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In Brief
Proteogenomics is a powerful
tool to study the mode of action
of disease-associated mutations
at the genome, transcriptome,
proteome, and PTM level. Here,
we applied a proteogenomics
workflow to study the malignant
melanoma cell line A375. Such
workflow, used here as a proof of
concept on A375 cells, may be
applicable to other cancer types,
cell lines, or even patient-derived
samples.
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Proteogenomics Reveals Perturbed Signaling
Networks in Malignant Melanoma Cells
Resistant to BRAF Inhibition
Marisa Schmitt1, Tobias Sinnberg2,3, Katrin Bratl1, Katharina Zittlau1, Claus Garbe2,3,
Boris Macek1,3,*, and Nicolas C. Nalpas1,*
Analysis of nucleotide variants is a cornerstone of cancer (MAPK)/extracellular signal-regulated kinase (ERK) pathway

medicine. Although only 2% of the genomic sequence is
protein coding, mutations occurring in these regions have
the potential to influence protein structure or modification
status and may have severe impact on disease aetiology.
Proteogenomics enables the analysis of sample-specific
nonsynonymous nucleotide variants with regard to their
effect at the proteome and phosphoproteome levels. Here,
we developed a proof-of-concept proteogenomics work-
flow and applied it to the malignant melanoma cell line
A375. Initially, we studied the resistance to serine/
threonine-protein kinase B-raf (BRAF) inhibitor (BRAFi)
vemurafenib in A375 cells. This allowed identification of
several oncogenic nonsynonymous nucleotide variants,
including a gain-of-function variant on aurora kinase A
(AURKA) at F31I. We also detected significant changes in
abundance among (phospho)proteins, which led to reac-
tivation of the MAPK signaling pathway in BRAFi-resistant
A375 cells. Upon reconstruction of the multiomic inte-
grated signaling networks, we predicted drug therapies
with the potential to disrupt BRAFi resistance mechanism
in A375 cells. Notably, we showed that AURKA inhibition is
effective and specific against BRAFi-resistant A375 cells.
Subsequently, we investigated amino acid variants that
interfere with protein posttranslational modification (PTM)
status and potentially influence A375 cell signaling irre-
spective of BRAFi resistance. Mass spectrometry (MS)
measurements confirmed variant-driven PTM changes in
12 proteins. Among them was the runt-related transcrip-
tion factor 1 (RUNX1) displaying a variant on a known
phosphorylation site S(Ph)276L. We confirmed the loss of
phosphorylation site by MS and demonstrated the impact
of this variant on RUNX1 interactome.

Accumulation of mutations is one of the hallmarks of cancer
cells, and malignant melanoma is a type of cancer with the
highest frequency of somatic mutations (1). Recent in-
vestigations showed that mutations of key signaling pathways
in malignant melanoma are associated with poor clinical
outcome, for example, in the mitogen-activated protein kinase
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(2). The RAS/BRAF/MEK/ERK pathway is mutated to an
oncogenic form in 30% of all cancers, with nonsynonymous
BRAF mutations in up to 50% of cutaneous melanomas (3).
The predominant BRAF mutation is within the kinase domain
with a single nucleotide substitution of valine to glutamic acid
at amino acid 600 (4). This mutation can result in a 500-fold
increased, dimerization-independent activation of BRAF and
thus leads to a constitutive activation of downstream signaling
in cancer cells (3, 5). Targeted inhibition of the mutated BRAF
kinase with selective inhibitors such as vemurafenib, dabra-
fenib, or encorafenib (BRAFi) results in a reduction of MAPK
pathway signaling (5). However, almost all patients rapidly
develop resistance to BRAFi monotherapy after a period of
approximately 5 months (2). The considerable majority of
BRAF resistance development is caused by molecular or ge-
netic alterations that lead to MAPK pathway reactivation. The
identification of multiple cellular mechanisms of resistance has
greatly improved the understanding of malignancy and clinical
outcomes of BRAFV600E metastatic melanoma, e.g., by the
introduction of combined BRAF and MEK inhibition.

The past decade has seen a revolution in high-throughput
sequencing technologies, which provide information on
DNA/RNA sequence, gene structure and expression (6). Mass
spectrometry (MS)-based proteomics is experiencing a tech-
nological revolution similar to that of the high-throughput
sequencing. The current state-of-the-art “shotgun” prote-
omics workflows are capable of routine, comprehensive
analysis of proteomes (7, 8) and posttranslational modifica-
tions (PTMs) such as phosphorylation (9, 10). In recent years,
such workflows have been combined with high-throughput
sequencing technologies to investigate colon and rectal can-
cer (11), breast cancer (12, 13), squamous cell lung cancer (14)
and lung adenocarcinoma (15). Such proteogenomic ap-
proaches have proved superior to interpret nucleotide variants
in context of cellular signaling, phenotype, patient heteroge-
neity, and therapy prediction. In addition, proteogenomics
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Proteogenomics of Malignant Melanoma Cells
allows the integration of sample-specific nonsynonymous
variants into reference protein sequence database, thus
enabling detection and quantification of amino acid variants
by MS. For example, this permits the study of variants that
alter the protein modification status (12, 16). In recent years,
the number of human protein–protein interaction has consid-
erably increased in the literature (17); these are now supple-
mented with clinical knowledge to deliver on precision
medicine (18). Several studies have demonstrated the rele-
vance of protein–protein network reconstruction to investigate
network-attacking mutations (16), identify genomic alterations
for therapeutic combinations (19, 20) or determine novel tar-
gets from differential networks (21).
Here we applied a proteogenomics approach to a single

immortalized human melanoma cell line, A375, in its parental
as well as in BRAFi-resistant state. We identified non-
synonymous nucleotide variants and quantified (phospho)
proteins to reconstruct the signal transduction networks in
context of acquired resistance to kinase inhibitors within A375
cells. We were able to prioritize a number of drugs based on
their disruptive potential on this signal transduction networks.
Finally, we investigated the impact of nonsynonymous amino
acid variants on protein phosphorylation sites. And their pu-
tative functional effects were evaluated on A375 cell signaling
irrespective of BRAFi resistance status.
EXPERIMENTAL PROCEDURES

Only star methods are presented below; the rest of the methods are
described fully in supplemental data.

Experimental Design and Statistical Rationale

For the whole-exome sequencing (WES), DNA was extracted from
A375 sensitive (S) and resistant (R) cells. Since WES was used only for
variant calling, one replicate was analyzed for each cell line. Total
genomic DNA was enriched for exome regions and sequenced on
Illumina HiSeq 2000. Obtained reads were aligned to H. sapiens
reference genome (GRCh38) using the HiSAT2 aligner. Variants were
called using GATK software and incorporated into cell-line-specific
protein sequence database using in-house script.

