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Anovel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of amotor imagery-
(MI-) based online interactive brain-controlled switch, “teeth clenching” state detector, and a steady-state visual evoked potential-
(SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw
brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in
three-dimensional (3D) space. In addition, muscle artifact (EMG) of “teeth clenching” condition recorded from EEG signal was
detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to
verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to
manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03.
Four subjects achieved the optimal criteria of writing the word “HI” which is the minimum movement of robotic arm directions
(15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that
our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control.

1. Introduction

Brain-computer interface (BCI) offers a direct communica-
tion channel between the brain and external devices without
relying on the brain normal output pathways of periph-
eral nerves and muscles [1]. According to different signal
acquisition methods, BCI systems can be divided into two
main categories, invasive and noninvasive BCI systems [2–
5]. Although invasive BCI systems seem suitable for some
clinical applications because of their high signal-to-noise
ratio (SNR) and the information transfer rates (ITR), they
still suffer from potential surgical risks and postoperative
immune response. Noninvasive BCIs might be more suitable
for daily life applications for many socioeconomic reasons
such as the user’s safety and a relatively low cost. Elec-
troencephalography (EEG) is a popular electrophysiological
monitoring method to record brain activity and is widely
used in noninvasive BCI researches and applications since
Berger’s discovery [6] and Vidal’s first BCI prototype [7].

Nowadays, there are huge opportunity and necessity for
helping handicapped people to enhance or increase their
abilities to interact with complex environment, such as
rehabilitation training sessions, mind-controlled prosthetic
arm applications [8, 9], and augmentative and alternative
communication systems [10]. However BCIs can also benefit
healthy people for entertainment and increasing their inde-
pendency, especially for elderly persons [11–13]. For decades,
several EEG-based typical BCI systems have been proposed
based on slow cortical potential (SCP) [14], motor imagery
(MI) [15], steady-state visual evoked potential (SSVEP) [16],
and the P300 wave of the human event-related potential [10,
17]. Each type of these BCI systems has its unique advantages
and some disadvantages. For example, the SSVEP-based BCI
system has many advantages such as less training and higher
SNR and ITR. MI-based BCI has the advantage of fast
response but is limited by the number of tasks. Therefore,
there has been increasing interest in solving dimensionality
issue by using hybrid BCI which has to be composed of two
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BCImodalities’ combination (e.g., motor imagery with P300,
motor imagery with SSVEP, and P300 with SSVEP) or it can
be also a combination of brain and nonbrain activity such as
eye movements (EOG), muscles activity (EMG), and heart
electrical activity (ECG) to improve the overall performances
of BCI systems [18–22]. The electrical activity of muscles can
easily interfere with EEG signal considering the anatomical
locations of facial or masticatory muscles surrounding the
skull.Thismyogenic contamination of the EEG can constitute
a serious problem in BCI applications and it can be useful
information in the same time for developing hybrid BCIs.
Pfurtscheller et al. proposed an online system using SSVEP-
based BCI and a type of ERD BCI, called a “brain switch”
[19]. Lately, Punsawad et al. controlled practical machine
through hybrid EEG-EOG brain-computer interface system
[23]. Then Wang et al. controlled wheelchair directions
through unilateral hand imagination and a wheelchair speed
through P300 and EOG [24].

Controlling a robotic arm with noninvasive hybrid BCIs
surely provides a desirable alternative, but prior to this
study it has not been shown that such hybrid systems could
achieve multidimensional control of robotic arm in three-
dimensional (3D) space. These systems offer a potentially
effective control for complex and naturalistic environment
through the combination of brain- and nonbrain-based mul-
tifunctional BCI. They can reduce user fatigue by switching
from a modality to another and increase the degree of
freedom for augmentative and alternative BCI systems. The
aim of this study is to improve the performance of BCI
system by design a new hybrid EEG-EMG-BCI system (i.e.,
combination of brain activity (MI and SSVEP) with muscles
activity such as teeth clenching). In this paper, a hybrid
BCI system was described, including motor imagery-based
brain switch, “teeth clenching” state detector, and a steady-
state visual evoked potential- (SSVEP-) based BCI. In our
proposed hybrid BCI, motor imagery decoding was used as a
single-pole double throw brain switch (SPDTBS) which can
complete multitasks, combined with 4-class SSVEP-based
BCI system. In addition, “stop” command was executed by
recognizing facial action by recording EMG artifact from
EEG signals. For real-time application, a writing task was
implemented to verify the performances of our proposed
hybrid system. Healthy subjects succeed to write an English
word though our proposed hybrid noninvasive BCI system.
In the following sections, we describe our proposed system
in detail and its real-time writing application to enhance the
user’s abilities to interact with a complex environment.

