization behavior of the

subjects. In the EPE condition in which partial visual feedback was

provided, learning depended on both an updating of the state

Figure 2. The sensory remapping and the generalization function. (A) The average estimated localization of hand position in PRE and POST
conditions. Error bars are SEM. (B) Generalization of adaptation from the learned target direction (at 0u) to neighboring target directions. (C) Illusion
index (change in estimated location of the hand from PRE to POST adaptation), as a function of generalization index in subjects in EPE condition. Each
dot indicates individual subject’s data. There are significant negative correlation in these two indices (R = 20.68, p = 0.02).
doi:10.1371/journal.pcbi.1002012.g002
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predictor and the action selector. As a result, we observed the

partial sensory remapping.

To validate our model, we used it to estimate how much of the

change in the motor commands that we observed in our subjects

was due to each type of error. We imagined that the motor

commands were generated by the sum of two states with a search

noise, u~wezwrznu, where we represents the estimate of the

perturbation as updated by sensory prediction error and the wr is

updated by reward prediction error. Using a nonlinear optimiza-

tion algorithm, we fit the model to the trial-to-trial behavior of

each subject (reach direction on each trial), and the state of reward

on that trial. In the RWD paradigm, the only feedback available

was reward prediction error, i.e., u~wrznu. The results of our

model fit are shown in Fig. 4 via the average of estimated

parameters we and wr, and their sum. These estimated values were

superimposed on the average of subjects’ trial-to-trial reach angle

(black line) with SEM across subjects. In the ERR condition, by

the end of adaptation the contributions of these two states were

Figure 3. The theoretical problem of learning motor control. (A) A generative model of the motor adaptation task. Motor commands are
corrupted by a perturbation, which result in a hand position that is sensed via a cursor, and may also result in reward. The objective of the learner is
to find the motor commands that maximize reward. White circles are hidden variables and gray circles are observed variables. Arrows indicate
conditional probabilities. (B) Model of optimal learner. The learning system is composed of two compensatory mechanisms: action selector and
internal forward model. At the trial k, the action selector outputs the motor command u(k) to make a transition of the state of the body and task from
x(k) to x(kz1) . The state variable x includes three elements: hand position h, perturbation p, and the position t. The brain observes the part of the state
of the body y(kz1) . At the same time, the learner predicts the transition of the body state x̂x(kz1jk) from the efference copy of the motor command.
Kalman filtering correct the prediction to minimize the sensory prediction error y(kz1){ŷy(kz1) to have the updated state x̂x(kz1jkz1). The action
selector selects the optimal action as a function of the updated state at the next trial. (C) Sample disturbance and the response of the model. The task
is to control the reach angle. Clockwise (CW) direction is positive and the target is at 0u. The uncertainty of the visual feedback was controlled to
modulates the Kalman gain. The simulations predict a remapping regarding estimated hand position ĥh modulated by the level of visual uncertainty.
doi:10.1371/journal.pcbi.1002012.g003

Figure 4. Estimated contribution of reward and sensory prediction errors to change in motor output during adaptation. When
subjects experienced the ERR and EPE condition, we assumed that the motor commands were produced by the sum of two memories, u~wezwr ,
where we was updated by the sensory-prediction error and wr was updated by the reward prediction error. The best fit parameters predict the update
of the two memories. The black think line is the averaged subject’s reach angle during the adaptation period. The gray shadow is SEM. The
superimposed purple line is the estimated reach angle from the model which is a combination of wr (red) and we (blue). In the RWD condition, the
motor commands are updated by only the reward-prediction error: u~wr .
doi:10.1371/journal.pcbi.1002012.g004
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[we, wr] = [7.82,0.26]+/2[0.18,0.31]. Despite the fact that we

used the exact the same model to fit the data for ERR and EPE,

the best fit estimates of these two states in EPE were [we,

wr] = [4.53,3.33]+/2[0.59,0.69], which were significantly differ-

ent from those of ERR (ANOVA, F(1,18) = 18.93,p,0.001).

