
sensors

Article

A Simple and Effective Colorimetric Assay for
Glucose Based on MnO2 Nanosheets

Zhengjun Huang †, Linlin Zheng †, Feng Feng, Yuyuan Chen, Zhenzhen Wang, Zhen Lin,
Xinhua Lin and Shaohuang Weng *

Department of Pharmaceutical Analysis, School of Pharmacy, the Higher Educational Key Laboratory for Nano
Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China;
jjonepo@163.com (Z.H.); linlinzheng1111@163.com (L.Z.); camelsoul@163.com (F.F.);
13655042668@163.com (Y.C.); 15980232303@163.com (Z.W.); linwenjing002@163.com (Z.L.);
13906909638@163.com (X.L.)
* Correspondence: shweng@fjmu.edu.cn; Tel.: +86-134-0596-9592
† These authors contributed equally to this work.

Received: 7 June 2018; Accepted: 28 July 2018; Published: 2 August 2018
����������
�������

Abstract: Simple and effective methods for the detection of the level of blood glucose are closely
linked to the monitoring of people’s health. In the study, MnO2 nanosheets with absorption range of
300 nm~500 nm and obvious yellow color were easily prepared and applied to detect glucose through
their absorbance and color. The proposed method is based on the fact that a specific concentration
of glucose can be quantitatively transformed into hydrogen peroxide (H2O2) under the catalytic
effect of glucose oxidase. Based on the redox reaction of MnO2 with H2O2, yellow MnO2 can be
converted into colorless Mn2+ to monitor the concentration of glucose. Under optimal conditions,
a simple and effective visual assay for the sensitive and reliable detection of glucose was developed.
The linear range was estimated to the range from 0 µM to 100 µM, with a detection limit of 12.8 µM.
Furthermore, the proposed colorimetric assay based on MnO2 nanosheets can effectively detect blood
glucose of clinical serum samples with accuracy and convenience.
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1. Introduction

Glucose, the energy source of living cells and the intermediate product of metabolism, plays an
important role in the natural growth of cells and organisms. For humans, blood glucose should be
maintained at the suitable range to meet the needs of a healthy body. Abnormal levels of blood
glucose are closely linked to some diseases such as diabetes and hypoglycemia. In recent years,
the trend of younger and the increasing incidence of diabetes require some facile and accurate
methods for the monitor of blood glucose. At present, numerous analytical methods, such as
surface-enhanced Raman scattering [1], chemiluminescence [2], electrochemistry (electroanalysis and
electrochemiluminescence) [3,4], fluorescence [5,6] and spectrophotometry [7], have been developed and
applied for blood glucose determination. Among them, colorimetric assays based on spectrophotometry
have attracted great attention, which has led to a significant contribution to real-time detection of glucose
in a convenient and economical strategy [8–10]. A variety of colorimetric systems are used to accurately
determine blood glucose, such as those based on paper microfluidic devices [11], metal-organic
frameworks [12], nanoclusters [13], mesoporous carbon [14,15] and magnetic nanoparticles [16].
Although these methods are powerful and effective, the potential interference of complex components
present in clinical specimens and high cost are still issues in visual blood glucose measurement.
Therefore, it is still of great value to develop some new type colorimetric methods that are
modification-free and inexpensive for blood glucose monitoring.
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Hydrogen peroxide (H2O2) plays key roles as a redox signaling molecule in the regulation of
various physiological processes [17,18]. The control level of H2O2 is a relatively significant indicator of
several biological processes such as the immune system [19], and cancer incidence [20,21]. In addition,
H2O2 can be the main intermediary reactant for immunoassays such as enzyme linked immunosorbent
assay (ELISA) and chemiluminescence [22,23]. Furthermore, H2O2 is a byproduct of general oxidation
reactions from the catalytic process of glucose oxidase [24], amino-acid oxidase [25], uricase and so
on [26]. Thus, accurate detection of H2O2 or fabricating special sensing method based on the medium
of H2O2 is of practical importance in clinical and biological systems. Recently, the interaction between
H2O2 and metal oxides has been applied extensively to the construction of H2O2-related colorimetric or
fluorescent biosensing platform [27–29]. Among a wide variety of metal oxides, Fe3O4 and CeO2 were
the two best materials for the successful application of the H2O2-based bioanalysis [27–29]. However,
the fabrication of H2O2-based analyses for special targets through the direct action of H2O2 and metal
oxides to modulate the content of applied metal oxide as the signal is still rare.