The (phospho)proteomics data is derived from two sets of samples
prepared and analyzed by liquid chromatography–tandem mass
spectrometry (LC-MS/MS). For the first screen, a total of 114 runs
were performed with 60 min gradient for fractionated proteome and
phosphoproteome measurements on an Exploris mass spectrometer.
A375 S and A375 R cells were used for proteome and phosphopro-
teome measurements (three biological replicates per cell line, with 19
samples per replicate consisting of nine fractionated proteome sam-
ples and ten rounds of phosphopeptide enrichment). For the second
screen, a total of 21 runs were performed with 60 min gradient for
immunoprecipitation and 90 min gradient for peptide pull-down
measurements on Q Exactive HF-X and HF mass spectrometers.
Immunoprecipitation assays of Flag-tagged RUNX1, SILAC labeled
A375 S RUNX1_KO cells transfected with pCMV_Flag_RUNX1
plasmid, pCMV_Flag_RUNX1_S276L plasmid, or with empty vector
plasmid (pCMV_Flag) were used (“light”: “medium”: “heavy”)
(three biological replicates). For synthetic peptide pull-downs in A375
S cells, label-free quantification between three independent replicates
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was performed (nine samples). Beads only were used as a control
(three replicates).

LC-MS/MS raw data were processed using MaxQuant software
(version 1.6.8.0 and 1.5.2.8). Statistical analyses were performed with
Perseus (version 1.6.0.5) for the (phospho)proteome datasets (t test
and Fisher exact test).

Biological assays were performed in three biological and six tech-
nical replicates, so that appropriate statistical analysis could be per-
formed. Statistical analysis was performed with two-tailed unpaired t
test in GraphPad Prism (version 8). Separate controls were included in
each experiment.

Cell Culture

The human metastatic BRAFV600E-mutated melanoma cell line A375
(CRL-1619, ATCC) was used in this study and authenticated by
Microsynth AG. The generation of the cell line with acquired resistance
to vemurafenib analogue PLX4720 (Selleckchem) (for simplicity
referred to as “vemurafenib” in the Results section) was conducted as
described previously (22). A375 S and R cells were grown in RPMI
medium (Sigma-Aldrich) supplemented with foetal bovine serum (FBS,
10%, PAN Biotech) and penicillin/streptavidin (100 U/ml, PAN Biotech)
at 37 ◦C and 5% CO2.

For immunoprecipitation assays, SILAC labeling of cells was per-
formed as described previously (23) and detailed description of la-
beling of cells, CRISPR/Cas9-mediated knockout of RUNX1, and
interaction assays can be found in the supplemental data.

Incorporation of Nonsynonymous Variants into Protein Databases

To integrate the proteogenomics datasets, we used an in-house
bioinformatics pipeline, which is coded entirely in the R program-
ming language (24). The transcript nucleotide sequences were
extracted from GRCh38 H. sapiens genome assembly and Ensembl
transcript annotation (via BSgenome and GenomicFeatures pack-
ages). These sequences were then in silico translated (from start to
first stop codon) into a reference protein sequences database (Bio-
strings package). The called variants, within Variant Call Format files
from A375 R and A375 S, were injected into each overlapping refer-
ence transcript nucleotide sequences and then in silico translated. The
resulting protein sequences were written into two FASTA files con-
taining reference variant protein sequences and sample-specific
alternate variant protein sequences.

Annotation of the Biological Impact of Detected Variants

In the current study, we prioritized amino acid variants based on
their impact in context of BRAFi resistance in melanoma
(supplemental Tables S1 and S2). For this purpose, known variant
sites in melanoma, as well as known variant sites in cancer, were
obtained from CGDS (25). These were overlapped with A375 identified
variants and classified as loss/gain of sites. A list of oncogenes and
tumor suppressor genes was compiled from Cosmic, ONGene,
Bushman lab, and Uniprot (26–28), whereas a list of genes harboring
variants involved in BRAFi-resistant tumor was retrieved after rean-
alysis of published study (29). A375 variants found on these genes
were annotated as relevant in cancer and/or BRAFi resistance.

A second impact scoring strategy was also performed to investi-
gate protein phosphorylation-based signal transduction networks in
A375 melanoma cells. Each reference/alternate variant protein
sequence was annotated based on whether phosphorylation sites (S/
T/Y) were lost and/or gained (IRanges package). A list of known kinase
motifs was retrieved from PhosphoNetworks (30) and these motifs
were searched along the reference/alternate variant protein se-
quences. Located kinase motifs were overlapped with variants posi-
tion to determine loss/gain of the motifs. Known human
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phosphorylation sites were retrieved from PhosphoSitePlus and
Phospho.ELM databases (31, 32). The variants identified in our study,
which overlapped with known phosphorylation sites, were annotated
as loss/gain of known phosphorylation. In a similar fashion, known
variant sites in melanoma were obtained from CGDS (25) and over-
lapped with the variants from A375 R and S. A list of oncogenes and
tumor suppressor genes was compiled from Cosmic, ONGene,
Bushman lab, and Uniprot (26–28). Variants on these genes that were
identified in A375 R and S were annotated as cancer-relevant. A
Levenshtein similarity score was calculated between reference and
alternate variant protein sequences, whereby alternate sequences
with less than 90% similarity to their reference were flagged.

Eachaminoacidwithinvariantproteinsequenceswasattributeda“+1”
scoreforeveryoverlapwithanimpactannotation.Asummedscorewasthen
calculatedforeachaminoacidwithinalternatevariantsequence,and the
maximum summed score was reported for that variant protein isoform.
Because the score depends on the number of impacts used during the
annotation,wealsocomputedascaledmaximumscore(between0and1),to
allowcomparisonbetweenprocessings.Followingthecomputationofall
impacts, each variant protein isoform is ranked to allow prioritization for
follow-upstudies.

Extraction and Digestion of Proteins

Cells were harvested at 80% confluence with lysis buffer (6 M urea,
2 M thiourea, 60 mM Tris pH 8.0) complemented with protease
(complete Mini EDTA-free tablets, Roche) and phosphatase inhibitors
(5 mM glycerol-2-phosphate, 5 mM sodium fluoride, and 1 mM so-
dium orthovanadate) and 1% N-ocetylglucoside (NOG, Sigma-Aldrich)
for 10 min on ice. DNA and RNA were removed from the cell lysate
using benzonase (1 U/ml, Merck Millipore) for 10 min on room tem-
perature (RT). Cell debris was cleared by centrifugation (2800g, 10 ◦C,
20 min). Proteins were precipitated from cell lysates using eight vol-
umes of acetone (−20 ◦C) and one volume of methanol and incubated
overnight at −20 ◦C. The resulting solution was centrifuged (2800g, 10
◦C, 20 min) to form a cell pellet. The pellet was washed two times with
80% acetone (−21 ◦C) and resuspended in lysis buffer without NOG.
Protein concentration was measured using Bradford assay. Extracted
proteins (2–3 mg) were reduced with 10 mM of dithiothreitol (DTT) for
1 h, alkylated with 55 mM iodoacetamide for an additional hour, and
digested with Lys-C (Lysyl Endopeptidase, Wako Chemicals) for 3 h at
RT. After adding four volumes of 10 mM ammonium bicarbonate,
proteins were digested with trypsin (Promega Corporation) overnight.
To stop the digestion, 1% trifluoroacetic acid (TFA) was added.

