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Unlike satellite images, which are typically acquired and processed in near-real-time, global land 
cover products have historically been produced on an annual basis, often with substantial lag times 
between image processing and dataset release. We developed a new automated approach for globally 
consistent, high resolution, near real-time (NRT) land use land cover (LULC) classification leveraging 
deep learning on 10 m Sentinel-2 imagery. We utilize a highly scalable cloud-based system to apply 
this approach and provide an open, continuous feed of LULC predictions in parallel with Sentinel-2 
acquisitions. This first-of-its-kind NRT product, which we collectively refer to as Dynamic World, 
accommodates a variety of user needs ranging from extremely up-to-date LULC data to custom 
global composites representing user-specified date ranges. Furthermore, the continuous nature of the 
product’s outputs enables refinement, extension, and even redefinition of the LULC classification. In 
combination, these unique attributes enable unprecedented flexibility for a diverse community of users 
across a variety of disciplines.

Background & Summary
Regularly updated global land use land cover (LULC) datasets provide the basis for understanding the sta-
tus, trends, and pressures of human activity on carbon cycles, biodiversity, and other natural and anthropo-
genic processes1–3. Annual maps of global LULC have been developed by many groups. These maps include 
the National Aeronautics and Space Administration (NASA) MCD12Q1 500 m resolution dataset4,5 (2001–
2018), the European Space Agency (ESA) Climate Change Initiative (CCI) 300 m dataset6 (1992–2018), and 
Copernicus Global Land Service (CGLS) Land Cover 100 m dataset7,8 (2015–2019). While widely used, many 
important LULC change processes are difficult or impossible to observe at a spatial resolution greater than 
100 m and annual temporal resolution9, such as emerging settlements and small-scale agriculture (prevalent in 
the developing world) and early stages of deforestation and wetland/grassland conversion. Inability to resolve 
these processes introduces significant errors in our understanding of ecological dynamics and carbon budgets. 
Thus, there is a critical need for spatially explicit, moderate resolution (10–30 m/pixel) LULC products that are 
updated with greater temporal frequency.

Currently, almost all moderate resolution LULC products are available with only limited spatial and/or tem-
poral coverage (e.g., USGS NLCD10 and LCMAP11) or via proprietary and/or closed products (e.g., BaseVue12, 
GlobeLand3013, GlobeLand1014) that are generally not available to support monitoring, forecasting, and decision 
making in the public sphere. A noteworthy exception is the recent iMap 1.015 series of products available globally 
at a seasonal cadence with a 30 m resolution. Nonetheless, globally consistent, near real-time (NRT) mapping 
of LULC remains an ongoing challenge due to the tremendous computational and data storage requirements.

Simultaneous advances in large-scale cloud computing and machine learning algorithms in 
high-performance open source software frameworks (e.g., TensorFlow16) as well as increased access to satellite 
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image collections through platforms such as Google Earth Engine17 have opened new opportunities to create 
global LULC datasets at higher spatial resolutions and greater temporal cadence than ever before. In this paper, 
we introduce a new NRT LULC dataset produced using a deep-learning modeling approach. Our model, which 
was trained using a combination of hand-annotated imagery and unsupervised methods, is used to operation-
ally generate NRT predictions of LULC class probabilities for new and historic Sentinel-2 imagery using cloud 
computing on Earth Engine and Google Cloud AI Platform. These products, which we refer to collectively as 
Dynamic World, are available as a continuously updating Earth Engine Image Collection that enables users to 
leverage both class probabilities and multi-temporal results to track LULC dynamics in NRT and create custom 
products suited to their specific needs. We find that our model exhibits strong agreement with expert annota-
tions for an unseen validation dataset, and though difficult to compare with existing products due to differences 
in temporal resolution and classification schemes, achieves better or comparable performance relative to other 
state-of-the-art global and regional products when compared to the same reference dataset.

Methods
Land Use Land Cover taxonomy.  The classification schema or “taxonomy” for Dynamic World, shown 
in Table 1, was determined after a review of global LULC maps, including the USGS Anderson classification 
system18, ESA Land Use and Coverage Area frame Survey (LUCAS) land cover modalities19, MapBiomas classi-
fication20, and GlobeLand30 land cover types13. The Dynamic World taxonomy maintains a close semblance to 
the land use classes presented in the IPCC Good Practice Guidance (forest land, grassland, cropland, wetland, 
settlement, and other)21 to ensure easier application of the resulting data for estimating carbon stocks and green-
house gas emissions. Unlike single-pixel labels, which are usually defined in terms of percent cover thresholds, 
the Dynamic World taxonomy was applied using “dense” polygon-based annotations such that LULC labels are 
applied to areas of relatively homogenous cover types with similar colors and textures.

Training dataset collection.  Our modeling approach relies on semi-supervised deep learning and requires 
spatially dense (i.e., ideally wall-to-wall) annotations. To collect a diverse set of training and evaluation data, we 
divided the world into three regions: the Western Hemisphere (160°W to 20°W), Eastern Hemisphere-1 (20°W 
to 100°E), and Eastern Hemisphere-2 (100°E to 160°W). We further divided each region by the 14 RESOLVE 
Ecoregions biomes22. We collected a stratified sample of sites for each biome per region based on NASA 
MCD12Q1 land cover for 20174. Given the availability of higher-resolution LULC maps in the United States and 
Brazil, we used the NLCD 201610 and MapBiomas 201720 LULC products respectively in place of MODIS prod-
ucts for stratification in these two countries.

At each sample location, we performed an initial selection of Sentinel-2 images from 2019 scenes based on 
image cloudiness metadata reported in the Sentinel-2 tile’s QA60 band. We further filtered scenes to remove 
images with many masked pixels. We finally extracted individual tiles of 510 × 510 pixels centered on the sample 
sites from random dates in 2019. Tiles were sampled in the UTM projection of the source image and we selected 
one tile corresponding to a single Sentinel-2 ID number and single date.

Further steps were then taken to obtain an “as balanced as possible” training dataset with respect to the 
LULC classifications from the respective LULC products. In particular, for each Dynamic World LULC category 
contained within a tile, the tile was labeled to be high, medium, or low in that category. We then selected an 
approximately equal number of tiles with high, medium or low category labels for each category.

