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The mechanisms that underlie the association between obesity and type 2 diabetes

are not fully understood. Here, we investigated the role of the 3D genome organization

in the pathogeneses of obesity and type-2 diabetes. We interpreted the combined

and differential impacts of 196 diabetes and 390 obesity associated single nucleotide

polymorphisms (SNPs) by integrating data on the genes with which they physically

interact (as captured by Hi-C) and the functional [i.e., expression quantitative trait

loci (eQTL)] outcomes associated with these interactions. We identified 861 spatially

regulated genes (e.g., AP3S2, ELP5, SVIP, IRS1, FADS2, WFS1, RBM6, HORMAD1,

PYROXD2), which are enriched in tissues (e.g., adipose, skeletal muscle, pancreas)

and biological processes and canonical pathways (e.g., lipid metabolism, leptin, and

glucose-insulin signaling pathways) that are important for the pathogenesis of type 2

diabetes and obesity. Our discovery-based approach also identifies enrichment for eQTL

SNP-gene interactions in tissues that are not classically associated with diabetes or

obesity. We propose that the combinatorial action of active obesity and diabetes spatial

eQTL SNPs on their gene pairs within different tissues reduces the ability of these tissues

to contribute to the maintenance of a healthy energy metabolism.

Keywords: Obesity and type-2 diabetes co-morbidity, spatial gene regulation, eQTLs, GWAS risk variants, Hi-C

INTRODUCTION

Genome-wide association studies (GWAS) have been instrumental in identifying numerous genetic
risk loci for type 2 diabetes and obesity (reviewed in Pigeyre et al., 2016). Despite this, the identified
risk loci for obesity and type 2 diabetes only explain 3 and 10% of the heritability of these disorders,
respectively (Sanghera and Blackett, 2012; Pigeyre et al., 2016). Moreover, as most of these variants
fall outside of coding regions, they do not have clear biological functions that link them to
either obesity or diabetes (Speliotes et al., 2010). Alongside other studies into the pathogenesis of
polygenic disorders, this has led to the hypothesis that some of the information within the genome
that is responsible for the heritability of diabetes and obesity is not encoded in the linear sequence
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but instead lies within the spatial organization of the chromatin
(Franzen et al., 2016; Schierding et al., 2016). This hypothesis
is increasingly supported by empirical evidence that genetic
variants fall within regulatory regions (e.g., enhancers, insulators,
etc.) that impact on distal, but spatially associated, loci rather
than on the genes that are closest to them in the linear DNA
sequence (Franzen et al., 2016; Jo et al., 2016; Schierding et al.,
2016). Pullinger et al. (2014) for example, have reported an
association between a type 2 diabetes variant in HMGA1 on
chromosome 6 and the transcription of the INSR gene on
chromosome 19.

Proximity-ligationmethodologies coupled to high throughput
sequencing have enabled a step change in the deconvolution
of the spatial organization of genomes. These methods (e.g.,
genome conformation capture and Hi-C) capture regions of
the genome that are physically associated and able to be
covalently connected by a cross-linking agent (Grand et al.,
2011). Collectively, studies using proximity-ligation methods
have begun to untangle how the organization of the genome
into non-membrane bound compartments is related to the
realization of the information encoded in the DNA sequence
itself. This increase in our understanding extends to complex
looping patterns that contribute to gene regulation (e.g., reviewed
in Pombo and Dillon, 2015).

Spatial chromosomal organization is probabilistic (Bolzer
et al., 2005), tissue or cell-type-specific (Parada et al., 2004),
developmental stage specific (Krijger et al., 2016; Doynova et al.,
2017) and can change to adapt to an evolutionary selective
pressure e.g., the inverted genomic structure of rod cells in
nocturnal mammals (Solovei et al., 2009). Despite the presence
of cell type dependent features, there is remarkable retention
of some aspects of chromosomal organization within metazoan
nuclei. For example, topologically associating domains (TADs)
are remarkably stable across cell types and species (Dixon et al.,
2012) and preferential intra-TAD and inter-TAD contacts have
been identified (Fraser et al., 2015). Thus, nuclear structure
contains both cell type dependent and independent features.