By fitting the model to the data, we were able to estimate the

search noise nu. We found that the variance of the search noise in

ERR was V (nu)~1:56+0:13, which was significantly smaller

than that of EPE (V (nu)~4:89+0:47, p,0.001), and RWD

(V (nu)~5:61+0:94, t-test, p,0.01). Our estimate of a signifi-

cantly smaller search noise in the ERR condition is consistent with

our inference that with high quality sensory feedback, the change

in the motor commands is driven almost entirely by sensory

prediction errors. This is also consistent with the fact that in the

ERR condition, there was a scarcity of reward prediction error: In

ERR, more than 95% of trials were rewarded, whereas the

probability of reward in EPE was 83% and that in RWD was 76%.

Therefore, our analysis suggests that in the ERR paradigm the

change in the motor commands was due primarily to adaptation of

the state estimator (accounting for the sensory remapping),

whereas in the RWD paradigm the change was due to adaptation

of the action selector (accounting for the lack of sensory

remapping). In the EPE paradigm the change was due to both

the state estimator and the action selector.

Discussion

Our goal was to determine whether during motor adaptation

one could dissociate between learning from reward prediction

errors vs. learning from sensory prediction errors. We considered a

reaching task in which visual feedback regarding cursor position

was altered. The quality of this feedback was manipulated so that

in one group the sensory feedback was of high quality (available

throughout the reach, ERR group), in another group the sensory

feedback was of low quality (available only at the end of the reach,

EPE group), and in a third group the sensory feedback was

unavailable (RWD group). All groups had access to reward

(success or failure) at the end of their movement. We found that

after a long period of training, all three groups adapted their motor

commands. In the ERR group this adaptation accompanied a

wide pattern of generalization and a significant change in the

perceived sensory consequences of motor commands. In contrast,

in the RWD group the adaptation accompanied a narrow pattern

of generalization and no change in the perceived sensory

consequences of motor commands. In the EPE group, general-

ization and sensory remapping were intermediate. Interestingly, in

the EPE group individuals who demonstrated a larger sensory

remap also had a wider generalization function. Increasing the

uncertainty in the sensory prediction error altered both the width

of generalization function and the amount of sensory remapping,

while it did not affect the level of adaptation.

While previous models of motor adaptation have relied

exclusively on sensory prediction errors to form an estimate of

the perturbation [4,5,19,20], the comparable levels of motor

adaptation in our groups (ERR, RWD, and EPE) suggest that the

brain relied on another source of error, the reward prediction

error, when the sensory prediction error was not informative. In

fact, it has been shown that the reward may modulate motor

planning [21,22]. Thus, it seems more rational that the purpose of

learning is not merely to estimate the magnitude of a perturbation,

but to produce motor commands that maximize reward [23].

We formulated this adaptation as a reward maximization

process by assuming an ‘‘optimal learner’’. The optimization relied

on two update equations: one was the optimal estimator that

inferred the state of the body, and the other was the optimal policy

that selected the action as a function of the estimated state

[24,25,26]. Based on this theory, our model of the optimal learner

was composed of two components: reinforcement learning for

action selection, and state estimation for identifying the sensory

consequences of motor commands [27]. In this model, the

objective of state estimation was to estimate the perturbation in

the environment and the hand position as a consequence of the

motor command, while the objective of the reinforcement learning

was to update how to select the action to maximize reward

probability [28]. The simulation showed that the learner relied

mostly on the sensory prediction error in ERR paradigm. As a

result, the learner updated the parameter associated with the

sensory consequence of the motor command, which predicted the

illusion that we observed in Experiment 1. In contrast with the

ERR paradigm, the RWD paradigm did not provide the sensory

prediction error. Thus, the simulation with the RWD paradigm

showed that the reward-prediction error updated the action but

did not change the estimate of hand position. Thus, high quality

sensory feedback produced learning that depended primarily on

sensory prediction errors.