To achieve a large dataset of labeled Sentinel-2 scenes, we worked with two groups of annotators. The first 
group included 25 annotators with previous photo-interpretation and/or remote sensing experience. The expert 
group labeled approximately 4,000 image tiles (Fig. 1a), which were then used to train and measure the per-
formance and accuracy of a second “non-expert” group of 45 additional annotators who labeled a second set 
of approximately 20,000 image tiles (Fig. 1b). A final validation set of 409 image tiles were held back from 
the modeling effort and used for evaluation as described in the Technical Validation section. Each image tile 
in the validation set was annotated by three experts and one non-expert to facilitate cross-expert and expert/
non-expert QA comparisons.

All Dynamic World annotators used the Labelbox platform23, which provides a vector drawing tool to 
mark the boundaries of feature classes directly over the Sentinel-2 tile (Fig. 2). We instructed both expert and 
non-expert annotators to use dense markup instead of single pixel labels with a minimum mapping unit of 50 
× 50 m (5 × 5 pixels). For water, trees, crops, built area, bare ground, snow & ice, and cloud, this was a fairly 
straightforward procedure at the Sentinel-2 10 m resolution since these feature classes tend to appear in fairly 
homogenous agglomerations. Shrub & scrub and flooded vegetation classes proved to be more challenging as 
they tended not to appear as homogenous features (e.g. mix of vegetation types) and have variable appearance. 
Annotators used their best discretion in these situations based on the guidance provided in our training material 
(i.e. descriptions and examples in Table 1). In addition to the Sentinel-2 tile, annotators had access to a match-
ing high-resolution satellite image via Google Maps and ground photography via Google Street View from the 
image center point. We also provided the date and center point coordinates for each annotation. All annotators 
were asked to label at least 70% of a tile within 20 to 60 minutes and were allowed to skip some tiles to best bal-
ance their labeling accuracy with their efficiency.

Image preprocessing.  We prepared Sentinel-2 imagery in a number of ways to accommodate both annota-
tion and training workflows. An overview of the preprocessing workflow is shown in Fig. 3.

For training data collection, we used the Sentinel-2 Level-2A (L2A) product, which provides radiometri-
cally calibrated surface reflectance (SR) processed using the Sen2Cor software package24. This advanced level 
of processing was advantageous for annotation, as it attempts to remove inter-scene variability due to solar dis-
tance, zenith angle, and atmospheric conditions. However, systematically produced Sentinel-2 SR products are 
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currently only available from 2017 onwards. Therefore, for our modeling approach, we used the Level-1C (L1C) 
product, which has been generated since the beginning of the Sentinel-2 program in 2015. The L1C product rep-
resents Top-of-Atmosphere (TOA) reflectance measurements and is not subject to a change in processing algo-
rithm in the future. We note that for any L2A image, there is a corresponding L1C image, allowing us to directly 
map annotations performed using L2A imagery to the L1C imagery used in model training. All bands except 
for B1, B8A, B9, and B10 were kept, with all bands bilinearly upsampled to 10 m for both training and inference.

In addition to our preliminary cloud filtering in training image selection, we adopted and applied a novel 
masking solution that combines several existing products and techniques. Our procedure is to first take the 
10 m Sentinel-2 Cloud Probability (S2C) product available in Earth Engine25 and join it to our working set of 
Sentinel-2 scenes such that each image is paired with the corresponding mask. We compute a cloud mask by 
thresholding S2C using a cloud probability of 65% to identify pixels that are likely obscured by cloud cover. We 
then apply the Cloud Displacement Index (CDI) algorithm26 and threshold the result to produce a second cloud 

Class ID LULC Type Description Examples

0 Water

• Water is present in the image.
• �Contains little-to-no sparse vegetation, no rock 

outcrop, and no built-up features like docks.
• �Does not include land that can or has previously been 

covered by water.

• Rivers
• Ponds & Lakes
• Ocean
• Flooded Salt Pans

1 Trees
• �Any significant clustering of dense vegetation, 

typically with a closed or dense canopy.
• �Taller and darker than surrounding vegetation (if 

surrounded by other vegetation).

• Wooded vegetation
• Dense green shrubs
• Cluster of dense, tall vegetation within savannas
• �Plantations such as apples, bananas, citrus, and 

rubber
• �Swamp (dense/tall vegetation with no obvious 

water)
• Any mix of the above
• Any burned areas of the above

2 Grass

• �Open areas covered in homogenous grasses with little 
to no taller vegetation.

• �Other homogenous areas of grass-like vegetation 
(blade-type leaves) that appear different from trees 
and shrubland.

• �Wild cereals and grasses with no obvious human 
plotting (i.e. not a structured field).

• �Natural meadows and fields with sparse or no 
tree cover

• Open savanna with little to no tree cover
• �Parks, golf courses, human manicured lawns, 

including large fields in urban settings like 
soccer and baseball.

• Tree cut-throughs for power lines, gas etc.
• Pastures
• Reeds and marshes with no obvious flooding

3 Flooded vegetation

• �Areas of any type of vegetation with obvious 
intermixing of water.

• �Do not assume an area is flooded if flooding is 
observed in another image.

• �Seasonally flooded areas that are a mix of grass/
shrub/trees/bare ground.

• Flooded mangroves
• Emergent vegetation

4 Crops • Human planted/plotted cereals, grasses, and crops. • Corn, wheat, soy, etc.
• Hay and fallow plots of structured land

5 Shrub & Scrub

• �Mix of small clusters of plants or individual plants 
dispersed on a landscape that shows exposed soil 
and rock.

• �Scrub-filled clearings within dense forests that are 
clearly not taller than trees. Appear grayer/browner 
due to less dense leaf cover.

• �Moderate to sparse cover of bushes, shrubs, and 
tufts of grass

• �Savannas with very sparse grasses, trees, or other 
plants

6 Built area

• �Clusters of human-made structures or individual 
very large human-made structures.

• �Contained industrial, commercial, and private 
building, and the associated parking lots.

• �A mixture of residential buildings, streets, lawns, 
trees, isolated residential structures or buildings 
surrounded by vegetative land covers.

• �Major road and rail networks outside of the 
predominant residential areas.

• �Large homogeneous impervious surfaces, including 
parking structures, large office buildings, and 
residential housing developments containing clusters 
of cul-de-sacs.

• �Cluster of houses, can include smalls lawns or 
small patches of trees can be included

• �Dense villages, town, and cityscape (buildings 
and roads together)

• Clusters of paved roads and large highways
• Asphalt and other human-made surfaces

7 Bare ground

• �Areas of rock or soil containing very sparse to no 
vegetation.