The potential for integrating information on spatial
organization and functional data to improve our understanding
of the genetic basis of complex phenotypes has been illustrated
in several recent studies (e.g., autoimmune Farh et al., 2015,
cardiometabolic Franzen et al., 2016, and schizophrenia Won
et al., 2016). It is increasingly clear that genetic variants identified
by GWAS: (a) can have greater regulatory effects on distant
but spatially proximal genes than on the genes closest to
them; and (b) can act on more than one gene in a tissue- and
developmental-stage specific manner. However, these studies
concentrate on cis-regulatory connections and ignore the trans-
connections, which were shown to contribute to heritability in
human growth (Schierding et al., 2016).

Current approaches to the mapping of genes affected by
single nucleotide polymorphisms (SNPs) identified in GWAS
typically use the nearest gene model. However, clinical risk for
polygenic disorders is the sum result of the gene-environment
interactions. These interactions occur within the context of a
regulatory network that is “tuned” by the combined action of
regulatory sites that spatially cluster. These sites are subject to

genetic variation, which may alter these spatial clusters and
thereby disrupt the functioning of target genes. As such, it is
imperative that previously identified intergenic GWAS variants
are tested for spatial interactions. Crucially, this approach has the
potential to elucidate the regulatory network that describes the
disease-associated SNPs which enhance or reduce the expected
co-occurrence and severity of both obesity and type 2 diabetes.

Here we integrate information on spatial organization and
functional (i.e., expression) data to identify the overlap between
regulatory pathways that contribute to type 2 diabetes, obesity,
and comorbid obesity plus type 2 diabetes phenotypes. We
demonstrate that loci marked by diabetes—and obesity-related
SNPs are involved in regulatory interactions in a tissue—and
disease-specific manner.

RESEARCH DESIGN AND METHODS

Identification of Regulatory SNP-Gene
Interactions
Our aim was to identify SNPs where the genetic variant
correlates with the expression level of the spatially associated
partner gene [i.e., the SNP is an expression quantitative
trait locus (eQTL); Figure 1]. To do this, we developed the
“Contextualize Developmental SNPs using 3D Information”
(CoDeS3D) algorithm (Figure 1) for the integrated analysis of
GWAS SNPs and their phenotypes (GitHub, https://github.com/
alcamerone/codes3d).

Creation of a single comprehensive database to interrogate
the physical and regulatory interactions between loci, located
in cis (<1Mb apart) and trans (>1Mb apart or on different
chromosomes), is prohibited by the complexity and continuing
evolution of the relevant datasets (Supplementary Table 1). To
overcome this, CoDeS3D is a series of modular Python scripts
that uses information on the 3-dimensional organization of the
genome (i.e., Hi-C data Rao et al., 2014) to identify spatial
connections between regulatory regions, which are marked by
SNPs, and the gene(s) that they regulate (Figure 1).

The 3-dimensional structure of genomes can be captured
by proximity ligation methodologies (Grand et al., 2011) of
which Hi-C is one. High resolution Hi-C data (Rao et al., 2014)
was used to identify loci that were captured interacting with
restriction fragments containing the SNPs of interest (Figure 1
Step ii). These interactions were identified on a presence/absence
basis at the restriction fragment level. This approach identifies
interacting loci (as defined by the flanking MboI restriction sites
Rao et al., 2014) that are spatially co-localized (Figure 1 Step iii).
In some instances this spatial co-localization equates to linear co-
localization within the genome sequence. The spatial clustering,
however, is not limited to loci that map to adjacent regions within
the linear sequence, as trans-spatial interactions are readily
identified. Finally, genes (as determined by the hg19/GRCh37
human genome reference) had to overlap the partner locus of
interest in order to be included in the list of SNP-gene pairs that
were identified (Figure 1 Step iii).