Detailed description of high-pH reverse-phase chromatography can
be found in the supplemental data.

Phosphopeptide Enrichment

Enrichment of phosphorylated peptides was performed using TiO2

beads (Titansphere, 10 μm, GL Sciences). TiO2 beads were resus-
pended in DHB solution (80% ACN, 1% TFA, 3% 2,5-
dihydroxybenzoic acid (DHB)) and incubated for 20 min. Digested
peptides were purified using Sep-Pak C18 Cartridge (Waters). In brief,
Sep-Pak C18 Cartridges were activated with methanol and washed
two times with 2% ACN, 1% TFA. After loading the sample, the col-
umn was washed again with solvent A (0.1% TFA) and eluted with
80% ACN, 6% TFA. Purified peptides were added to the TiO2 beads
(beads to protein ratio, 1:2) and incubated for 10 min for each
enrichment round (10 enrichment rounds). Phosphopeptide-bound
TiO2 beads were sequentially washed with 30% ACN, 1% TFA, fol-
lowed by 50% ACN, 1% TFA, and 80% ACN, 1% TFA. Peptides were
eluted with 5% NH4OH into 20% TFA followed by 80% ACN in 1% FA.
The eluate was reduced by vacuum centrifugation, pH was adjusted to
<2.7 with TFA, and peptides were desalted on C18 StageTips prior
LC-MS/MS measurements.

Liquid Chromatography–Mass Spectrometry

Peptides were measured on an EASY-nLC 1200 ultrahigh-pressure
system (Thermo Fisher Scientific) coupled to a quadrupole Orbitrap
mass spectrometer (Q Exactive HF and HFX and Exploris 480, Thermo
Fisher Scientific) via a nanoelectrospray ion source. About 500 ng of
peptides was loaded on a 20-cm analytical HPLC-column (75 μm ID
PicoTip fused silica emitter (New Objective); in-house packed using
ReproSil-Pur C18-AQ 1.9-μm silica beads (Dr Maisch GmbH)). LC
gradient was generated by solvent A (0.1% FA) and solvent B (80%
ACN in 0.1% FA) and 200 nl/min. Column temperature was kept at 40
◦C. For screen 1, all samples were measured on an Exploris 480 mass
spectrometer using 60 min gradient for fractionated proteome (opti-
mized gradient for each fraction) and phosphoproteome samples. The
mass spectrometer was operated in data-dependent mode, collecting
MS spectra in the Orbitrap mass analyzer (60,000 resolution,
300–1750 m/z range) with an automatic gain control (AGC) set to
standard and a maximum ion injection time set to automatic. For
higher-energy collisional dissociation (HCD), the 20 most intense
peptides were selected and fragments with a normalized collision
energy of 28. MS/MS spectra were recorded with a resolution of
30,000 (fill time set to automatic). Dynamic exclusion was turned on
and set to 30 s. An m/z inclusion list (tolerance 10 ppm) was used to
increase peptide coverage for RUNX1 and AURKA within the prote-
ome and phosphoproteome measurements.

For the second screen, analysis of RUNX1 overexpression inter-
actome (measured on Q Exactive HF-X), full MS were acquired in the
range of 300 to 1750m/z at a resolution of 60,000 (fill time 20 ms, AGC
target 3E6). Twelve most abundant precursor ions from a survey scan
were selected for HCD fragmentation (fill time 110 ms), and MS/MS
spectra were acquired at a resolution of 30,000 on the Orbitrap
analyzer. Precursor dynamic exclusion was enabled with a duration of
20 s (AGC target 1E5). Synthetic peptide pull-downs were analyzed on
Q Exactive HF mass spectrometer, full MS were acquired in the range
of 300 to 1650m/z at a resolution of 60,000 (fill time 25 ms, AGC target
3E6). MS/MS scans were acquired for the top seven most abundant
precursor ions with a resolution of 60,000 and a fill time of 110 ms
(AGC target 1E5).

Mass Spectrometry Data Processing

The raw data files were processed with the MaxQuant software
suite (version 1.6.8.0 and 1.5.2.8) (33). The Andromeda search engine
searched MS/MS data against H. sapiens reference (GRCh38 Ensembl
release 97; 99,354 entries) and cell-line-specific alternate databases
(GRCh38 Ensembl release 97; 29,104 entries), as well as UniProt
H. sapiens (UniProt release 2019/12; 95,943 entries) database and
commonly observed contaminants. Carbamidomethylation of cysteine
(C) was set as fixed modification and oxidation of methionine, phos-
phorylation at serine, threonine, or tyrosine were defined as variable
modifications. Trypsin/P was selected as a protease. No more than
two missed cleavages were allowed. The MS tolerance was set at
4.5 ppm and MS/MS tolerance at 20 ppm for the analysis using HCD
fragmentation method. The false discovery rate (FDR) for peptides and
proteins was set to 1%. For label-free quantification, a minimum of
one peptide was required. For quantification of proteins in the
immunoprecipitation experiments, the amino acids (Lys4)/(Arg6) and
(Lys8)/(Arg10) were defined as “medium” and “heavy” labels for the
comparison of RUNX1 overexpressed cell lines. For all other param-
eters, the default settings were used.
Mol Cell Proteomics (2021) 20 100163 3
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Significance Testing and Pathway Analysis

Statistical analyses were performed with Perseus software suite
(version 1.6.5.0). For the (phospho)proteome investigation of BRAFi
resistance in A375 cells, the drug-sensitive (n = 3) and drug-resistant
(n = 3) A375 cells were compared using (1) label-free quantification for
the proteins and (2) intensities for the phosphorylation sites. Each
omics dataset was analyzed separately and entries were filtered out if
not quantified in all samples. Additionally, the reverse and potential
contaminants were filtered out from the protein and phosphorylation
site datasets. Notably, the phosphorylation sites' intensities were
normalized by the corresponding proteins intensities. A t test was
used to compute p-values and identify significantly changing entries
between A375 R and S samples. The p-value was corrected for
multiple testing with a permutation-based FDR (s0 = 0.1 and FDR
≤0.05 [proteome] or FDR ≤0.1 [phosphoproteome]). The proteins and
phosphorylation sites, which were statistically tested in Perseus, are
listed in supplemental Table S1.