• �Large areas of sand and deserts with no to little 
vegetation.

• �Large individual or dense networks of dirt roads.

• Exposed rock
• Exposed soil
• Desert and sand dunes
• Dry salt flats and salt pans
• Dried lake bottoms
• Mines
• Large empty lots in urban areas

8 Snow & Ice
• �Large homogenous areas of thick snow or ice, 

typically only in mountain areas or highest latitudes.
• Large homogenous areas of snowfall.

• Glaciers
• Permanent snowpack
• Snowfall

Table 1.  Dynamic World Land Use Land Cover (LULC) classification taxonomy. Definitions and examples 
were provided as part of annotator reference materials, along with descriptions of colors and patterns typically 
associated with each LULC type.
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mask, which is intersected with the S2C mask to reduce errors of commission by removing bright non-cloud 
targets based on Sentinel-2 parallax effects. We finally intersect this sub-cirrus mask with a threshold on the 
Sentinel-2 cirrus band (B10) using the thresholding constants proposed for the CDI algorithm26, and take a 
morphological opening of this as our cloudy pixel mask. This mask is computed at 20 m resolution.

In order to remove cloud shadows, we extend the cloudy pixel mask 5 km in the direction opposite the solar 
azimuthal angle using the scene level metadata “SOLAR_AZIMUTH_ANGLE” and a directional distance trans-
form (DDT) operation in Earth Engine. The final cloud and shadow mask is resampled to 100 m to decrease both 
the data volume and processing time. The resulting mask is applied to Sentinel-2 images used for training and 
inference such that unmasked pixels represent observations that are likely to be cloud- and shadow-free.

The distribution of Sentinel-2 reflectance values are highly compressed towards the low end of the sensor 
range, with the remainder mostly occupied by high return phenomena like snow and ice, bare ground, and 
specular reflection. To combat this imbalance, we introduce a normalization scheme that better utilizes the 
useful range of Sentinel-2 reflectance values for each band. We first log-transform the raw reflectance values to 

Fig. 1  Global distribution of annotated Sentinel-2 image tiles used for model training and periodic testing 
(neither including 409 validation tiles). (a) 4,000 tiles interpreted by a group of 25 experts (b) 20,000 tiles 
interpreted by a group of 45 non-experts. Hexagons represent approximately 58,500 km2 areas and shading 
corresponds to the count of annotated tile centroids per hexagon.

Fig. 2  Sentinel-2 tile and example reference annotation provided as part of interpreter training. This example 
was used to illustrate the Flooded vegetation class, which is distinguished by small “mottled” areas of water 
mixed with vegetation near a riverbed. Also note that some areas of the tile are left unlabeled.
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equalize the long tail of highly reflective surfaces, then remap percentiles of the log-transformed values to points 
on a sigmoid function. The latter is done to bound on (0, 1) without truncation, and condenses the extreme end 
members of reflectances to a smaller range.

To account for an annotation skill differential between the non-expert and expert groups, we one-hot encode 
the labeled pixels, and smooth them according to the confidence in a binary label of the individual annota-
tor (expert/non-expert): this is effectively linearly interpolating the distributions per-pixel from their one-hot 
encoding (i.e. a vector of binary variables for each class label) to uniform probability. We used 0.2 for experts, 
and 0.3 for non-experts (i.e. ~82% confidence on the true class for experts and ~73% confidence on the true 
class for the non-expert. We note that these values approximately mirror the Non-Expert to Expert Consensus 
agreement as discussed in the Technical Validation section). This is akin to standard label-smoothing27,28, with 
the addition that the degree of smoothing is associated with annotation confidence.

We generate a pair of weights for each pixel in an augmented example designed to compensate for class 
imbalance across the training set and weight high-frequency spatial features at the inputs during “synthesis” 
(discussed further in the following section). We also include a weight per pixel designed to attenuate labels in 
the center of labeled polygons where human annotators often missed small details using a simple edge finding 
kernel.

We finally perform a series of augmentations (random rotation and random per-band contrasting) to our 
input data to improve generalizability and performance of our model. These augmentations are applied four 
times to each example to yield our final training dataset of examples paired with class distributions, masks, and 
weights (Fig. 3).

Model training.  Our broad approach to transferring the supervised label data to a system that could be applied 
globally was to train a Fully Convolutional Neural Network (FCNN)29. Conceptually, this approach transforms 
pre-processed Sentinel-2 optical bands to a discrete probability distribution of the classes in our taxonomy on the 
basis of spatial context. This is done per-image with the assumption that sufficient spatial and spectral context is 
available to recover one of our taxonomic labels at a pixel. There are a few notable benefits to such an approach: 
namely that given the generalizability of modern deep neural networks, it is possible, as we will show, to produce 
a single model that achieves acceptable agreement with hand-digitized expert annotations globally. Furthermore, 
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Fig. 3  Training inputs workflow. Annotations created using Sentinel-2 Level 2 A Surface Reflectance imagery 
are paired with masked and normalized Sentinel-2 Level 1 C Top of Atmosphere imagery, and inputs are 
augmented to create training inputs used for modeling. Cloud and shadow masking involves a three-step 
process that combines the Sentinel-2 Cloud Probability (S2C) product with the Cloud Displacement Index 
(CDI), which is used to correct over-masking of bright non-cloud targets” and directional distance transform 
(DDT), which is used to remove the expected path of shadows based on sun-sensor geometry.
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Fig. 4  Training protocol used to recover the labeling model. The bottom row shows the progression from a 
normalized Sentinel-2 L1C image, to class probabilities, to synthesized Sentinel-2. The dashed red and blue 
arrows show how the labeling model is optimized with respect to both the class probability and synthesis 
pathway, and the synthesis model is optimized only with respect to the synthesized imagery. The example image 
is retrieved from Earth Engine using ee.Image(‘GOOGLE/DYNAMICWORLD/V1/20190517T083601_201905
17T083604_T37UET’).