These SNP-gene pairs were then tested against the Genotype-
Tissue Expression (GTEx) database (Version 4.1, 09/30/16) to
identify those where the identity of the base at the SNP position
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FIGURE 1 | Regulatory SNP-gene interactions that correlate with spatial connections were identified from existing spatial (e.g., Hi-C Rao et al., 2014) and eQTL data

(i.e., GTEx Ardlie et al., 2015). Spatial co-localization of the SNP and gene encoding loci is identified from the Hi-C data (Rao et al., 2014) and requires capture of the

interaction by proximity-ligation (Step ii). Only genes, determined by the hg19/GRCh37 human genome reference, that overlap the interacting partner locus are

included in the analysis. The six stages of the analysis are separated by horizontal dashed lines.

correlated with a change in the mRNA level of the partner
gene (i.e., the SNP was an eQTL). The identification of spatial
SNP-gene connections is a tool to filter the test set of eQTL
regulatory interactions between the physically connected SNP-
gene pairs. This approach reduces the number of tests that
need to be performed, compared to a systematic approach to
identify both cis- and trans-acting eQTLs. The false-discovery
rate (FDR, or q-value) is computed for each eQTL SNP-
gene-tissue combination, using the p-value list, the number of
tests performed, and a stepwise Benjamini-Hochberg correction

procedure (Benjamini and Hochberg, 1995). Trans-acting eQTL
SNPs are selected as significant if the q-value is <0.05. Cis-acting
eQTL SNPs are selected as being significant according to the
calculated threshold for each gene. While our FDR thresholds
are less stringent than GTEx (cis p-value < 2.5 × 10−7; trans
p-value < 5.0 × 10−13), the application of a filtering step to
remove large numbers of false positives justifies this, as previous
work has identified such thresholds as identifying biologically
significant associations(Schierding et al., 2016) and SNPs with p
values ≤ 0.05 have clear effects on height (Boyle et al., 2017).
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Ingenuity® Pathway Analysis
Lists of the genes regulated by loci marked by the eQTL
SNPs were analyzed in Ingenuity R© Pathway Analysis (IPA R©;
version 28820210, 2016-09-25) to identify enriched pathways and
biological functions.

RESULTS

Diabetes and Obesity Associated SNPs
Form Part of a Regulatory Network
We reasoned that GWAS SNPs that are associated with type 2
diabetes and obesity mark regulatory loci that modulate spatially
proximal genes and function to control energy balance. Using
the CoDeS3D pipeline (Figure 1), we were able to identify
45,517 and 27,778 unique pairs of spatial SNP-gene interactions
for 1326 and 483 obesity and diabetes SNPs, respectively
(Table 1).

The identification of SNP-gene interactions reduces the
number of tests required to detect eQTL SNPs, the sample
sizes, and p-values required for significance. Therefore, we
implemented a stepwise Benjamini-Hochberg correction to
select significant eQTLs with a q < 0.05. This approach
resulted in the identification of 462 cis-acting and 107 trans-
acting eQTL SNP-gene pairs for the obesity SNPs, and
238 cis-acting and 54 trans-acting eQTL SNP-gene pairs
from the diabetes SNPs (Table 1; Supplementary Figure 1).
Obesity eQTL SNP-gene pairs were identified with high
significance (p < 7.0 × 10−5 and p < 7.5 × 10−5 for the
cis- and trans-acting eQTL-SNPs, respectively; Supplementary
Spreadsheet 1 doi: 10.17608/k6.auckland.5285038). Similarly,
highly significant diabetes cis- and trans-acting eQTL-SNPs
were identified (p < 6.0 × 10−5 and p < 6.0 × 10−5,
respectively; Supplementary Spreadsheet 2 doi: 10.17608/k6.
auckland.5285041). Comparisons with the SNP associations in
the GWAS catalog indicated that >60% of the eQTL SNP
associations have not been previously mapped (Supplementary
Figure 2), consistent with previous observations of the accuracy
of the “nearest gene” mapping approach for GWAS SNPs (Ardlie
et al., 2015).