For proteomic interaction studies of RUNX1, protein groups were
kept for further statistical analysis only if quantified in three out of three
replicates. The SILAC ratios of the three independent replicates were
averaged and an arbitrary cutoff of twofold change was used to
determine significant SILAC ratios. The log2-transformed ratios were
plotted against intensities (log10). For synthetic peptide pull-downs,
label-free quantification between three independent replicates was
performed and ratios were subjected to t test analysis, with a
permutation-based FDR threshold of 0.01 and s0 value of 1.2. A list of
known interaction partners of RUNX1 was retrieved from BioGrid and
mapped to the dataset. A list of all protein identifications is provided in
supplemental Table S3.

The resources used for annotation of proteins were Kyoto Ency-
clopaedia of Genes and Genomes (KEGG), Gene Ontology Biolog-
ical Function (GOBP), and Reactome Pathway database (Reactome).
The Fisher exact test (FDR ≤0.2 [BRAFi resistance studies] or FDR
≤0.1 [interaction studies]) was used to test for overrepresented
functions or pathways among significantly changing entries against
the background of identified entries. The displayed pathways were
selected based on highest FDR or enrichment score. A list of all
overrepresentation results is provided in supplemental Tables S1
and S3.

Amino Acid Variants Identification

Our in-house proteogenomics bioinformatic pipeline was used to
integrate WES and MS datasets, specifically to check which mutations
were identified across omic datasets. Initially, the reference and
alternate variant protein sequences were in silico digested according
to laboratory condition; i.e., digestion with trypsin and up to two
missed cleavages (cleaver package). The overlap of MS-identified
peptides with in silico digested peptides led to classification into
reference (nonmutated peptide that overlaps the mutation position on
the reference protein), alternate (mutated peptide that overlaps the
mutation position on the alternate protein), or unspecific (nonmutated
peptide that does not overlap any mutated positions) variant peptides.
On the basis of this peptide classification, we summarized the pep-
tides identification per variant protein isoforms, allowing coverage
characterization into reference only, alternate only, reference, and
alternate or unspecific. We finally focused on PTM (as implemented in
the MaxQuant processing), which here consists of phosphorylation
sites. Reference and/or alternate variant peptides found phosphory-
lated were flagged as such, as well as those where the phosphory-
lation occurred directly on the variant sites (either on reference or
alternate variant sequences). This coverage information is exported
within MaxQuant style processing results (tab-separated file as
output).
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Signaling Network Reconstruction

We downloaded the protein–protein interactions from the BioGRID
database (release 3.5.169) (17) and reconstructed signaling network in
the R programming language. We used only interactions that were
reported in H. sapiens and showed at least two experimental evi-
dences (e.g., two publications, two methods). Networks were gener-
ated undirected, as such information is missing from BioGRID. In
addition, self-linked interactions and orphan nodes were removed
(igraph package). Nodes were organized relative to each other based
on betweenness centrality and variant effect (e.g., not mutated, loss of
function, gain of function) for the network of BRAFi-resistant A375 or
functional pathway for RUNX1 interactome network. For the network
of BRAFi-resistant A375 cells, we retrieved interactions strictly be-
tween the significantly changing (phospho)proteins (between A375 S
and R), as well as the list of proteins with potential driver mutations
(i.e., damaging oncogenic variants and variants unique to A375 R).
Whereas, for the networks of AURKA and RUNX1, their respective
interactors were retrieved irrespective of their identification by MS or
WES. For protein target prioritization, we ranked (from high to low) the
nodes based on number of edges within each interaction network and
retained the top 200, 50, and 55 nodes for the network of BRAFi-
resistant A375, AURKA, and RUNX1, respectively. The generated
networks were exported (using igraph and RCy3 packages) into
Cytoscape to improve visual formatting (34).

Possible drugs interacting with the network of BRAFi-resistant A375
cells were retrieved from DrugBank database (release 24.10.2019)
based on their targets (35). Only drugs showing an effect in H. sapiens
were used. All drugs were retained, irrespective of their category (e.g.,
inhibitor), chemical kingdom (e.g., organic compound), or approval
status (e.g., approved, experimental). The specificities of the drugs,
interacting with nodes from the generated network, were calculated
based on all possible target reported in DrugBank database. Drugs
were prioritized further by summing the number of interactions their
targets have within the network.
RESULTS

To study signal transduction networks using a proteogenomic
approach, we selected the widely studied A375 melanoma cell
line that harbors the BRAFV600E mutation. We generated two
closely related A375 cell lines, drug-sensitive (A375 S) and drug-
resistant against the BRAF inhibitor vemurafenib (A375 R), as
described previously (22). The resulting cell lines were subjected
to WES, as well as proteomics and phosphoproteomics evalu-
ation (supplemental Fig. S1A). These multiomic measurements
were then integrated (1) to reconstruct signaling networks that
are disturbed in BRAFi-resistant A375 cells and (2) to investigate
the impact of variants altering protein PTM status in A375 cells
irrespective of BRAFi resistance.

Variance in Protein Abundance Discriminates between
BRAFi-sensitive and -resistant A375 Cells

Initially, we investigated the mutational landscape of A375 R
and A375 S cells by high-throughput sequencing. The majority
(95%) of nonsynonymous nucleotide variants consisted of
nucleotide substitutions, the rest comprising frameshifts, de-
letions, and insertions (Fig. 1A and supplemental Table S1.1).
This trend was consistent across both A375 cell lines. As
expected, only 46 variants (out of 10,986) were classified as



FIG. 1. Multiomics identification using proteogenomics. A, number of nonsynonymous nucleotide variants is classified per type of alter-
ation for A375 S and R cells. The Venn diagram represents the overlap between A375 S and R shared variants and A375 R unique non-
synonymous nucleotide variants. B, the number of protein sequences is displayed per reference (ENSEMBL) or alternate (WES from A375 R and
S) databases, as well as the overlap in search space between databases (up to two missed cleavages). C, quantified protein groups and
phosphorylated sites are counted based on whether they are shared or unique between A375 R and S cell lines. D, principal component analysis
using protein abundances shows the separation of samples between cell lines (A375 R versus S), as well as the clustering of the biological
replicates. Numbers next to each dot indicate the replicate identifier.