Normalize

ee.Model.predictImage

S2C

CDI

DDT

X

Sentinel-2 
L1C image

Dynamic 
World 
output

Cloud & 
Shadow 

mask

Fig. 5  Near-Real-Time (NRT) prediction workflow. Input imagery is normalized following the same protocol 
used in training and the trained model is applied to generate land cover predictions. Predicted results are 
masked to remove cloud and cloud shadow artifacts using Sentinel-2 cloud probabilities (S2C), the Cloud 
Displacement Index (CDI) and a directional distance transform (DDT), then added to the Dynamic World 
image collection.

https://doi.org/10.1038/s41597-022-01307-4


7Scientific Data |           (2022) 9:251  | https://doi.org/10.1038/s41597-022-01307-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

since model outputs are generated from a single image and a single model, it is straightforward to scale as each 
Sentinel-2 L1C image need only be observed once.

Although applying CNN modeling, including FCNN, to recover LULC is not a new idea30–32, we intro-
duce a number of novel innovations that achieve state-of-the-art performance on LULC globally with a neu-
ral network architecture almost 100x smaller than architectures used for semantic segmentation or regression 
of ground-level camera imagery (specifically compared to U-Net33 and DeepLab v3+34 architectures). Our 
approach also leverages weak supervision by way of a synthesis pathway: this pathway includes a replica of the 
labeling model architecture that learns a mapping from estimated probabilities back to the input reflectances, 
in a way, a reverse LULC classifier that offers both multi-tasking and a constraint to overcome deficiencies in 
human labeling (Fig. 4).

Fig. 6  Examples of Sentinel-2 imagery (RGB) and corresponding Dynamic World NRT products for April 
2021. Location coordinates reported for image centroid. (a) Brazil, ee.Image(‘GOOGLE/DYNAMICWORLD/
V1/20210405T134209_20210405T134208_T22KCA’) and corresponding Dynamic World labels. (b) Poland, 
zoomed view of ee.Image(‘GOOGLE/DYNAMICWORLD/V1/20210402T095029_20210402T095027_
T34UDD’) and corresponding Dynamic World product with a hillshade on the Top-1 confidence class applied 
to the categorical labels, revealing features not normally visible with discrete valued LULC maps.

Index Band Name Description Data Type Range

0 water Estimated probability of complete coverage by water. double (0, 1)

1 trees Estimated probability of complete coverage by trees. double (0, 1)

2 grass Estimated probability of complete coverage by grass. double (0, 1)

3 flooded_vegetation Estimated probability of complete coverage by flooded vegetation. double (0, 1)

4 crops Estimated probability of complete coverage by crops. double (0, 1)

5 shrub_and_scrub Estimated probability of complete coverage by shrub and scrub. double (0, 1)

6 built Estimated probability of complete coverage by built area. double (0, 1)

7 bare Estimated probability of complete coverage by bare ground. double (0, 1)

8 snow_and_ice Estimated probability of complete coverage by snow and ice. double (0, 1)

9 label Index of the band with the highest estimated probability. unsigned byte [0, 8]

Table 2.  Bands of the images in the “GOOGLE/DYNAMICWORLD/V1” collection.

https://doi.org/10.1038/s41597-022-01307-4
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Near real-time inference.  Using Earth Engine in combination with Cloud AI Platform, it is possible to 
handle enormous quantities of satellite data and apply custom image processing and classification methods using 
a simple scaling paradigm (Fig. 5). To generate our NRT products, we apply the normalization described earlier to 
the raw Sentinel-2 L1C imagery and pass all normalized bands except B1, B8A, B9 and B10 after bilinear upscal-
ing to ee.Model.predictImage. This output is then masked using our cloud mask derived from the unnormalized 
L1C image. Creation of these images is triggered automatically when new Sentinel-2 L1C and S2C images are 
available. The NRT collection is continuously updated with new results. For a full Sentinel-2 tile (roughly 100 km 
x 100 km), predictions are completed on the order of 45 minutes. In total, we evaluate ~12,000 Sentinel-2 scenes 
per day, processing half on average due to a filter criteria on the CLOUDY_PIXEL_PERCENTAGE metadata of 
35%. A new Dynamic World LULC image is processed approximately every 14.4 s.

Data Records
The Dynamic World NRT product is available for the full Sentinel-2 L1C collection from 2015-06-27 to pres-
ent. The revisit frequency of Sentinel-2 is between 2–5 days depending on latitude, though Dynamic World 
imagery is produced at about half this frequency (across all latitudes) given the aforementioned 35% filter on the 
CLOUDY_PIXEL_PERCENTAGE Sentinel-2 L1C metadata.

The NRT product is hosted as an Earth Engine Image Collection under the collection ID “GOOGLE/
DYNAMICWORLD/V1”. This is referenced in either the Earth Engine Python or JavaScript client library 
with ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1') and in the Earth Engine data catalog 
at https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V135. The 
images in this collection have names matching the individual Sentinel-2 L1C asset IDs from which they were 

Name Description Data Type

system:index
The part of the path of the image in the collection following the final forward slash. 
This matches the system:index of the Sentinel-2 L1C image from which this image was 
derived.

string

system:time_start
The average acquisition time of pixels in this image in milliseconds since the Unix epoch. 
This matches the system:time_start of the Sentinel-2 L1C image from which this image 
was derived.

long integer

system:footprint A geometry bounding the image data. geometry

system:asset_size The size in bytes of the image data as stored. long integer

dynamicworld_algorithm_version The version string uniquely identifying the Dynamic World model and inference process 
used to produce the image. string

qa_algorithm_version The version string uniquely identifying the cloud masking process used to produce the 
image. string

Table 3.  Metadata of the images in the “GOOGLE/DYNAMICWORLD/V1” collection.

Three Expert 
Strict

Expert 
Consensus

Expert 
Majority

Simple Expert 
Majority

Non-Expert Agreement 91.5% 77.8% 75.2% 81.4%

Table 4.  Agreement between non-experts and expert voting schemes.

Fig. 7  409 annotated Sentinel-2 tile centers in the test dataset, shown as white points overlaid on a 2019 MODIS 
NDVI composite to show global distribution of vegetated areas.
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derived, e.g. a Sentinel-2 L1C image accessed in Earth Engine with ee.Image('COPERNICUS/S2/2016
0711T084022_20160711T084751_T35PKT') has a matching Dynamic World LULC product in ee.
Image('GOOGLE/DYNAMICWORLD/V1/20160711T084022_20160711T084751_T35PKT') as in 
Fig. 6. Each image in the collection has bands corresponding to Table 2. Probability bands (all except the “label” 
band) sum to 1. Each image in the collection has additional metadata corresponding to Table 3.