While our model was not designed to account for the distinct

generalization patterns in the ERR and the RWD paradigms,

previous studies have speculated that generalization patterns are a

reflection of the neural encoding of information during learning

[16,29]. For example, generalization patterns during reach

adaptation in force fields appear consistent with an encoding in

which the neurons have activity fields that resemble those in the

primary motor cortex [13,30]. In contrast, generalization patterns

in visuomotor rotations appear more consistent with an encoding

similar to cells in the posterior parietal cortex [31]. In this

framework, the two different generalization patterns seen in RWD

and ERR paradigms suggest engagement of two different neural

mechanisms that each learn from reward and sensory prediction

error. Another possibility, however, is that the two forms of

prediction error converge on a single neural structure that guides

motor learning.

By presenting the optimal learner model that includes two forms

of prediction error, we built a connection between two disparate

areas of research that has focused on different parts of the brain.

Motor adaptation has focused on tasks that typically depend on

the integrity of the cerebellum [32,33]. Habit learning [34],

visuomotor sequence learning [35], or action selection [36,37]

have focused on tasks that depend on the integrity of the basal

ganglia [38,39]. In fact, goal directed action in habitual learning is

mediated by two representations: a representation of the

instrumental contingency between the action and the outcome,

and a representation of the outcome as a goal for the agent [40].

Because motor adaptation is also a goal directed action, the two

learning mechanisms observed in this paper might be the general

systems involved in a broad category of procedural learning. For

example, these two distinct memories might be mediated by

parallel cortico-basal ganglia mechanisms with different sensory

domains [35].

Patients with basal ganglia disorders show little or no deficits in

motor adaptation paradigms like force fields [33] or visuomotor

perturbations [41,42] (although patients with PD appear to show a

deficit in consolidation of the memory [43]). Why is this? Our

theory provides a potential answer: in the typical force field or

visuomotor tasks, high quality sensory feedback is available,

making it likely that sensory prediction errors play a dominant

role. Because learning from sensory prediction errors likely

depends on the integrity of the cerebellum [2,32,44], the

implication is that the ability of basal ganglia patients to adapt

Learning from Sensory and Reward Prediction Errors
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to visuomotor and force field perturbations is not evidence for

normal motor adaptation, but rather evidence for the idea that

changes in motor output in these tasks are primarily driven by

sensory prediction errors. The other implication of the theory is

that the inability to adapt the sensory consequences of motor

commands did not prevent adaptation of the motor commands in

response to reward prediction errors. Indeed, when we altered the

adaptation paradigm and made it so that changes in the motor

output were driven by reward prediction errors, we found that in

response to the reward prediction error subjects altered their

motor commands. This theory predicts that by providing rewards

appropriately during a motor adaptation task, the cerebellar

patients may be able to update their motor commands without

sensory recalibration.

Another implication of the theory is that the active search noise

to explore the motor commands plays an important role in

updating the action selector. Indeed, we found that trial-to-trial

variability was modulated depending on types of error with

significantly larger variability in the RWD than in ERR and in

EPE. In previous studies, movement variability is generally

thought to be due to signal dependent noise in the neuronal

structures that generate motor commands [45,46,47]. However,

noise is present even in the planning stage of movements [48].

Here, we found that during adaptation variability in movements

was not due to meaningless noise, but an inherent part of a search

that the brain engaged in to find motor commands that acquired a

more rewarding state.

In summary, changes that take place in motor commands

during adaptation are likely to be driven by both sensory and

reward prediction errors. Learning from sensory prediction error

alters the predicted sensory consequences of motor commands,

leaving behind a sensory remapping. During motor adaptation,

the reliance on reward prediction errors can be increased by

degrading the quality of the sensory feedback. Learning from

reward prediction error does not accompany a sensory remapping.

It is likely that the neural basis of learning from sensory and

reward prediction errors are distinct because they produce

different generalization patterns.