Proteogenomics of Malignant Melanoma Cells
unique to A375 R cells, the rest being shared in both cell lines.
Notably, most variants were already reported in Cosmic and/
or dbSNP databases (supplemental Fig. S1B), allowing for
functional effect annotation. The variants affected genes, and
in turn the corresponding proteins, from every subcellular
compartment, such as cytoplasm (1067 variants), nucleus
(680), mitochondrial matrix (229), mitochondrial import com-
plex (115), and mitochondrial outer membrane (36). Analysis of
the reference to alternate nucleotide substitution revealed a
high frequency (64% of all substitutions) of adenine to guanine
(and vice versa), as well as cytosine to thymine (and vice
versa) exchange (supplemental Fig. S1C). Subsequently,
these nonsynonymous variants were incorporated into their
corresponding protein sequences. This led to the generation
of several thousand additional protein isoforms contained
within a cell-specific alternate protein sequence database
(Fig. 1B). Despite this large increase in the number of protein
isoforms, the database search space increased by only 2%,
which should result in no or very minor increase in false-
positive identification during MS spectral search (37).
The alternate protein sequence database was then used,

together with the reference database, for the processing of
deep proteomics and phosphoproteomics data from A375 S
and A375 R cells. High-resolution MS led to the identification
of more than 7500 protein groups and 20,500 phosphorylated
sites (Fig. 1C), of which over 5000 protein groups and 7000
phosphorylated sites were quantified in all samples (n = 6).
Using the quantitative data, these replicates were also char-
acterized by high positive correlations at both the proteome
(range 0.95–0.98) and phosphoproteome (range 0.73–0.90)
Mol Cell Proteomics (2021) 20 100163 5
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levels (supplemental Fig. S1D). Interestingly, a principal
component analysis based on protein abundances revealed
that the first dimension separated A375 R from A375 S repli-
cates (Fig. 1D). On the second dimension, one of the A375 S
replicates separated from the other replicates, which might be
explained by a lower protein identification rate in that specific
sample. The separation between A375 S and R was confirmed
using the phosphorylated site abundances, although within
the second dimension (supplemental Fig. S1E). These initial
quality controls highlighted the high measurement reproduc-
ibility for this dataset, as well as the ability to discriminate two
closely related cell lines.

Key Signaling Pathways Are Perturbed in BRAFi-Sensitive
and -Resistant A375 Cells

Subsequently, we investigated the nonsynonymous nucle-
otide variants based on their functional effect as predicted by
the oncoKB resource (38). This analysis revealed that five
nonsynonymous nucleotide variants resulted in a possible
loss of function for cyclin-dependent kinase inhibitor 2A
(CDKN2A E61X) and steroid receptor RNA activator 1 (SRA1
V110RfsX24), as well as a possible gain of function for aurora
kinase A (AURKA F31I) (Fig. 2A). These variants were reported
as known somatic mutations in COSMIC in a range of cancer
including melanoma. These were considered as potential
driver mutations in context of resistance to BRAFi and
retained for further analysis (39). To expand this driver list, we
also overlapped the nonsynonymous nucleotide variants
identified uniquely in A375 R against the study from Long et al.
(29), who analyzed ten malignant melanoma patients
(supplemental Table S2.1). While we did not observe any
shared variants between A375 R and the patients' data, we did
find three shared genes harboring different variants (Fig. 2B).
Of note, the overlap in variants from resistant tumors found
among the patients from the Long et al. study was also very
limited, which led us to retain all A375 R unique variants as
potential driver mutations for further analysis.
We next performed a quantitative comparison of A375 R

versus A375 S using the protein and phosphorylated site
abundances. MS analysis identified 359 significantly regulated
proteins (t test with s0 at 0.1 and FDR ≤0.05) between cell
lines (supplemental Fig. S2A and supplemental Table S1.2),
including the BRAF resistance marker protein nestin (NES),
which was identified in our previous study (23). At the phos-
phoproteome level, we identified 187 differentially abundant
phosphorylated sites (t test with s0 at 0.1 and FDR ≤0.1) that
were present on several key proteins, such as AP-1 tran-
scription factor subunit (JUN) or eukaryotic translation initia-
tion factor 4B (EIF4B) (supplemental Fig. S2B and
supplemental Table S1.4). Deeper functional characterization
was obtained through overrepresentation analyses based on
different subset of significantly changing proteins and phos-
phorylated sites (Fisher exact test FDR ≤0.2). Notably the
MAPK and cAMP signaling pathways, as well as focal
6 Mol Cell Proteomics (2021) 20 100163
adhesion, were overrepresented at both the proteome and
phosphoproteome level (Fig. 2C, supplemental Tables S1.3
and S1.5). We also identified several other pathways con-
nected to cancer, immune response, and glycoproteins
(important for metastasis). Taken together, our data show that
proteomics and phosphoproteomics deepen our under-
standing of the disrupted signaling pathways implicated in cell
line model of BRAFi resistance.

Amino Acid Variants Are Detectable within Key Signaling
Pathways and Proteins

The aforementioned cell-specific protein database, used
during the processing of the MS data, allowed us to detect a
number of variant peptides, i.e., peptides harboring reference
or alternate amino acid. Among the MS-identified amino acid
variants, most were shared across A375 R and S, a trend that
was consistent at the proteome and phosphoproteome level
(supplemental Fig. S2C). Interestingly, these MS-detected
variant protein isoforms were overrepresented in cancer-
related, immune response and glycoprotein pathways
(supplemental Fig. S2D and supplemental Table S1.6). To
confirm the quality of identification for these alternate variant
peptides, we displayed the MaxQuant score, as well as in-
tensity (mean and standard deviation) distribution, which was
nearly identical to the rest of the peptides (supplemental
Fig. S2, E and F). We also checked whether MS identifica-
tion of amino acid variants was dependent on variant genetic
zygosity. Our data shows that the majority of alternate variant
peptides were homozygous based on WES; however, this
trend did not translate to higher peptide intensities
(supplemental Fig. S2, G and H).
Importantly, we could identify most of the commonly

mutated genes in melanoma or in context of BRAFi resistance
at the WES and/or (phospho)proteome levels (supplemental
Fig. S2I and supplemental Table S1.7). However, only the
BRAF V600 E variant could be identified at both the WES and
proteome levels. Among the resistance marker genes found
within the Long et al. study, only MAP2K3 (MEK3) harbored a
variant in our WES dataset (R67W). These results highlight the
capability of proteogenomics approach to detect amino acid
variants on expressed proteins, which in turn reveal an over-
representation of key cell signaling pathways.

The Perturbed Signaling Network in BRAFi-resistant A375
Cells Can Be Targeted by Several Drugs

Subsequently, we integrated the significantly changing
proteins and phosphorylation sites, as well as the list of po-
tential driver mutations generated above, into a protein–
protein interaction network (Fig. 3A, supplemental Fig. S3A
and supplemental Table S1.8). Only the top 200 entries were
retained on the basis of their number of connections obtained
from the BioGRID database. The size of the entries is scaled
up using a custom bioinformatic script to represent their
importance in context of cancer, melanoma, and melanoma