Our 409-tile test dataset, including expert consensus annotations and corresponding Dynamic World esti-
mated probabilities and class labels for each 5100 m × 5100 m tile are archived in Zenodo at the following 
https://doi.org/10.5281/zenodo.476650836. The training dataset has been archived in PANGAEA in a separate 
repository: https://doi.org/10.1594/PANGAEA.93347537. The training and test data collected for Dynamic 
World are also available as Earth Engine Image Collection and can be accessed with:

ee.ImageCollection(‘projects/wri-datalab/dynamic_world/v1/DW_LABELS’).

Technical Validation
We used several different approaches to characterize the quality of our NRT products. We first compared expert 
and non-expert annotations to establish baseline agreement across human interpreters. This is particularly rel-
evant in understanding the quality of 20,000 training tiles that were annotated by non-experts. We then com-
pared expert reference annotations with Dynamic World products and to existing national and global products 
produced at an annual time step. We note that, for all comparisons with Dynamic World products, we ran the 
trained Dynamic World model directly on the Sentinel-2 imagery in the test tile and applied our cloud mask in 
order to benchmark the NRT results for the reference image date.

To create a balanced validation set, we randomly extracted ten image-markup pairs per biome per hemi-
sphere from the existing markups: 140 from the 14 biomes in the Western Hemisphere, 130 from the 13 biomes 
in Eastern Hemisphere-1, and another 140 from the 14 biomes in Eastern Hemisphere-2. Each tile was inde-
pendently labeled by three annotators from the expert group and by a member of the non-expert group such 
that we had four different sets of annotations for each validation tile. In total, this process produced 1636 tile 
annotations over 409 Sentinel-2 tiles (Fig. 7), and these tiles were excluded from training and online validation.

Expert Consensus

Water Trees Grass
Flooded 
Vegetation Crops

Shrub & 
Scrub

Built 
Area

Bare 
Ground

Snow & 
Ice Cloud

Precision/
User’s

Non-Experts

Water 7814103 36668 21205 58174 193344 18921 17533 68692 3688 3002 94.90%

Trees 237858 16664442 499046 301831 657282 1834363 133325 71652 18987 19774 81.50%

Grass 9921 60697 540597 55648 265055 113899 14984 18240 550 1407 50.00%

Flooded Vegetation 255910 107576 23721 879482 40311 33552 9357 23270 0 0 64.00%

Crops 13392 150401 258153 7920 12567377 223368 92983 88258 0 5141 93.70%

Shrub & Scrub 72746 1748087 1008622 519267 1656386 5143322 245498 1996929 137415 12010 41.00%

Built Area 10716 222831 40154 2028 324127 59196 6224787 35812 866 1510 89.90%

Bare Ground 22661 25522 23480 4482 268845 257830 22460 1036373 49328 4090 60.40%

Snow & Ice 2644 59334 539 687 73 21734 0 15917 1388854 11 93.20%

Cloud 3033 8988 198 264 19887 244 3740 393 3955 161082 79.80%

Recall/Producer’s 92.60% 87.30% 22.40% 48.10% 78.60% 66.70% 92.00% 30.90% 86.60% 80.20% 77.80%

Table 5.  Per-pixel confusion matrix of Non-Experts to Expert Consensus. Note that cloud is included as both 
sets of annotations include this label (n = 58,963,662).

Three Expert Strict

Water Trees Grass
Flooded 
Vegetation Crops

Shrub & 
Scrub Built Area

Bare 
Ground Snow/Ice

Precision/
User’s:

Dynamic World

Water 5964550 1450 0 17674 51640 125 5212 7713 2 98.60%

Trees 18510 7966289 118152 97159 656797 238465 8677 668 0 87.50%

Grass 24 4641 223688 8704 478891 38111 1046 20504 0 28.80%

Flooded Veg. 1680 1600 2185 275367 36005 3283 32 79 0 86.00%

Crops 262 11326 8093 426 5316019 126244 7389 5527 0 97.10%

Shrub & Scrub 408 121316 16676 497 309762 913085 14460 30428 0 64.90%

Built Area 63 4416 521 0 73663 3385 2506552 2171 0 96.70%

Bare Ground 126219 392 103 0 171023 155783 77606 901851 0 62.90%

Snow & Ice 49541 55081 0 0 25229 466 10457 8959 537301 78.20%

Recal/Producer’sl: 96.80% 97.50% 60.60% 68.90% 74.70% 61.70% 95.30% 92.20% 100.00% 88.4%

Table 6.  Confusion matrix of Dynamic World to Three Expert Strict, i.e. valid where all three experts labeled 
and all agreed (n = 27,841,623).
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Because new Dynamic World classifications are generated for each individual Sentinel-2 image and the qual-
ity of these classifications is expected to vary spatially and temporally as a function of image quality, it is difficult 
to provide design-based measures of accuracy that are representative of the full (and continuously updating) 
collection. Therefore, we focus instead on using the multiple annotations for each validation tile as a means to 
characterize both the quality and agreement of annotations themselves, as well as the ability of our NRT model 
to generalize to new (unseen) images at inference time.

Annotations were combined in three different ways to measure (1) agreement between expert and non-expert 
labels, (2) expert-to-expert consistency, and (3) agreement between machine labeling and multi-expert consen-
sus under several expert voting schemes.The four voting schemes considered were Three Expert Strict agreement, 
where all three experts had an opinion and all three agreed on feature class; Expert Consensus, where all three 
experts agreed, or where two experts agreed and the third had no opinion, or where one expert had an opinion 
and the other two did not; Expert Majority, where at least two experts agreed on feature class, or where one 
expert had an opinion and the other two did not; Expert Simple Majority, where at least two experts agreed and 
at least two agreed on feature class.

Comparison of expert and non-expert annotations.  To assess the quality of non-expert annotations, 
which comprise the majority of our training dataset, we directly compared rasterized versions of hand-digitized 
expert and non-expert annotations for our validation sample. Though these validation images were not used as 
part of model training, this comparison highlights strengths and potential weaknesses of the training set. We 
summarize the agreement between non-experts and experts for different voting schemes in Table 4 and show the 
full confusion matrix of Non-Experts to Expert Consensus in Table 5.

Agreement for all comparisons was greater than 75%, suggesting fairly consistent labeling across differ-
ent levels of expertise. As would be expected, the Three Expert Strict set shows the highest overlap with the 
Non-Expert set (91.5%), as only the pixel labels with the highest confidence amongst expert annotators remain.