Methods

Experimental Procedures
Subjects sat in front of a robotic arm and held its handle [25]. A

video projector painted the screen that covered the manipulandum

and the subject’s arm. A trial began by the robot positioning the

subject’s hand in a start box, at which point a target of 6u width

appeared at 10 cm. Subjects were instructed to perform a

‘shooting’ motion so that their hand crossed within the target

area, at which point the target was animated to show an explosion,

and a score was increased by one point. In the error-based

learning (ERR) paradigm, the cursor position was displayed during

the movement toward the target. In the reward-based learning

(RWD) paradigm, the cursor position was not displayed. For both

groups, target explosion indicated success of the trial. The cursor

was not displayed during the return of the hand to the start

position.

Ethics Statement
Protocols were approved by the local IRB and all subjects

signed a consent form.

Experiment 1: Learning from sensory prediction

errors. Volunteers (n = 14, 2664.7 years old) were assigned to

the ERR (n = 7) or the RWD group (n = 7). After a familiarization

session, the experiment was composed of a visuomotor adaptation

phase and two localization phases (PRE and POST). In the

localization phase (Fig. 1A), the subjects performed four shooting

trials followed by one localization trial. For the first 4 trials, the

cursor was visible for the ERR learning group but invisible for the

RWD group. For the 5th trial, the cursor was invisible for both

groups. In the localization trial, neither the cursor nor the target

was projected. In this trial, subjects pointed with their left hand

(over the screen) to the estimated position of their right hand as it

crossed the target area in the previous trial. That is, the subjects

were asked to estimate the location of their right hand in the

previous trial. These five trials (four shooting and one localization)

were repeated 10 times for the PRE phase, and 10 times for the

POST phase. The PRE localization phase was followed by an

adaptation phase in which subjects experienced zero-rotation with

40 trials and then the perturbation increased by 1u every 40 trials

until it reached 8u (Fig. 1C). The 8u perturbation lasted 80 trials.

After a short break, subjects experienced 96 additional trials with

the 8u perturbation and then were tested in the POST localization

task.

Experiment 2: Generalization. The idea behind this

experiment was to test whether adaptation in response to

sensory prediction errors (ERR paradigm) vs. reward prediction

errors (RWD paradigm) differed in their generalization patterns.

Volunteers (n = 27, 2464.4 years old) were assigned to the RWD

(n = 18) or ERR groups (n = 9). Both groups were provided with a

familiarization session. Subsequently the subjects experienced two

baseline blocks composed of 80 trials. In the baseline block, the

target position was selected randomly from [230u, 220u, 210u,
0u, 10u, 20u, 30u] with respect to the trained target. The frequency

of the center target (0u) was 32/80 trials and that of each

peripheral target was 8/80. The objective of the peripheral targets

was to test generalization. During these trials the cursor was not

displayed and the target did not explode. For the center target, an

explosion was provided for both groups but the cursor was

displayed for only the ERR group. The baseline phase was

followed by an adaptation phase. In the adaptation phase, the

target appeared at only the center direction (0u) and the subjects

experienced zero-rotation with 40 trials and then the perturbation

shifted every 40 trials by 21u until it reached 28u and was held at

this level for 80 trials. After a short break, subjects experienced

another 3 blocks of 48 trials with 28u perturbation. Finally, we

tested the generalization of this adaptation via a protocol that was

the same as pre-adaptation.

Experiment 3: End point error paradigm. Volunteers

(n = 11, 26.165.2 years old) were recruited for the end-point error

group (EPE). The target was located at one of seven position [230

220 210 0 +10 +20 +30] degree with respect to the center line,

along a boundary circle with a 10 cm radius. At the moment the

cursor passed through the boundary circle, the boundary pass

point (endpoint) was marked by the cursor for 200 ms. After a

familiarization block, the subjects experienced the baseline block

for the generalization task which is the same as Experiment 2,

followed by the PRE localization block which is the same as the

Experiment 1. Then, subjects experienced the adaptation blocks

which is the same as Experiment 1, where the perturbation was

gradually increased up to 28 degree which was followed by

another 2 blocks of 48 trials with 28u perturbation. Next, we

tested the generalization of this adaptation via a protocol that was

the same as pre-adaptation. Finally, the subjects experienced the

POST phase of the localization task.