2. Methods

2.1. Experimental Paradigm. Our proposed hybrid noninva-
sive EEG-EMG-BCI system mainly consists of three hard-
ware components which are a portable EEG acquisition
device (Emotiv EPOC), a host computer, and a robotic
arm (see Figure 1). The EEG signals were recorded and
transmitted to the host computer with an USB transceiver
dongle.Then, EEG signals were processed and decoded in the
host computer. Based on this proposed BCI architecture, the
intension of subjects was transformed to multidimensional

control commands and sent to operate the Dobot (robotic
arm) via the wireless module in real time.

The hybrid BCI consists ofMI-, EMG-, and SSVEP-based
BCI systems. As shown in Figure 2, the subject imagines
the left hand or right hand movement for 4 s as the first
step. Once the imagined movements’ type (e.g., left hand
and right hand movements) was confirmed, the system will
enter the second hybrid BCI phase. In the second phase,
SSVEP and “teeth clenching” were decoded. The presence
of “teeth clenching” was detected during the second phase.
Once “teeth clenching” state is confirmed, the program will
execute stop command of SSVEP modality and go back to
the first motor imagery modality. For SSVEP paradigm, four
white blocks (with different frequencies: 6Hz, 7.5Hz, 8.57Hz,
and 10Hz) of stimuli flickerwere presented at the top, bottom,
left, and right positions in black board.

According to each unilateralmovement (right or left hand
imagination), the SPDTBS was designed. The SPDTBS was
combined with four tasks of SSVEP-based BCI modality to
provide more commands (i.e., to achieve multidimensional
BCI control) for the robotic arm movements such as the
forward, backward, left, right, upward, and downward move-
ments (see Figure 3). All these commands were shown in
Table 1.

Eight healthy subjects participated in the experiment (age23.62 ± 1.06 years (mean ± standard deviation “SD”); one
female and seven males). All of them were undergraduate
students, without any experience with BCI system. The
subjects were seated in a comfortable chair, 50 cm away from
the computer screen. The robot arm was placed on the table,
about 45∘ in the left front of the subject. Each subject was able
to look at both the monitor and the movement of the robot
arm.The subjects were requested to write the word “HI” and
the essential steps were shown in Figure 4. It takes at least 15
steps to complete the writing of BCI; each step represents a
horizontal or vertical line. The subjects can choose the order
of writing, and each step can be written repeatedly.

The following points are used to evaluate the performance
of the hybrid BCI system:

(1) Time: time required to complete a task.
(2) Step count: the number of steps to complete the task

in paper.
(3) Obvious errors: number of obvious errors. For exam-

ple, if the writing task is O letter but the result is Q,
this result is defined as obvious error.

(4) Information transfer rate, which is defined as

ITR = 60𝑇
× [log2𝑁 + 𝑃 log2𝑃 + (1 − 𝑃) log2 ( 1 − 𝑃𝑁 − 1)] , (1)

where 𝑁 is the number of targets, 𝑃 is the accuracy
rate, and 𝑇 is the time window length.

The EEG data were sampled at a frequency of 2048Hz
and then downsampled to 128Hz for signal processing. The
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Figure 1: Schematic architecture of the experimental setup for the real-time hybrid BCI-controlled robotic arm.
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Figure 2: Flowchart of the proposed algorithm for hybrid EEG-EMG-BCI system.

(a) (b) (c)

Figure 3: The six possible directions of the robotic arm. (a) Upward and downward movements. (b) Left and right movements. (c) Forward
and backward movements.
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Table 1: The control commands of hybrid BCI.