Comparison of Dynamic World predictions with expert annotations.  To assess the model’s ability 
to generalize to new images, the trained Dynamic World model was applied to the 409 test tiles and the class with 

Expert Consensus

Water Trees Grass
Flooded 
Vegetation Crops

Shrub & 
Scrub Built Area

Bare 
Ground Snow/Ice

Precision/
User’s:

Dynamic World

Water 7664249 47476 34405 160034 333689 54613 45573 112658 4178 90.60%

Trees 121205 17522174 1019096 803380 2565217 2529992 281318 120507 8921 70.20%

Grass 5956 83205 876142 149792 1343601 311448 39657 101129 695 30.10%

Flooded Veg. 51371 68818 45450 722106 120045 56370 6860 35856 6 65.20%

Crops 21083 93924 139766 35422 9841373 574660 126895 241771 38 88.90%

Shrub & Scrub 17666 628594 380724 75929 1220212 3552589 151919 440744 29373 54.70%

Built Area 10375 146794 55121 3930 610401 94431 6489015 75899 744 86.70%

Bare Ground 171029 15374 28976 8811 313838 661030 183342 2214615 42538 60.80%

Snow & Ice 68277 195648 8649 550 59474 104295 14122 122907 1417512 71.20%

Recall/Producer’s: 94.30% 93.20% 33.80% 36.80% 60.00% 44.70% 88.40% 63.90% 94.20% 73.80%

Table 7.  Confusion matrix of Dynamic World to Expert Consensus, i.e. valid where at least two experts labeled 
and all agreed in any case (n = 68,137,571).

Expert Majority

Water Trees Grass
Flooded 
Vegetation Crops

Shrub & 
Scrub Built Area

Bare 
Ground Snow/Ice

Precision/
User’s:

Dynamic World

Water 7801513 49529 39511 187484 511166 59061 46461 197843 4178 87.70%

Trees 127510 20225220 1280463 963384 2835774 3215029 293635 150630 8956 69.50%

Grass 6465 135888 1415436 170294 1917310 405560 41812 151648 695 33.30%

Flooded Veg. 54365 73337 56852 764482 133162 72474 6878 40949 6 63.60%

Crops 23790 144438 261750 36363 10821384 707154 134486 328916 38 86.90%

Shrub & Scrub 18649 1034643 551074 99947 1476117 4498630 157166 708463 32079 52.50%

Built Area 11187 156117 57647 3935 666712 104009 6620303 82974 744 85.90%

Bare Ground 178304 16203 40275 8835 400529 1022049 198274 2722023 48658 58.70%

Snow & Ice 68319 199018 8656 550 59786 109192 14527 214993 1422556 67.80%

Recall/Producer’s: 94.10% 91.80% 38.10% 34.20% 57.50% 44.10% 88.10% 59.20% 93.70% 71.30%

Table 8.  Confusion matrix of Dynamic World to Expert Majority, i.e. valid where, amongst labels, there was 
consensus or only one expert labeled (n = 78,916,422).
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the highest probability (or “Top-1” label) was compared to the four expert voting schemes. Neither the validation 
images, nor other images from the same locations were available to the model during training. Thus, this assess-
ment quantifies how well the model performs when applied outside the training domain. The results of these 
comparisons are shown in Tables 6–9.

We considered the Expert Consensus scheme to best balance “easy” labels (where many experts would agree) 
and “hard” labels (where labels would be arguably more ambiguous) and used this as our primary performance 
metric. Overall agreement between these single-image Dynamic World model outputs and the expert labels 
was observed to be 73.8%. Comparing this 73.8% to the non-expert to expert agreement of 77.8% in Table 5, we 
note the similarity of the predictions to the level of agreement amongst the labels themselves. Unsurprisingly the 
model achieved the highest agreement for classes where annotators were confident (water, trees, built area, snow 
& ice) but had greater difficulty for classes where the annotators were less confident (grass, flooded vegetation, 
shrub & scrub, and bare ground).

Comparison of Dynamic World and other LULC datasets.  As a third point of comparison, we contex-
tualize our results in terms of existing products. We qualitatively and quantitatively compared Dynamic World 
with other publicly available global and regional LULC datasets (Table 10). For each Dynamic World valida-
tion tile, we reprojected the compared dataset to the UTM zone of the tile, upsampled the data to 10 m using 
nearest-neighbor resampling, and extracted a tile matching the extent of the labeled validation tile. For regional 
LULC datasets, such as LCMAP, NLCD, and MapBiomas, we were limited to tiles located within the regional 
boundary (e.g., only 42 validation tiles are within the spatial coverage of MapBiomas). We note that in every case, 
some cross-walking was necessary to match the taxonomies to the Dynamic World LULC classification scheme. 
We show a visual comparison of Dynamic World to other products in Fig. 8.

Measured against the expert consensus of annotations for the 409 global tiles, Dynamic World exceeded 
the agreement of all other LULC datasets except for the regional product LCMAP 2017 (Table 10). For the best 
global LULC product in our comparison study (ESA CGLS ProbaV 2019), Dynamic World achieved agreement 
at a higher spatial resolution (10 m vs 100 m) and improved agreement by 7.5%. For the current best regional 
product (LCMAP 2017), Dynamic World agreed 1.2% less with our expert consensus. We note that to per-
form the LCMAP comparison, we had to reduce our number of classes by combining grass and shrub & scrub 
as LCMAP does not separate these classes. When combining the Dynamic World grass and shrub & scrub 
classes, the agreement rises slightly to 74.2%, though LCMAP agreement was only validated against 11.7% of 
the tiles in a regional sample, and is an annual product not NRT. Further, direct comparison to ESA datasets are 

Expert Simple Majority

Water Trees Grass
Flooded 
Vegetation Crops

Shrub & 
Scrub Built Area

Bare 
Ground Snow/Ice

Precision/
User’s:

Dynamic World

Water 7203733 12969 9542 82175 422487 16660 15451 116578 57 91.40%

Trees 51183 15906784 596718 512895 1728587 1589558 80497 50509 492 77.50%

Grass 1066 77515 1030113 72589 1451071 213904 13709 91378 0 34.90%

Flooded Veg. 12885 15142 18924 521553 91294 33735 600 10042 0 74.10%

Crops 3830 78317 153125 12494 9204745 469898 37157 127148 0 91.30%

Shrub & Scrub 3231 663092 248003 36709 958322 2969428 64467 389238 5807 55.60%

Built Area 2150 36312 6089 68 325235 24489 4931216 22913 0 92.20%

Bare Ground 142656 2294 15237 203 338099 732591 132422 2124769 9991 60.70%

Snow & Ice 53479 128014 9 0 49884 26204 12566 134024 978892 70.80%

Recall/Producer’s: 96.40% 94.00% 49.60% 42.10% 63.20% 48.90% 93.30% 69.30% 98.40% 77.8%

Table 9.  Confusion matrix of Dynamic World to Expert Simple Majority, i.e. valid where at least one expert 
labeled and all agreed in any case (n = 57,707,212).