Recently, MnO2 nanosheets, a metal oxide nanomaterial with ultrathin layers, were recognized as
planar structures like graphene [30]. Due to their two-dimensional, adsorption and convenient
preparation characteristics, several applications based on the changes of the content of MnO2

nanosheets, such as fluorescent and drug delivery platforms [31], were established. Besides them,
sensing methods for ascorbic acid, hypochlorite and other substances based on the change of the
absorbance of MnO2 nanosheets, have proved that MnO2 nanosheets can be a suitable candidate
for the establishment of visual inspection methods [32,33]. Furthermore, MnO2 nanosheets have
the advantages of non-toxicity and a large molar extinction coefficient (9.6 × 103 M−1 cm−1) [34,35].
However, colorimetric assays based on the direct application of MnO2 nanosheets as the visual signal
source is still scarce at present.

In this work, we designed and prepared MnO2 nanosheets with obvious yellow color, and used
their absorbance and color to fabricate a visual analytical system for glucose monitoring, as shown in
Scheme 1. It is known that H2O2 can react with MnO2 nanosheets following the redox reaction of MnO2

+ H2O2 + 2H+ →Mn2+ + 2H2O + O2. Under certain conditions, the yellow MnO2 nanosheets were
reduced to colorless Mn2+ by H2O2. The degree of reaction was closely related to the concentration of
H2O2, so we can quantify the concentration of H2O2 using the color reduction of yellow color of MnO2

nanosheets [5]. As the well-known byproduct of the enzymatic reaction of glucose oxidase (GOD)
towards glucose, the generated H2O2 in glucose sensors was the actual target for the modified signal.
Therefore, based on the reaction of yellow MnO2 nanosheets and H2O2, the quantification of glucose
corresponding to the different absorbance of yellow MnO2 nanosheets will be achieved.
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2. Experimental

2.1. Chemicals and Materials

Glucose, 30% H2O2, and KMnO4 were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). 2-Morpholinoethanesulfonic acid (MES), N-ethylmaleimide (NEM), glucose oxidase
from Aspergillus niger (GOD) (Art. No. G7141) and human serum albumin (HSA) were purchased from
Sigma-Aldrich Co. Ltd. (St. Louis, MO, USA). Maltose, fructose, phenylalanine (Phe), lysine (Lys),
cysteine (Cys), glutathione (GSH) and sodium periodate were obtained from Aladdin Chemistry Co.,
Ltd. (Shanghai, China). All chemicals were of analytical grade and used as received. All of the stock
solutions were prepared through deionized water.

2.2. Apparatus

Ultraviolet and visible (UV-vis) spectra were performed on a UV-2450 spectrophotometer
(Shimadzu Co., Kyoto, Japan). FTIR spectra were performed on an Avatar-330 infrared spectrometer
(Nicolet Co., Waltham, MA, USA). Transmission electron microscopy (TEM) and high resolution TEM
(HRTEM) were performed on a JEM-2100 system (JEOL Co., Ltd., Tokyo, Japan) with an accelerating
applied potential of 200 kV. All the testing was carried out at ambient temperature.