SPDTBS SSVEP-based BCI
frequency

Control
command

Brain activity based on imagined unilateral hand movements
(motor imagery) and SSVEP

Left hand imagination

6Hz Forward
7.5Hz Backward
8.57Hz Left
10Hz Right
Idle No command

Right hand imagination

6Hz No function
7.5Hz No function
8.57Hz Upward
10Hz Downward
Idle No command

Muscles activity (EMG artifacts) “Teeth clenching” state Stop

1

2, 3

4
7

5, 6

8

11

12

13, 14

9, 10

15

2 3

Figure 4: Essential steps for the robotic arm to write the word “HI”
with thewriting result of the robotic arm controlled by our proposed
hybrid BCI in the right side.

electrodes were placed at 10-20 system locations, AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4, as well as
two reference electrodes located above the ears of the subject
(i.e., either CMS and DRL or left/right mastoids). Electrodes
P7, P8, O1, and O2 were selected to collect SSVEP-based EEG
signal. Electrode FC5 and FC6 were used to capture EEG
signals in MI.The signals during “teeth clenching” state were
collected mainly by electrodes F7 and F8 (see Figure 5).

2.2. Processing Methods for SSVEP-Based BCI. To reduce
the effect of signal-to-noise ratio (SNR), discrete wavelet
transform (DWT) was employed for preprocessing of EEG
signals. Assuming that 𝑥(𝑛) is the EEG signal, the DWT of𝑥(𝑛) is defined as

𝐶𝑗,𝑘 = 2−𝑗/2 ∞∑
𝑛=−∞

𝑥 (𝑛) 𝜑𝑗,𝑘 (2−𝑗𝑛 − 𝑘) = ⟨𝑥 (𝑛) , 𝜑𝑗,𝑘⟩ ,
𝑗, 𝑘 ∈ 𝑍, (2)

where 𝜑(𝑛) is the wavelet basis function, 𝑗 is the resolution of
the frequency, and 𝑘 is the amount of time translation.

EEG signals were decomposed in different layers (5 lay-
ers) by using Daubechies wavelet (db4) function and recon-
structed by removing frequency components (0–2Hz).

CMS DRL

AF3 AF4

F7 F8

F3 F4

FC5 FC6

T7 T8

P7 P8

O1 O2

Figure 5: Position of EEG electrodes used in this study for recording
brain and nonbrain signals.

The Canonical Correlation Analysis (CCA) is a multi-
variable statistical method, which was used to analyze the
potential correlation between two sets of data [25]. CCA
method has been widely used in SSVEP-based BCI system
[16, 26].

Suppose two multidimensional random variables 𝑋, 𝑌;
that is,𝑋 ∈ 𝑅𝐻×𝐽,𝑌 ∈ 𝑅𝐼×𝐽. CCAfinds a pair ofweight vectors𝑤𝑋 ∈ 𝑅𝐻×1 and 𝑤𝑌 ∈ 𝑅𝐼×1, respectively, which maximize
the correlation between linear combinations 𝑥 = 𝑤𝑋𝑇𝑋 and𝑦 = 𝑤𝑌𝑇𝑌. It is defined as

max
𝑤𝑋,𝑤𝑌

𝜌 (𝑥, 𝑦) = 𝐸 [𝑥𝑦𝑇]√𝐸 [𝑥𝑥𝑇] 𝐸 [𝑦𝑦𝑇]
= 𝐸 [𝑤𝑋𝑇𝑋𝑌𝑇𝑤𝑌]√𝐸 [𝑤𝑋𝑇𝑋𝑋𝑇𝑤𝑋] 𝐸 [𝑤𝑌𝑇𝑌𝑌𝑇𝑤𝑌] ,

(3)
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Table 2:The results of canonical correlation analysis coefficients for
different SSVEP states.

SSVEP state Mean ± SD
6Hz 0.4238 ± 0.1060
7.5Hz 0.4621 ± 0.0857
8.57Hz 0.4985 ± 0.1000
10Hz 0.5105 ± 0.0381
Idle 0.1542 ± 0.0397
where the maximum of 𝜌 is the maximum canonical correla-
tion. 𝑥 and 𝑦 are projected onto 𝑤𝑋 and 𝑤𝑌.