Dataset NRT Global Agreement Scale (m) Tiles

Mapbiomas Amazonia 2018 (N.Brazil, Venezuela, Peru, Bolivia) No No 54.8% 30 11

ESA S2GLC Europe 2019 No No 59.2% 10 45

ESA CCI 2018 No Yes 61.6% 300 409

ESA CGLS ProbaV 2019 No Yes 66.3% 100 409

NLCD 2016 (30 m, CONUS + Alaska) No No 66.7% 30 56

Mapbiomas Brazil 2019 No No 67.4% 30 20

LCMAP 2017 (30 m, CONUS only) No No 75.0% 30 48

Dynamic World (NRT) Yes Yes 73.8% 10 409

Table 10.  Comparison of Dynamic World to other LULC datasets in terms of temporal frequency, global 
coverage, agreement with our Expert Consensus test dataset, scale and Sentinel-2 tiles mapped. Bold values 
indicate top qualitative performance in each comparison category.
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difficult due to the resolution differences, with 300 m more spatially generalized than 10 m. It is also important 
to note that the Dynamic World comparison to the annotated validation tile is for the same image date, while 
there may be a mismatch in dates when comparing to other LULC datasets. Thus, by characterizing the relative 
agreement of different datasets with hand-annotated labels for a specific Sentinel-2 image, these comparisons 
provide important insights into the value of NRT classification for capturing fine-grained spatial and temporal 
variability in LULC.

Fig. 8  Visual comparison of Dynamic World (DW) to other global and regional LULC datasets for validation 
tile locations in (A) Brazil (−11.437°, −61.460°), (B) Norway, (61.724°, 6.484°), and (C) the United States 
(39.973°, −123.441°). Datasets used for comparison include 300 m European Space Agency (ESA) Climate 
Change Initiative (CCI); 100 m Copernicus Global Land Service (CGLS) ProbaV Land Cover dataset; 10 m ESA 
Sentinel-2 Global Land Cover (S2GLC) Europe 2019; 30 m MapBiomas Brazil dataset; and 30 m USGS National 
Land Cover Dataset (NLCD). Each map chip represents a 5.1 km by 5.1 km area with corresponding true-color 
(RGB) Sentinel-2 image shown in the first column. All products have been standardized to the same legend 
used for DW. Note differences in resolution as well as differences in the spatial distribution and coverage of land 
use land cover classes.

Fig. 9  Example of Dynamic World mode composite (February - September 2021), time series of class 
probabilities for single pixel (location indicated by circled white point), and select Dynamic World predictions 
with corresponding single-date Sentinel-2 images for temperate deciduous forest in Massachusetts, USA 
(centered on latitude: 42.491°, longitude: −72.275°).
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Fig. 10  Demonstration of relative weakness exhibited in Dynamic World in separating arid shrubland from 
crops. (a) An oil field in Texas, USA; (b) Agricultural mosaic in Florida, USA. High resolution image shown for 
reference. Estimated class prediction probabilities scaled from [0, 1] with red corresponding to the maximum 
probability of the crops class and blue corresponding to the maximum probability of the shrub & scrub class. 
In arid shrubland, the estimated probabilities for shrub and crops are more similar (purple) than in temperate 
or other biomes. The probabilities were averaged per-pixel over July 2021 and the reference imagery was taken 
from the Google Maps Satellite layer.

Fig. 11  Mode composite of all Dynamic World NRT products from 2021-04-01 to 2021-05-01. Areas of black 
correspond to no data over land (due to cloud cover) with white corresponding to no data over water.
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Usage Notes
Extensions of the Dynamic World NRT collection offer new opportunities to create global analysis products at 
a speed, cost, and performance that is appropriate for a broad range of stakeholders, e.g. national or regional 
governments, civil society, and national and international research and policy organizations. It is our hope that 
Dynamic World and spatially consistent products like it can begin to make LULC and derived analysis globally 
equitable.

Time series of class probabilities.  Though we used Top-1 labels for validation and cross-dataset com-
parisons, Dynamic World includes class probabilities in addition to a single “best” label for each pixel (Table 2). 
While inclusion of class probabilities and other continuous metrics that characterize uncertainties in LULC clas-
sifications are becoming increasingly common (i.e. LCMAP cover confidence attributes11), Dynamic World is 
distinct in providing dense time series of class probabilities updated with a similar cadence to the acquisition of 
the source imagery itself.

Rather than provide LULC labels that are intended to represent a multi-date time period, Dynamic World 
provides single-date snapshots that reflect the highly transitional and temporally dynamic nature of cover type 
probabilities. For example, in temperate regions that experience seasonal snow cover, a mode composite of 
Dynamic World labels reflects dominant tree and water cover types from February through September (Fig. 9). 
However, a time series of class probabilities for a pixel in an area of deciduous forest that is classified as “Trees” 
in the mode composite and during leaf-on conditions (e.g. June 6) is also classified as Snow & Ice when the 
ground is snow-covered (February 21) and has an increased Shrub & Scrub probability during early spring 
before leaf-out (March 13). This example illustrates the advantages of an instantaneous and probabilistic NRT 
classification approach, while also highlighting the challenges of standardizing validation metrics for a dynamic 
LULC dataset.

Uncertainties.  We find single-date Dynamic World classifications agree with the annotators nearly as well as 
the annotators agree amongst each other. The Dynamic World NRT product also achieves performance near, or 
exceeding many popular regional and global annual LULC products when compared to annotations for the same 
validation tiles. However, we have observed that performance varies spatially and temporally as a function of both 
the quality of S2 cloud masking and variability in land cover and condition.