We used a Monte Carlo method to test for an enrichment
for eQTL connections within the diabetes and obesity associated
SNPs. eQTLs were identified in 1,000 sets of 483 SNPs that were
randomly chosen (with replacement) from a set of 1264: (a) SNPs
randomly selected from the Single Nucleotide Polymorphism
database (dbSNP build 147, 14/04/2016); and (b) GWAS catalog
SNPs that were associated with non-diabetes related traits
(Supplementary Table 2). The dbSNP tests resulted in the
identification of between 0 and 14 eQTL SNP regions acting on
between 0 and 22 genes per set of 483 randomly selected SNPs
(Table 2). Notably, the diabetes and non-diabetes associated
SNPs identified significantly (t-test p-value < 0.00001) more
connections than the dbSNP tests – consistent with a functional
role for the regions labeled with these SNPs in phenotype
development. Therefore, we conclude that the number of eQTL
SNP-gene pairs we observed is significant (p < 0.00001) and
unlikely to be due to false positives created from random spatial
eQTL connections.

Due to the restrictions on Hi-C data resolution, SNPs that
were in strong linkage and located on the same restriction
enzyme fragment were not separable using CoDeS3D. For
example, IRS1 expression is associated with rs1515110, rs2943640
(r2 = 0.85), rs2943641 (r2 = 0.86), rs925735 (r2 = 0.93), and
rs2176040 (r2 = 0.87; Table 3). All five of these eQTL SNPs
mark an IRS1 regulatory element that is located on a single MboI
restriction fragment. Similar effects were observed for the genetic
variants that regulate the FADS1 [i.e., rs174541 and rs174550 (r2

= 0.89)], JAZF1 [i.e., rs849134, rs849135 (r2 = 0.95), rs864745
[r2 = 0.97]) and NPC1 [i.e., rs1805081 and rs1808579 (r2 =

0.7) Table 3]. These examples highlight the inappropriateness of
annotating one SNP as being causal, with respect to the eQTL, in
the absence of additional information that separates the effects of
the combinations of linked variants that are within the restriction
fragment.

Co-regulation Occurs for Localized Genes
Obesity and diabetes spatial eQTL SNPs mark loci that co-
regulate the genes they are in physical proximity with. The
obesity SNP rs2710323, together with two diabetes SNPs,
rs2590838 (r2, 0.78) and rs1108842 (r2, 0.8), are located
in loci that regulate genes (TMEM110, MUSTN1, ITIH4,
NEK4, GNL3, PBRM1, and NT5DC2) within a 300 kb genomic
region on chromosome 3 (Supplementary Figure 3). SNPs
rs2710323, rs2590838, and rs1108842 are located in a region
that upregulates TMEM110 and down-regulatesNEK4. Although
these three SNPs are in high LD and the genes are close
together, the effect of the SNPs is gene-specific. For example,
the region marked by rs2590838 is associated with down-
regulation of the NT5DC2, PBRM1, and NEK4 genes, and
upregulation of TMEM110. By contrast, the locus marked by
rs1108842 down-regulates the GNL3 and NEK4 genes while
upregulating PBRM1 and TMEM110. Finally, the locus marked
by rs2710323 down-regulates NEK4 but upregulates the other
genes.

Common Variant Association Signals from
Different Ethnicities Show Extensive
Connectivity
SNPs within the IGF2BP2 gene that were previously identified,
by a transancestral GWAS metaanalysis (Horikoshi et al., 2016),
as being common in East Asian, European, South Asian, African
American, and Mexican American populations were analyzed
to determine the pattern of connectedness for these SNPs. The
transancestral SNPs were located within a 52,598 bp region
spanning the terminal 5′ intron of IGF2BP2 and were involved
in cis-eQTLs with IG2FBP2 itself (Supplementary Figure 4).
Notably, the trans-acting SNPs (rs13100823, rs11705729, and
rs11927381) are in strong LD (>0.97 r2). However, they are
located on different MboI restriction fragments (Supplementary
Figure 4) and act as eQTLs in a gene and tissue specific manner
(Table 4). Trans-acting eQTL SNPs associated with the IGF2BP2
locus were also observed between rs4402960—GRM1 (Chr 6),
rs1470579—CCDC14 (Chr 3), and rs1470579—SND1 (Chr 7).
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TABLE 1 | Summary of the regulatory network for the obesity and diabetes SNPs analyzed using CoDeS3D.