2.3. Synthesis of MnO2 Nanosheets

In a tube, 9 µL of 10 mM KMnO4 was added in 75 µL of 0.1 mM MES buffer (pH = 6.0). Afterward,
the above solution was diluted to 300 µL with deionized water. After reacting for a few minutes,
the color of the solution changed from purple to brown under shaking. The as-formed precipitate
was successively centrifuge for 10 min at 3500 g. Then, the precipitate was washed and centrifuged
with deionized water several times to remove byproducts and residual ions [36]. Later, the obtained
MnO2 nanosheets were all dispersed in 100 µL MES buffer in a tube for subsequent use. Such MnO2

nanosheets dispersion in a tube was designed as “solution 1”.

2.4. Reaction between H2O2 and MnO2 Nanosheets

Before the detection of glucose, the reaction between H2O2 and MnO2 nanosheets was investigated.
In 10 mM MES buffer (pH = 6.0), a series of concentration of H2O2 were respectively added into the
solution 1. The reaction volume was adjusted to 700 µL via the addition of 10 mM MES buffer. Then,
UV-vis spectrum was recorded.

2.5. Determination of Glucose

There are two operating steps for the detection of glucose. First, different concentrations of
glucose solution was successively added into the certain volume of 10 mM MES buffer (pH = 6.0) and
57.62 µL of 0.0321 mg/mL GOD, followed by successively mixing and incubation at 37 ◦C for 5 min to
obtain H2O2. Then, the dispersion of the prepared MnO2 nanosheets in a tube (Solution 1) was added
into the above solution. The reaction volume was adjusted to 700 µL by controlling the amount of MES
buffer. The resulting solution was successively incubated at 37 ◦C for 40 min for the further UV-vis
determination and taking pictures.

3. Results and Discussion

3.1. Characterization of MnO2 Nanosheets

At first, the morphology, lattice structure and spectral properties of the as-formed MnO2

nanosheets were systematically characterized. As displayed in Figure 1A, TEM images of MnO2

nanosheets show uniform large two-dimensional film morphology with a lateral diameter of about
100 nm. Furthermore, obvious wrinkles can be seen on the surface of the MnO2 nanosheets,
suggesting the thin characteristics of the film. High-resolution TEM (HRTEM) demonstrated that
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MnO2 nanosheets formed typical interlayer lattice planes of ~0.27 nm, which was ascribed to the (111)
diffraction facet of monoclinic-stuctured δ-MnO2 [37]. EDS of MnO2 nanosheets in carbon-coated Cu
supported membrane suggested the main components of Mn and O with the elemental ratio of Mn
and O close to 1:2 (Figure 1B). In addition, FTIR and UV-vis measurements were used for the further
illuminating the characteristics of the prepared MnO2 nanosheets. As shown in Figure 1C, the FTIR
spectrum showed a characteristic absorption peak at about 521 cm−1 ascribed to Mn-O vibration,
suggesting the specific structure information of the MnO2 nanosheets [31,38]. In the wavelength range
from 300 nm to 500 nm, the UV-vis spectrum indicated a broad absorption band with a shoulder
centered at 346 nm (Figure 1D), which was the d-d transition of Mn (IV) in the lattice structure of
MnO6 octahedra of MnO2 nanosheets. Thus, the absorption at 346 nm can be a suitable selection
for the quantification of the content of MnO2 nanosheets. The spectral characterizations confirmed
the structural information and spectral propertyof the prepared MnO2 nanosheets [33]. Moreover,
the insert of Figure 1D illustrated that the dispersion MnO2 nanosheets exhibited a homogeneous,
transparent, and uniform yellow color by comparing three MnO2 nanosheet dispersions manufactured
in the same manner under parallel operation.
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Figure 1. TEM image (A), EDS (B), FTIR spectrum (C) and UV-vis spectrum (D) of MnO2 nanosheets.
Inset of (A,D) showed the HRTEM of MnO2 nanosheets (A) and dispersion pictures of MnO2 nanosheets
of three parallel operations (D), respectively.