Data analysis. The endpoint of the movement was defined

as the intersection between the hand path and a 10 cm radius

circle centered at the start position. The reach angle was

calculated as the angle between the center of the target and the
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line that connects the start location and the reach endpoint. With

respect to the midline, a clockwise rotation was defined as positive.

An optimal learner. Let us cast the problem of adaptation in

a framework in which the brain predicts the sensory and reward

consequences of motor commands, and then learns from

prediction errors in both modalities. Hand position h depends

on the motor command u(k)[R (initial reach direction) and is

influenced by noise nh*N 0,s2
h

� �
:

h(kz1)~u(k)zn
(k)
h ð1Þ

The units of all variables in Eq. (1) are degrees. The hand position

controls the cursor position c(k), in which the perturbation p(k) is

imposed during the trial:

c(k)~h(k)zp(k) ð2Þ

On trial k, subjects observe their hand position via a visual cursor

at y(k)[R but cannot observe the perturbation directly:

y(k)~c(k)zn(k)
y ð3Þ

where n(k)
y *N(0,s2

y) represents perceptual noise. Because subjects

observe the hand position indirectly, we suppose that they predict

hand position using the efference copy of the motor command

ĥh(kz1)~p̂p(k)zu(k) ð4Þ

where p̂p(k) is the estimate of the perturbation. As subjects are

repeatedly exposed to the perturbation, they build a prior

knowledge of the characteristics of the perturbation: perturbations

are correlated from trial to trial, and are also affected by noise

np*N(0,s2
p) [4,49,50]:

p̂p(kz1)~ap̂p(k)zn(k)
p ð5Þ

Set the extended state of the system as x(k)~ p(k) h(k)
� �T

. We

then have a state update equation that relates motor commands

with changes in state:

x(kz1)~Ax(k)zbu(k)zn(k)
x ð6Þ

where A~
a 0

1 0

� �
, b~

0

1

� �
, nx*N(0,Vx), Vx~diag s2

h,s2
p

� 	
,

and the observation equation is:

y(k)~Cx(k)zn(k)
y ð7Þ

where C~ 0 1½ �. In summary, Eqs. (6) and (7) represent the

relationship between motor commands and their sensory conse-

quences. We assume that the objective for the learner is to

maximize the rewards and minimize the cost. Under this

assumption, for a linear dynamical system, optimal feedback

control theory suggests that two interacting mechanisms are

necessary: the optimal estimator and the optimal policy [24,26].

The optimal estimator is composed of a forward model and a

Kalman filter:

x̂x(kjk)~x̂x(kjk{1)zK (k) y(k){Cx̂x(kjk{1)
� 	

ð8Þ

where K (k) is the Kalman gain and y(k){Cx̂x(kjk{1)~y(k){ŷy(k) is

the sensory prediction error. The Kalman gain is a function of the

uncertainty of the estimated state and the measurement noise such

that

K (k)~P(kjk{1)CT (CP(kjk{1)CTzs2
y){1

P(kjk)~(I{K (k)C)P(kjk{1)
ð9Þ

where P is the uncertainty of the state estimation and s2
y is the

variance of the observation noise.

The optimal policy outputs motor commands as a function of

the estimated state. In optimal control theory, the policy is

computed from the end of the learning period backward [24].

However, in a learning problem, the learner updates the policy on

every trial and the backward computation is not plausible. Thus,

we used Actor-Critic architecture that enables it to find the

optimal policy without backward computation [51]. Here we

represent this policy with

u(k)~{p̂p(k)zw(k)
r zn(k)

u ð10Þ

where nn represents the active search noise to explore the motor

commands and wr represents changes to the motor commands to

maximize reward. Suppose that the expected cost-to-go function is

of the form

Vk~E½rkzcrkz1zc2rkz2zc3rkz3z � � �zcN{krN � ð11Þ

for a general reward function rk and discount rate of reward c. We

used a standard temporal learning algorithm to solve this

optimization problem [28,51]. In this algorithm, the policy is

updated to minimize the reward prediction error:

dk~rkzcV̂Vkz1{V̂Vk ð12Þ

where V̂Vk~wv. We used Temporal Difference (TD) error learning

algorithm to updates the policy and the value.

w(kz1)
v ~w(k)

v zavdk

w(kz1)
r ~w(k)

r zardknu

ð13Þ

For our simulations (Fig. 3C), we used the following definition of

the reward function:
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rk~1{bu2 c(kz1)[goal area

rk~{bu2 c(kz1) 6 [goal area,

(
ð14Þ

where b is the scaling parameter of the motor cost.