The reference signals 𝑌𝑖 are set as

𝑌𝑖 = (((
(

sin (2𝜋𝑓𝑖𝑡)
cos (2𝜋𝑓𝑖𝑡)...

sin (2𝜋𝑁ℎ𝑓𝑖𝑡)
cos (2𝜋𝑁ℎ𝑓𝑖𝑡)

)))
)

, 𝑡 = 1𝑆 , 2𝑆 , . . . , 𝑁𝑆 , (4)

where 𝑁 is the number of sampling points, 𝑆 is the sampling
frequency, and𝑁ℎ is the number of harmonics.

The control command𝐾 is recognized as

𝐾 = max
𝑖

𝜌𝑖, 𝑖 = 1, 2, 3, 4, (5)

where 𝜌𝑖 are the CCA coefficients obtained from the four
reference signals.

Each subject has different thresholds 𝜃, so threshold 𝜃
was defined in training phase. To calculate the threshold 𝜃
in CCA, 20 offline experiments were held for each subject.
The results were shown in Table 2. The average correlation
coefficient of idle state is 0.1542 ± 0.0397 (mean ± SD). So,
the threshold 𝜃 was defined to be 0.22.

2.3. Processing Methods for MI-Based BCI and “Teeth Clench-
ing” State Detector. The motor imagery classification based
on mu frequency power has been widely used for process-
ing event-related synchronization (ERS) and event-related
desynchronization (ERD) [15, 27–29]. The second-order
moment energy algorithm was employed to classify the
left hand with low computational complexity and simple
principle [30]. So, these algorithms could be suitable for
achieving online BCI systems.

Assuming a signal of length𝑁, the second-ordermoment
is estimated by

𝐸2 = 𝐸 [𝑥2 (𝑛)] ≈ 1𝑁 𝑁∑𝑛=1𝑥2 (𝑛) . (6)

In MI-based BCI experiment, while imagining the left
hand or right hand movement, the EEG signals are collected
with band-pass filtering (0–32Hz),mu rhythmenergy change
of FC5 and FC6 was computed, and the energy difference
between FC5 and FC6 channels is used to calculate the

threshold 𝛼 for classification. Mu rhythm energy change of
FC5 and FC6 is denoted as 𝐸.

𝑒 = {{{{{{{{{
+1 if 𝐸 > 𝛼0 otherwise−1 if 𝐸 < −𝛼. (7)

When 𝑒 = 1, which indicates the subject is imagining
left hand motor imagery, the first path is closed in SPDTBS.
When 𝑒 = −1, which indicates the subject is imagining
right hand motor imagery, then the second path is closed in
SPDTBS. When 𝑒 = 0, which indicates the subject is in an
idle state, no command will be given to the system, and the
SPDTBS is opened.

Accuracy of detecting “teeth clenching” state is higher
than other facial states in EEG-based BCI system [31]. Thus,
“teeth clenching” state was detected to work as interrupt
system,which can confirmmotor imagery result and improve
the performance of whole system.

According to the characteristics of different states (“nat-
ural” versus “teeth clenching”), the threshold 𝛽 of standard
deviation and threshold 𝜂 of the peak distance (the absolute
value of the difference between the maximum and the
minimum) of the EEG signals were calculated, respectively.
In online experiment, to detect the “teeth clenching” state,
standard deviation 𝑆𝑠 and peak distance 𝑆𝑝 were computed
and compared with thresholds 𝛽 and 𝜂.

𝑠 = {{{
1 if 𝑆𝑠 > 𝛽, 𝑆𝑝 > 𝜂0 otherwise,

(8)

where 𝑠 = 1 indicates that the subject is in “teeth clenching”
state and, otherwise, 𝑠 = 0 means that the subject is in
“natural” state.

3. Results of Brain-Control Tasks

In the first stage, an offline experiment was held forMI-based
BCI and SSVEP-based BCI and “teeth clenching” state detec-
tor, respectively. As shown in Figure 6, the average accuracy
of eight subjects in MI-based BCI and SSVEP-based BCI is0.73 ± 0.05 and 0.93 ± 0.03, respectively. The ITR of SSVEP-
based BCI is 18.43 ± 1.63 (Figure 7). For “teeth clenching”
state detector, all subjects achieved accuracy near 1.