3.2. Feasibility of the Detection of Glucose Using MnO2 Nanosheets

The feasibility of the reaction between MnO2 nanosheets and H2O2 was evaluated. As shown
in Figure 2A, with the increased concentrations of H2O2 in the dispersion of MnO2 nanosheets,
the absorbance of MnO2 nanosheets gradually decreased. The result proved that the redox reaction
of MnO2 and H2O2 had happened according to the reaction MnO2 + H2O2 + 2H+→Mn2+ + 2H2O +
O2. It is known that H2O2 can be generated under the enzymatic catalysis of GOD to glucose. Thus,
the detection of glucose using MnO2 nanosheets as signal with the catalysis of GOD can be achieved.
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The control solution shown in (B,C) was simple KMnO4 solution (0.3 mM).

Although the application of MnO2 nanosheets as a signal source for the detection of glucose [33],
the judgment of the mechanism of the sensing feasibility for glucose is also an important factor for
the understanding of this method. It is known that one of the resultant products of MnO2 and H2O2

was Mn2+, thus in order to judge the feasibility of the sensing of glucose, the verification of Mn2+

as the product of detecting glucose using MnO2 and GOD as the reacting sources was investigated.
The sodium periodate oxidation colorimetric assay was used to validate the generated Mn2+. Mn2+

will be oxidized by periodate to generate purple permanganate under acidic conditions following
the reaction of 2Mn2+ + 5IO4

− + 3H2O → 2MnO4
− + 5IO3

− + 6H +. According to the detecting
protocol of glucose, the result reacting solutions with different contents of glucose were applied to
react with sodium periodate to prove the generation of Mn2+. Figure 2B shows that the resulting
solution according to the detection protocol of glucose using MnO2 nanosheets restored the purple
observation with the addition of sodium periodate and the increased concentrations of glucose cause
a deepened purple. The increased absorbance was in agreement with the increasing generation of
MnO4

− according to increased Mn2+ obtained from the detecting progress of glucose through the
reaction of H2O2 and MnO2 nanosheets (Figure 2C). Thus, the feasibility of the reaction between MnO2

and H2O2 can be expanded to the sensing of glucose.

3.3. Optimization of Experimental Conditions

pH significantly affects the activity of GOD and the detection sensitivity, so the pH was first
optimized. Typically, considering the activity of GOD and the physiological condition of organisms,
the main pH range from 5.0 to 7.5 was applied to investigate the influences of MES buffers at different
pH on the varied absorbance of the strategy for glucose. Figure 3A shows that the ∆A (the difference of
the absorbance of the assay without and with the presence of glucose) of MnO2 nanosheets at 346 nm
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increased and then decreased in the pH range of 5.0 to 7.5 with a maximum value at pH 6.0 towards
the detection of glucose. Therefore, pH 6.0 was chosen as the optimal solution for this procedure.
A series of the original concentrations of GOD added into the assay condition were also compared to
optimize the suitable concentration of GOD for the proposed method, as shown in Figure 3B. The ∆A
of MnO2 nanosheets at 346 nm was maximum at the condition of the addition of 0.0321 mg/mL GOD
into the solution. Thus, original 0.0321 mg/mL GOD for the assay was chosen.Sensors 2018, 18, x FOR PEER REVIEW  6 of 10 
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Figure 3. Effects of pH of the assay on detecting 50 µM glucose (A), and effects of the concentration
of GOD on detecting 0.2 mM glucose (B) at 346 nm. Note: Error bars represented the SDs from three
independent detections.

3.4. Analytical Performance of the Sensing of Glucose

Under the optimal conditions, different concentrations of glucose were detected. Figure 4A shows
the UV-vis spectra after the system of GOD and MnO2 nanosheets with several variable concentrations
of glucose. The absorbance of the resulting solution decreased proportionately with the increasing
concentrations of glucose. Furthermore, Figure 4B indicated that the absorbance at 346 nm showed a
linear relation with the glucose concentrations in the range of 0 to 100 µM. The linear fitting equation
was A = −0.00537 C(glucose, µM) + 0.91888 with R = 0.9959, and the limit of detection was calculated
to be 12.8 µM at a signal-to-noise ratio of 3. It indicated MnO2 nanosheets could be utilized as a
quantitative and sensitive measuring substrate for glucose detection.