In summary, the learner has two kinds of prediction errors: a

sensory prediction error (Eq. 8), and a reward prediction error (Eq.

13). The sensory prediction error updates an estimate of state

produced by the motor commands (the sensory consequences of

the action). The reward prediction error updates an estimate of the

value of the states, and the policy that describes the ‘best’ motor

commands to maximize reward.
Fitting the model to data. The previous section described

how, in principle, one might alter the motor commands from trial

to trial based on sensory and reward prediction errors. Here, we

wished to fit this model to people’s data and then test the

predictions of the model. In the ERR and EPE paradigm, subjects

were provided with both types of error, whereas in the RWD

paradigm they were provided with only reward information. Our

objective was to estimate contributions of each form of error to the

change in motor commands during these three paradigms.

Our data from each subject consisted of the following: reach

angle h(k), visual cursor c(k) (both in units of degrees), and success

or failure on that trial (reward) rk. If a subject generated hand

position h on a given trial, we assumed that this was related to

three hidden variables: their estimate of perturbation p̂p, the

accumulated change in the motor commands due to reward

prediction errors wr, and an active search noise to find more

rewarding motor commands nu:

h(kz1)~{p̂p(k)zw(k)
r zn(k)

u ð15Þ

The problem is to estimate the variables of the right hand side

from the measured sequence of hand positions. This requires

solving an optimization problem. A rational cost is to minimize the

squared difference between the observed sequence of hand

positions and the sequence predicted by the model

u(k)~{p̂p(k)zw(k)
r . This is equivalent to minimizing the summa-

tion of magnitude of the active search noise J~
P

k (n(k)
u )2. The

constraint equations of this optimization process are Eqs. (8) and

(13).

From Eq. (15) we have

n(k)
u ~h(kz1)zp̂p(k){w(k)

r ð16Þ

where h(kz1) is the experimenter’s observation of subject’s hand

position, p̂p(k)and w(k)
r are the memory the optimal learner model

updated. We will substitute Eq. (16) into Eq. (13) to update w(k)
r

and wv.

We would also estimate the sensory prediction error is:

y(k){ŷy(k)~c(k){ĥh(k)

~(u(k{1)zp(k)){p̂p(k){u(k{1)

~p(k){p̂p(k)

ð17Þ

where p(k) is the visual rotation that the experimenter imposed and

p̂p(k) is the estimation of the perturbation that the optimal learner

updated. Then, we substitute Eq. (17) into Eq. (8) in order to

update p̂p(k).

Starting with initial conditions p̂p~0, wr~0, and wv~0, if we

knew the unknown parameters [sy, av, ar], we could use the

sensory prediction error in Eq. (8) to update p̂p, and the reward

prediction error to update wr while updating the estimation of the

value V̂Vk though updating wv. We searched for these three

unknown parameters (using lsqnonlin in Matlab 6.5) in order to

minimize the squared sum of difference between the model

generated sequence of hand positions and the measured hand

positions for each subject. We found that in the ERR paradigm,

the average of the estimated parameters were [sy, av, ar] = [6,

0.15, 0.04] and in EPE paradigm, [69, 0.39, 0.03]. In the RWD

paradigm, because no visual feedback of the hand position was

provided, we assumed that motor commands were updated only

by the reward prediction error. We set the Kalman gain to be zero

and the average of the estimated parameters were [av, ar] = [0.13,

0.14]. In the main document, we report the evolution of two

memories and the sum of them: we~{p̂p, wr, and wezwr.
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