FIG. 2. Comparison of BRAFi-sensitive and -resistant A375 cells at the genome and (phospho)proteome levels. A, the nonsynonymous
variants are counted per functional effect category as predicted using the oncoKB resource (38). B, a Venn diagram represents the overlap in
genes with nonsynonymous variants between A375 R (unique variants identified in this study) and the patients from the study by Long et al. (29).
Within the study from Long et al., the genes with nonsynonymous nucleotide variants (found in resistant tumors) are represented as shared
across one or more patients. C, the signaling pathways (KEGG and Reactome) are displayed based on their overrepresentation using differ-
entially changing proteins or phosphorylated sites (Fisher exact test FDR ≤0.2). Pathway names are color-coded based on their functional
database of origin (Reactome = gray, KEGG = black). The size of the dot represents the pathway enrichment factors. The dot color coding
corresponds to overrepresentation using all significantly changing entries between A375 R and A375 S (gray), the entries that are significantly
increased in A375 S (blue) or in A375 R (red).
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resistance (see Experimental Procedures). A list of drugs was
retrieved from DrugBank database and their targets were
marked within this network (supplemental Fig. S3A). Several
entries were further highlighted through this approach due to
their variant putative functional effect, such as AURKA (gain of
function), CDKN2A and SRA1 (loss of function), CUL3,
USP22, and MS4A1 (A375 R unique variants). Among these
only AURKA and MS4A1 can be targeted by drugs, with
AURKA displaying a relatively high betweenness centrality and
number of degrees (Fig. 3A).
This allowed us to prioritize potential drugs based on their

target specificity, as well as on the number of degrees their
targets have with the rest of the signaling network (Fig. 3B).
Among the prioritized therapies were inhibitors of EGFR (e.g.,
Mol Cell Proteomics (2021) 20 100163 7



FIG. 3. The disturbed signaling network in BRAFi-resistant cells can be targeted by a number of drugs. A, the interaction signaling network
is generated based on list of putative driver mutations (circle), proteins (diamond), and phosphorylation sites (square). This schematic displays the
distribution of nodes in function of their betweenness centrality and number of connections. Only the top 200 entries are displayed (ranked based on
their interaction degree). Entries are colored based on whether they harbor no variant (dark gray), a variant with unknown effect (light gray), a variant
unique to A375 R (orange), a variant leading to loss of function (red) or a variant leading to gain of function (green). Entries that can be targeted by a
drug are displayed with a red stroke. B, the drugs, interacting with entries from the interaction signaling network, are displayed based on their
specificity to their target and how many connections their targets have. Color coding corresponds to whether one of the drug targets harbors no
variant (dark gray), a variant with unknown effect (light gray), a variant unique to A375 R (orange), a variant leading to loss of function (red) or a variant
leading to gain of function (green).C, the interaction signaling network allows visualization of the top 50 interactors (ranked based on their interaction
degree) of AURKA. The shape of the nodes specifieswhether the nodewas identified harboring a variant, quantified at the proteome level, quantified
at the phosphoproteome level, found across more than one omics level, or not found. Entries are colored based on whether they were found
significantly changing at the (phospho)proteome level, with increase abundance in A375R (red) and A375 S (blue), not changing in abundance (gray),
or not found (light green). Entries that can be targeted by a drug are displayed with a red stroke. The node size increases according to their
importance in context of melanoma and BRAFi resistance (from 0 = no impact, up to 1 = high impact). D, cell viability assay of A375 S and A375 R
cells treatedwith AURKA inhibitor alisertib at the indicated concentrations or in combinationwith the BRAF inhibitor vemurafenib (2 μM). Cell viability
was determined with MTS assay 72h after treatment start (n = 6). Error bars represent standard deviations of replicates.
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olmutinib), HSP90AA1 (e.g., alvespimycin), AURKA (e.g., ali-
sertib), and MS4A1 (e.g., rituximab). Because AURKA was the
only variant annotated with a gain of function, as well as a
relatively large signaling network (Fig. 3C), we decided to
experimentally validate the action of the compound alisertib
on A375 R and S cells. We found that BRAFi-resistant A375
cells were sensitive to AURKA inhibition (AURKAi) with ali-
sertib (40), regardless of the absence/presence of BRAFi
vemurafenib (Fig. 3D and supplemental Fig. S3B). Conversely,
A375 S tolerated alisertib (in the absence of BRAFi) and was
able to proliferate. Our results demonstrate that the integration
of proteogenomics datasets has the potential to predict
effective and specific drug therapy in context of BRAFi
resistance.

Multiple Amino Acid Variants Directly Affect Protein
Phosphorylation Status

Due to the elusive impact of amino acid variants on the
phosphorylation status, we investigated all amino acid variants
within A375 cells, irrespective of their role within BRAFi resis-
tance. All nonsynonymous variants were annotated based on
whether they had an impact on S/T/Y amino acids, kinase
motifs, known variants, known PTMs, known oncogenes, and
protein sequence changes superior to 90% of the reference
protein (supplemental Fig. S4, A and B and supplemental
Table S1.9). Interestingly, 6103 variants resulted in a loss of
S/T/Y residues, whereas 5876 resulted in a gain, which repre-
sented a large potential for disrupting the phosphorylation-
mediated cell signaling. Through investigation of the
phosphoproteome dataset, we could confirm that 12 amino
acid variants resulted in an actual loss or gain of phosphory-
lation events within A375 cells. To prioritize these variants, we
annotated them using the PolyPhen software (as well as SIFT),
which predicted a variant on RUNX1 protein (S276L) as likely
damaging (Fig. 4A). Notably, this variant site on RUNX1 was
one of the few variant sites detected with a high localization
probability (Fig. 4B) and was reported in COSMIC as somatic in
melanoma patient. To further evaluate the quality of MS iden-
tification, we compared the phosphorylated site intensities
between the variant and all other sites, which revealed lower
intensity among variant sites (supplemental Fig. S4C). Similarly,
when displaying the MaxQuant score and localization proba-
bility, only a few phosphorylated variant sites (including the site
on RUNX1) could be considered as high confidence sites
(supplemental Fig. S4D). While these phosphorylated variant
sites were not significantly changing in abundance between
A375 R and S and thus are unlikely to be connected with BRAFi
resistance, we hypothesized that they may still have a func-
tional effect on A375 cell signaling.

Loss of a Phosphorylation Site on RUNX1 Alters Its
Interactome and Transcriptional Activity