Correspondingly, we could also observe directly the color changes due to different concentrations
of glucose. As shown in Figure 4C, the colors of the detection solutions gradually became
lighter with the increase of glucose concentration, and the color differentiation of each sample
was obvious. It further demonstrated that this method could achieve the colorimetric detection
of glucose concentrations.

Several common interferences were tested to evaluate the specificity of the proposed colorimetric
detection. Herein, the dispersion of MnO2 nanosheets in the testing condition was diluted to make the
absorbance value to be around 0.63, and the UV-vis absorbance of the method toward interference
was obtained under the same experimental condition for each other, as shown in Figure 5. Ascribed to
their reducibility, GSH and Cys could reduce MnO2 nanosheets, resulting in decreasing absorbance.
However, when NEM was added, which can selectively consume the thiol group-containing materials,
MnO2 nanosheets could stabilize by means of resisting the reduction of GSH or Cys. It indicated that
NEM could be used to treat the complex samples containing thiol group to eliminate the possible
interference. In the system containing maltose, fructose or amino acids, the absorbance of the
testing conditions were almost equal to that of pure MnO2 nanosheets, indicating that these common
interferents would not affect the determination of glucose. Furthermore, the close absorbance for
glucose with or without NEM suggested that NEM had negligible effect for the determination of
glucose. Thus, the above result suggested the excellent reliability and selectivity of this method
for glucose.
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3.5. Application of Visual Detection in Human Serum Samples

The feasibility of the proposed colorimetric assay for possible clinical application was investigated
by analyzing seven serum samples obtained from a local hospital. Taking into consideration the
blood glucose level in healthy people and the analytical performance of this method, the obtained
serum was diluted 100 fold with MES buffer for the detection. NEM was added into the diluted
serum to eliminate the possible interfering effect from GSH and other thiol-substances. The collection
and use of clinical serums obtained from anonymous participants were approved by the ethics
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committee of Fujian Medical University. As shown in Table 1, the test results of each sample with low
RSDs were obtained using the current method. Compared with the established clinical biochemical
determination, the absolute values of the relative errors of each other were lower than 6%. Furthermore,
statistical analysis of the detecting results from this method and the clinical biochemical method was
operated to prove the real practicability of the proposed method based on MnO2 nanosheets. The two
methods correlated well with a correlation coefficient of 0.995, as shown in Figure 6; the P-value of the
paired t-test was 0.602 (no significant difference). The real application result suggested the excellent
accuracy and feasibility of the proposed method based on MnO2 nanosheets as simple and effective
signals for colorimetric detection of blood glucose.

Table 1. Comparison of test results of the proposed method with clinical biochemical determination.

Samples Found by the Proposed
Method (mmol/L) RSD (%) (n = 3) Found by Clinical Biochemical

Determination (mmol/L) Relative Errors (%)

1 5.64 8.1 5.52 2.17
2 4.58 4.3 4.52 0.88
3 8.68 2.0 8.99 3.34
4 9.72 1.4 9.98 −2.61
5 9.74 1.4 10.03 −2.19
6 6.91 1.5 6.52 5.37
7 7.87 3.1 7.86 0.13
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4. Conclusions

In this work, we designed and prepared MnO2 nanosheets through a convenient and economical
route. After maximizing the UV-vis absorption properties of MnO2 nanosheets, we developed an
effective method for the visual detection of glucose levels. Furthermore, the proposed assay, which was
used to test the clinical serum samples, exhibited accuracy, suggesting the feasibility of the assay in
future real applications. In brief, this study suggested an effective strategy for visual signals based on
MnO2 nanosheets that can be used to assess glucose levels.
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