Dynamic World tends to perform most strongly in temperate and tree-dominated biomes. Arid shrublands 
and rangelands were observed to present the greatest source of confusion specifically between crops and shrub. 
In Fig. 10, we demonstrate this phenomenon by observing that the maximum of estimated probabilities between 
crops and shrubs tends towards 0.5 in a sample of arid shrubland in Texas (seen by the low contrast purple color-
ing) even though this region does not contain cultivated land. By visual qualitative inspection, Dynamic World 
identifies grasslands better than the generally low agreement suggested by our Expert Consensus (30.1% for 
Dynamic World to 50% by non-experts, a 19.9% delta), and identifies crops more poorly than the generally high 
agreement suggested by our Expert consensus (88.9% by Dynamic World to 93.7% by non-experts, a 4.8% delta).

We also note that single-date classifications are highly dependent on accurate cloud and cloud shadow mask-
ing. Though we have implemented a fairly conservative masking process that includes several existing products 
and algorithms, missed clouds are typically misclassified as Snow & Ice and missed shadows as Water. However, 
because Dynamic World predictions are directly linked to individual Sentinel-2 acquisitions, these misclas-
sifications can be identified by inspecting source imagery and resolved through additional filtering or other 
post-processing.

Creating new products from the Dynamic World collection.  As a fundamentally NRT and continu-
ous product, Dynamic World allows users to constrain observed data ranges and leverage the continuous nature 
of the outputs to characterize land conditions as needed for their specific interests and tasks. For example, we 
do not expect the prescriptiveness of the “label” band to be appropriate for all user needs. By applying a desired 
threshold or more advanced decision framework to the estimated probabilities, it is possible to customize a dis-
crete classification as is appropriate for a user’s unique definitions or downstream task. Furthermore, users can 
aggregate NRT results to represent longer time periods. For example, one could create a monthly product as seen 
in Fig. 11 by mode-compositing the highest probability label over a one month period using a simple filterDate 
and mode in Earth Engine. It is also straightforward to generate a more traditional annual product by aggregating 
the estimated distributions for a given year or between the spring and autumn equinoxes to represent growing 
season cover only. Thus, unlike conventional map products, Dynamic World enables a greater degree of flexibility 
for users to generate custom aggregations and derivative products uniquely tailored to their needs and study 
areas.

Quantifying accuracy of derived products.  Rigorous assessment of map accuracy and good practices 
in estimating areas of mapped classes require probability sampling design that supports design-based inference 
of population-level parameters such as overall accuracy38. However, one of the fundamental requirements of 
design-based inference is a real, explicitly defined population, and in the case of map accuracy assessment, this 
population typically refers to a population of pixels included in a map and assigned different class labels39. Given 
that Dynamic World is a continuously updating image collection that can be post-processed into any number of 
different map products, the construction of a design-based sample would be dependent on the specific temporal 
aggregations and/or reclassifications performed by end-users.

In the assessments performed as part of our Technical Validation, we focus on agreement between reference 
annotations and our Top-1 NRT labels as our primary validation metric. While these agreement assessments 
support the general quality and utility of the Dynamic World dataset from the perspective of benchmarking, 
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we note that our confusion matrices are not population confusion matrices and thus cannot be used to estimate 
population parameters. These matrices also do not account for model-based estimates of uncertainty, specifically 
class probability bands that characterize uncertainty in model predictions. While more rigorous characterization 
of model uncertainty could be achieved using model-based inference techniques38, we argue that this is less 
appropriate for products like Dynamic World that are intended to be further refined into more traditional map 
products that can be assessed using design-based methods.

As an example, a Dynamic World derived product was generated by simply averaging class probabilities 
and a proof-of-concept assessment was performed by the University of Maryland Global Land Analysis and 
Discovery Laboratory (UMD-GLAD) using a stratified random sampling strategy with a total of 19 strata based 
on a prototype 30 m UMD-GLAD LULC map. Fifty sampling units were randomly selected from each of the 19 
strata. Reference data for interpretation and class assignment consisted of high resolution data from the Google 
Maps Satellite layer viewed in Google Earth and MODIS time-series NDVI. Each interpreted sampling unit was 
re-labeled with one of the eight DynamicWorld classes and all results were compared to the temporally aggre-
gated DynamicWorld product. Results generally indicated higher accuracies in terms of precision/user’s accu-
racy and recall/producer’s accuracy for relatively stable LULC classes such as water and trees. However, mixed 
classes such as built area and shrub & scrub and classes such as bare ground, crop, grass, and flooded vegetation 
that represent transient states or exhibit greater temporal dynamics tended to show much lower accuracies. 
Some of these lower levels of agreement also reflect potential mismatches in class definitions that arise from the 
NRT nature of the Dynamic World classes, i.e. “Flooded vegetation” may characterize an ephemeral state that is 
different from a more traditional “wetland” categorization.

While this example provides one possible derived product and assessment useful for demonstration pur-
poses, we intentionally do not provide a standard derivative map product of the Dynamic World dataset and 
instead encourage users, as is standard practice, to develop assessments of their unique derivative map products 
using tools such as Collect Earth40 designed for reference data collection and community standard guidance41–43. 
Reference sample design should reflect user-specified temporal aggregation (i.e., monthly, annual, multi-year) as 
well as any post-classification modifications to the original Dynamic World legend. There may also be interest-
ing opportunities to compare Dynamic World NRT and derived products with existing reference samples (e.g., 
LCMAP), in which case accuracy results and area estimates should be computed using estimators that account 
for differences between the map used for sample stratification and the Dynamic World product being assessed.

Code availability
The Dynamic World NRT dataset has been made available as an Earth Engine Image Collection under 
“GOOGLE/DYNAMICWORLD/V1”. This is referenced in either the Earth Engine Python or JavaScript client 
library with: ee.ImageCollection(‘GOOGLE/DYNAMICWORLD/V1’).

We provide a public web interface for rapid exploration of the dataset at: https://sites.google.com/view/
dynamic-world/home.

We also provide an example of accessing Dynamic World using the Earth Engine Code Editor in the following 
code snippet: https://code.earthengine.google.com/710e2ae9d03cd994c6e8dc9213257cbc.

The Dynamic World model has been run for historic Sentinel-2 imagery and is being run for newly acquired 
Sentinel-2 imagery; users are therefore encouraged to work with outputs available in the NRT Image Collection 
available on Earth Engine. Nonetheless, to ensure reproducibility, we have archived the trained model, exam-
ple code for running inference, and additional information on the model architecture in Zenodo at https://doi.
org/10.5281/zenodo.560214144.
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