We then focused on the variant impacting the phosphoryla-
tion status of RUNX1 protein, a key transcription factor involved
in cell proliferation, differentiation, and apoptosis (36). This
amino acid variant led to the loss of a known phosphorylation
site due to change from serine to leucine at position 276
(Fig. 5A). The reference and alternate variant peptides were
identified with high resolution MS in both A375 S and R cells
(supplemental Fig. S5, A and B). We hypothesized that this
variant is likely to influence the interactome of RUNX1. There-
fore, we generated an RUNX1 gene knockout in A375 S cells
using the CRISPR/Cas9 system. Single cell clones were
selected for further analysis based on their effective RUNX1
knockout (KO). As a control we used a nontargeting (NonTar)
control guide sequence. A375 RUNX1 KO cells showed an
insertion of 215 bp in the Exon 1 of the gene compared with
referenceDNAofA375Scells (supplemental Fig. S5C). The lack
of expression of RUNX1 protein was confirmed by western blot
and MS analysis (supplemental Fig. S5D). To study the impact
of the loss of a modifiable amino acid, we performed immuno-
precipitation of Flag-tagged RUNX1_wt and RUNX1_S276L in
RUNX1 KO SILAC-labeled cells in three independent replicates
(Fig. 5B, supplemental Tables S3.1 and S3.2). The interactome
analysis by LC-MS/MS revealed that RUNX1 and its core
binding factor CBFB were significantly enriched in both pull-
downs compared with Flag-empty vector (supplemental
Fig. S5, E and F). Interestingly, the known interaction partner
histone deacetyltransferase HDAC1 was enriched in
RUNX1_wt interactome and depleted in the RUNX1_S276L
interactome (Fig. 5B).
To assess the impact of this variant on the interactome, we

performed pull-down assays with synthetic peptides
harboring the amino acid sequence for reference and alternate
variant of RUNX1 in A375 cells (Fig. 5C, supplemental
Tables S3.3 and S3.4). As in the interactome study, HDAC1
was significantly depleted in the pull-down of alternate versus
reference variant peptide indicating that the interaction be-
tween HDAC1 and RUNX1 is disturbed due to the variant. We
also identified transcriptional repressor SIN3A to be signifi-
cantly depleted in alternate variant peptide pull-down
compared with reference pull-down similar to HDAC1. RIN1
and PTPN23 showed the same trend as HDAC1 and SIN3A;
and both proteins are known to act as regulator of RAS-
mediated mitogenic activity (41, 42). The proteins enriched
in alternate pull-down compared with reference variant pep-
tide pull-down were overrepresented in TGFβ signaling,
melanogenesis, and insulin signaling pathways (supplemental
Fig. S5G and supplemental Table S3.5). Taken together, we
demonstrate that the loss of the known phosphorylation site
on S276 has an impact on the interactome of RUNX1
(supplemental Fig. S5H) and postulate that it leads to altered
transcriptional activity of the protein (Fig. 5D).
DISCUSSION

In this study, we used a common cell line model of mela-
noma (A375), a well-known cancer for its high mutation load
Mol Cell Proteomics (2021) 20 100163 9



FIG. 4. Multiple amino acid variants directly affect protein phosphorylation status. A, scatter plot of the nonsynonymous amino acid
variants that have an impact on protein phosphorylation status either as a loss of an S/T/Y amino acids (green), gain of S/T/Y (purple) or loss/gain
of S/T/Y (blue). The PolyPhen annotation classifies these variants based on their possible effect on protein function, while the impact score
prioritizes these variants due to their importance in context of melanoma and phosphorylation status disruption. B, heatmap of the non-
synonymous amino acid variants that have an impact of protein phosphorylation status. For each nonsynonymous amino acid variant is dis-
played its impact factor in context of melanoma and phosphorylation status, the actual phosphorylation effect (i.e., loss, gain), the SIFT, and
PolyPhen annotation, whether the modification was localized (i.e., localization probability ≥0.99), whether the reference and alternate variant
peptide were identified exclusively in A375 R or A375 S or in both, and whether the modification is found on the alternate variant peptide (as
opposed to the reference).
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(1) and the potential for rewiring cellular networks (16, 43).
While cell lines have shown to adequately retain the driver
mutations at the genomic level, they do not recapitulate the
extent of patient or tumor heterogeneity. In addition, high-
throughput transcriptomic and proteomic studies have
shown that cell lines differ from their tissue of origin and may
be of limited use as model (44). Two consortia, namely the
Clinical Proteomic Tumor Analysis Consortium and The Can-
cer Genome Atlas, have greatly contributed to the develop-
ment of onco-proteogenomics applied to cell line and patient
material (11–13). However, proteogenomics studies are still
relatively rare and, due to their complexity, out of reach of
most proteomics (or genomics) laboratories. Here, we use
such a proof-of-concept proteogenomics workflow to analyze
a single melanoma cell line in order to (1) predict sample-
specific drug therapies in context of BRAFi resistance and to
(2) investigate variant impact on phosphorylation-mediated
cell signaling irrespective of BRAFi resistance.

Proteogenomics Reconstructs the Signaling Network
Linked to BRAFi Resistance in A375 Cells

In this study, the nucleotide variant analysis revealed very
similar numbers across A375 cell lines, the large majority
being SNVs, which is consistent with a previous study (45). We
10 Mol Cell Proteomics (2021) 20 100163
also observed characteristic nucleotide substitutions,
whereby two-thirds of substitutions are comprised of transi-
tions. The C to T transition was highly represented and is
known to result from sunlight exposure, which is highly rele-
vant for skin cancer (46). The proteome coverage we obtained
for A375 cells is similar to other state-of-the-art MS-based
study of cancer cell lines (47). The differentially changing
proteins and phosphorylated sites between A375 R and S
revealed that the MAPK signaling, cAMP signaling, and focal
adhesion pathways were found overrepresented and are of
critical importance for melanoma resistance to BRAFi (48).
We then reconstructed the signaling network associatedwith

BRAFi resistance in A375 cells; i.e., using the putative driver
mutations, as well as the differentially abundant proteins and
phosphorylation sites. This approach highlighted several hubs
and high impact entries, such as (1) variants leading to gain of
function on AURKA, loss of function onCDKN2A andSRA1 and
A375 R unique variants on CUL3, USP22, and MS4A1; (2) in-
crease in protein abundance within A375 R for EGFR, and
increased within A375 S for HSP90AA1; and (3) increase in
phosphorylated sites abundance within A375 S for JUN.
Among these entries, several are known for their involvement in
melanoma susceptibility, development, resistance, and therapy
(49–55). Several drugs were identified and ranked based on



FIG. 5. Loss of a known phosphorylation site leads to a change in RUNX1 interactome. A, schematic overview of the transcription factors
RUNX1 protein. Numbers indicate the positions of amino acids residues within the protein. Identified phosphorylation sites are highlighted in
blue and identified amino acid variants are highlighted in red. Identified peptides by LC-MS/MS are shown in the second panel. Phosphorylated
peptides are indicated with a blue border, while reference and alternate variant peptides are highlighted in green and red, respectively. B,
interaction proteomics screen in A375 RUNX1_KO cells stably overexpressing Flag-tagged RUNX1_wt or Flag-tagged RUNX1_S276L. SILAC
protein expression (log2) of RUNX1_wt or Flag-tagged RUNX1_S276L relative to the corresponding control cell line (Flag tag only). RUNX1 and
its core binding factor CBFB are marked in black. Significantly up and downregulated proteins are highlighted in red. Results represent three
replicates per experiment group. C, volcano plot of synthetic alternate peptide (Syn_Leu) versus synthetic reference peptide (Syn_Ser) pull-
downs of A375 cells. The log2 fold change in abundance between Syn_Leu and Syn_Ser is plotted against −log10 p-value (n = 3). Black lines
indicate the significance threshold based on Student's t test (FDR <0.01; s0 = 1.2). Significantly up and downregulated proteins are highlighted in
red. D, schematic overview of proposed interaction of RUNX1_wt and RUNX1_S276L with main transcriptional regulators.
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their potential to disrupt this signaling network; notably alisertib,
a highly specific inhibitor of AURKA, which has been previously
reported for its beneficial effect in combination with BRAF and
MEK inhibitors in melanoma treatment (40, 49). We experi-
mentally validated the use of alisertib on A375 S andR cells and
could show that A375 R cells are sensitive to AURKAi. Our data
confirm that AURKA has a critical role in the context of
resistance and may be suitable for the treatment of melanoma
as reported previously (56