Eight subjects joined the writing task using a robotic arm.
The results were shown in Figures 4, 6, and 7. All of subjects
were successful in writing the word “HI.” Eight subjects com-
pleted the writing task in 297.37 ± 57.96 seconds on average.
As shown in Figure 7, four subjects took 15 steps (optimal
number of steps) to finishwriting, three subjects took 17 steps,
and one subject took 19 steps. Only one subject has 1 signifi-
cant error. The average accuracy was obtained as 0.92 ± 0.03.
4. Discussion

In this paper, a novel multichannel hybrid BCI system was
proposed for multidimensional control purpose, which was
composed of a motor-imagery-based brain switch, “teeth
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clenching” state detector, and SSVEP-based BCI. For achiev-
ing a multidimensional control of robotic arm, seven com-
mands which can be up to nine were designed for real-
time BCI application. Writing task was held to evaluate the
performances of the proposed hybrid system. Eight subjects
completed themovement tasks of the robotic arm towrite the
word “HI.”

Pfurtscheller et al. [19] used MI-based brain switch to
turn on/off an SSVEP BCI for reducing the errors in resting
periods, while, in this present work, MI-based brain switch
was used as single-pole double throw brain switch (SPDTBS)
to extend the number of commands which robotic arm
needs to be fully controlled and manipulated to achieve
a naturalistic hand pathway of writing a simple word. In
addition, a “teeth clenching” state detector was design to
initialize the statement of SPDTBS. Because of the relative
lower accuracy of motor imagery BCI, the “teeth clenching”
state detector can confirm the result of MI-based BCI, which
can improve the accuracy of hybrid BCI system significantly.
Thus, the accuracy of proposed system is almost the same

as previous work [19], which can lead us to conclude that
the proposed system is efficient and robust for real-time
multifunctional BCI systems. Compared with the current
BCI systems [32–34], the proposed hybrid BCI system shows
higher accuracy with high degree of freedom. Moreover,
wireless manner was used to build a stable and suitable
connection for online experiment, which is meaningful for
portable noninvasive BCI products for real-life use.

In this study, we found that a group of healthy subjects
could willingly use brain and nonbrain activity to control a
robotic arm with high accuracy for performing writing tasks
requiring human intention, error feedback, and multiple
degrees of freedom by combination of MI, SSVEP, and EMG
activity (see Supplementary video in SupplementaryMaterial
available online at https://doi.org/10.1155/2017/8316485). The
robotic arm could only move and write horizontal and verti-
cal lines using our proposed BCI paradigm.There are still two
commands, “no function,” in the proposed system,which can
be used for writing slanted lines. This option will be added in
the near future to achieve naturalistic hand writing.Thus, the
users will be able to write any intended complex word in real
time, which not only can be used as communication tool for
the disable people, but also can be applied for education pur-
poses for children and students using e-learning aspect which
could be an innovative way to practice using teleoperation to
remotely access a robotic arm using their brain activity.

5. Conclusions

This paper presented a combination of synchronous and
asynchronous control using a novel hybrid EEG-EMG-based
BCI which consists of motor imagery, muscle artifacts,
and SSVEP to provide a multidimensional control. The
synchronous control is based on SSVEP paradigm which
requires the user to focus on the screen and the asynchronous
control is based on the motor imagery which does not need
any synchronization between the user and the screen because
it is based on the imagination of the unilateral movements.
Users were able to write an English word using our robust
real-time control of a robotic arm through the proposed
hybrid BCI. This proposed BCI was designed for multiclass
control in a complex environment. Results of the study
indicated that successfulmultidimensional control is possible
using suitable combination of BCI modalities to detect and
classify brain activity in different situations.

In the near future, for rehabilitation, e-learning, and
entertainment, we would like to design low cost, portable,
noninvasive, and hybrid EEG-EMG-based robotic arm using
minimum number of wearable wireless sensors.
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