Proteogenomics Pinpoints Several Peptides That Are
Phosphorylated on the Variant Site

We investigated further the amino acid variants that could
be confirmed by MS and may be important in melanoma
Mol Cell Proteomics (2021) 20 100163 11
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development or resistance. Over 500 protein groups and 158
phosphorylated sites were found with at least one alternate
variant peptide. Our identification results are in the same range
(or higher) as other studies investigating amino acid variants
using custom protein sequence databases (57, 58). Interest-
ingly, an overrepresentation analysis of alternate variant pro-
teins revealed cancer-related, immune response and
glycoprotein pathways (59–63). There are two possible ex-
planations for such a result; either it suggests an accumulation
of variants on proteins belonging to these pathways, as these
variants would provide a survival advantage for cancerous
cells. Or the proteins harboring these variants have inherent
characteristics that facilitate their detection by MS (e.g., pro-
tein length), thus facilitating amino acid variant detection even
if these variants do not contribute to cancer development or
BRAFi resistance (39, 58).
As observed in our dataset, many variants may have an

impact on the PTM of proteins. Around 14.8% of all amino
acids in the human proteome are serine, threonine, or tyrosine
(28), which are predominantly modified by phosphorylation.
Several studies have reported that these three amino acids are
disproportionally affected by missense mutations (64, 65).
While these may not all be relevant in tumor cells, since not all
genes are expressed at any one time, previous studies have
shown the deleterious effect of such variants (12, 16). Here,
we confirmed by MS a change in phosphorylation status for
12 variant protein isoforms, either as a loss or gain of phos-
phorylated sites. Several of these protein isoforms were key
cell signaling molecules and may be involved in cancer
development, for example, MDC1 (66), OGFR (67) and PCM1
(68). Interestingly, we also confirmed by MS the presence of a
variant on RUNX1, which was annotated as likely damaging
due to its known role in cancer and loss of phosphorylation
site at position S276 (69). However, in this study, the variants
affecting protein modification status were shared across A375
S and R and did not show significant change in abundance,
suggesting that they are not involved in BRAFi resistance
mechanisms of A375 cells. The identification of these variants
by MS is worth noting, and further work is needed to increase
the identification score and localization probability of the
alternate variant peptides, as well as to investigate their
function.

Rewiring of Signal Transduction Network Due to Loss of a
Known Phosphorylation Site on RUNX1

We experimentally validated this striking example of a loss
of a known phosphorylation site on RUNX1 and showed that
this variant has an impact on the interactome of RUNX1. The
transcription factor RUNX1 is mutated in 3.03% of melanoma
patients, and so far, 43 mutations are described in the liter-
ature for cutaneous melanoma (70). The variant site S276L of
RUNX1 is located in a highly modified region of the protein
and may influence the nearby transcriptional activation
domain. Wee et al. (69) showed in vitro that the triple
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phosphorylations at the sites S249, T273, and S276 are
important for the interaction with the histone acetyltransfer-
ase p300 and thus lead to the regulation of gene transcription
via chromatin remodeling. Here, we could not identify p300 in
the interactome studies of RUNX1 by immunoprecipitation of
overexpressed RUNX1 or synthetic peptide pull-downs.
However, we identified the transcriptional activator WWTR1
(TAZ) and KAT7 and the corresponding transcriptional re-
pressors HDAC1 and SIN3A to be changing between refer-
ence and alternate pull-down of RUNX1. The loss of the
interaction to HDAC1 by mutating RUNX1 at S48, S303, and
S424 to aspartic acid in vitro has been described previously
(71). Here, we hypothesized that the interaction is associated
with the modification status of the protein. The cross talk
between acetylation/deacetylation-mediated and phosphory-
lation/dephosphorylation may alter the transcriptional activity
by RUNX1. It is well known in the literature that RUNX1_wt
switches between active and repressive state due to modi-
fications such as acetylation and phosphorylation and bind-
ing of interaction partners such as HDAC1, PRMT1, and
P300 (72). We postulate that RUNX1_S276L remains in the
active state due the loss of binding to transcriptional re-
pressors such as HDAC1 and SIN3A, which could lead to the
accumulation of acetylation on the protein itself as well as
histones. This may result in stronger transcriptional activity,
which should be tested in further experiments. Taken
together, we propose that this variant changed the inter-
actome of RUNX1 and altered the transcriptional activity of
RUNX1.
CONCLUSION

Proteogenomics is a powerful tool to study the mode of
action of disease-associated mutations at the genome, tran-
scriptome, proteome, and PTM level. Here, we applied a
proteogenomics workflow to study the melanoma cell line
A375 sensitive and resistant to BRAF inhibition. The investi-
gation and integration of multiomic datasets allowed us to
reconstruct the perturbed signaling networks associated with
BRAFi resistance of A375 cells. This resulted in the prioriti-
zation of key actionable nodes and the prediction of drug
therapies with the potential to disrupt BRAFi resistance
mechanism in A375 cells. Notably, we demonstrated the use
of AURKA inhibitor as an effective and specific drug against
BRAFi-resistant A375 cells. We also detected the loss or gain
of several phosphorylation events due to variants. We could
confirm the loss of Ser276 phosphorylation site by MS as a
direct consequence of variant S276L on the transcription
factor RUNX1. Our results suggest that this mutation has an
impact on the interactome of RUNX1 and may be responsible
for change in its transcriptional activity. Such proteogenomics
workflow, used here as a proof of concept on A375 cells, may
be applicable to other types of cancer, cell lines, or even
patient-derived samples.
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DATA AVAILABILITY

The high-throughput nucleotide sequencing data have been
deposited in the NCBI Sequence Read Archive (73) with the
bioproject accession number PRJNA616103. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (74) partner re-
pository with the dataset identifier PXD018305. Visualization of
MS/MS spectra is possible at https://msviewer.ucsf.edu/
prospector/cgi-bin/msform.cgi?form=msviewer via the search
keys: lixu3zlmbb (comparison of A375 S versus A375 R),
livyy138s (RUNX1 overexpression), and tztqlaxjtr (RUNX1
peptide pull-down). The WES bioinformatics pipeline is avail-
able online (75).
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