Obesity SNPs* Diabetes SNPs*

p < 5.0E-8 5.0E-8 ≤ p ≤ 9.0E-6 p < 5.0E-8 5.00E-8 ≤ p ≤ 9.0 E-6

N◦. SNPs 186 1,140 183 300

N◦. spatial SNP-gene pairs# 6,441 39,076 11,344 16,434

N◦. eQTL SNPs† 76 314 90 106

N◦. eGenes|| 125 444 141 151

N◦. eQTL SNP-eGene pairs§ 148 478 175 177

N◦. eQTL SNP-eGene interactions‡ 690 1,836 605 513

N◦. trans eQTL SNP-eGene interactions¶ 23 84 26 28

*SNPs were identified in GWAS catalog [version, v1·0; download dates (obesity, 2016-07-13; diabetes, 2016-08-26)]. #Spatial SNP-gene pairs were those whose Hi-C restriction

fragments overlapped (Figure 1 Step iii).
†
eQTL SNPs were defined as having significant (FDR ≤ 0·05) interaction(s) with at least one gene. ||eGenes were those whose expression was

shown to be affected by an eQTL SNP. §Non-redundant significant (FDR ≤ 0·05) eQTL SNP-eGene pairs (Figure 1 Step v).
‡
The total number of eQTL SNP-eGene interactions with

FDR ≤ 0·05 in at least one GTEx tissue. ¶Trans eQTL interactions were defined as occurring between loci > 1Mb apart, or on different chromosomes, with a FDR ≤0·05.

TABLE 2 | A Monte Carlo method was used to analyse the eQTL relationships for 1000 sets of 483 SNPs randomly selected from: (a) dbSNP; and (b) non-diabetes

associated SNPs.

dbSNP Non-diabetes SNPs

Range Mean StDev Range Mean StDev

N◦. spatial SNP-gene pairs# 842–2,297 1,524.38 224.44 24,559–27,550 25911.5 452.71

N◦. eQTL SNPs† 0–14 5.137 2.77 159–227 191.60 11.63

N◦. eGenes|| 0–22 7.266 4.51 233–380 306.85 24.63

N◦. eQTL SNP-eGene pairs§ 0–22 7.266 4.51 264–436 344.63 29.3

N◦. eQTL SNP-eGene interactions‡ 0–73 27.943 19.73 987–2,001 1,431.76 176.23

N◦. trans eQTL SNP-eGene interactions¶ 0–8 1.46 1.51 33–93 59.84 10.13

Python’s random library was used to randomly select SNPs from dbSNP build 147 (14/04/2016) and non-diabetes associated SNPs from the GWAS Catalog (Supplementary Table 2).

The cis- and trans-eQTL regulatory interactions within each set were identified using CoDeS3D.
#Spatial SNP-gene pairs were those whose Hi-C restriction fragments overlapped (Figure 1 Step (iii).

†
eQTL SNPs were defined as having significant (FDR ≤ 0·05) interaction(s) with

at least one gene. ||eGenes were those whose expresssion was shown to be affected by an eQTL SNP. §Non-redundant significant (FDR ≤ 0·05) eQTL SNP-eGene pairs (Figure 1

Step v).
‡
The total number of eQTL SNP-eGene interactions with FDR ≤ 0·05 in at least one GTEx tissue. ¶Trans eQTL interactions were defined as occurring between loci > 1Mb

apart, or on different chromosomes, with a FDR ≤ 0·05.

Comorbidity: Pathway Interactions or
Shared Genes?
Comorbidity can be explained by direct effects on the same
genes or epistatic effects acting through pathways. Notably, only
sixteen common genes (Supplementary Table 3) were affected
by eQTL SNPs that were linked to obesity and type 2 diabetes
(Supplementary Table 4). Of these, only ARAP1 and BRD7
were affected by globally significant SNPs (i.e., rs8050136 and
rs11603334) that had previously been associated with both
obesity and type 2 diabetes.

eQTL SNP-gene pairs for obesity and type 2 diabetes showed
evidence for significant epistatic interactions within the glucose-
insulin and leptin signaling pathways (Figure 2). However, the
number and distribution of significant eQTL effects (FDR <

0.05) associated with the SNP-gene pairs occurred in a disease
and tissue specific manner (Figure 3 and Supplementary Figure
5). The observed tissue specific distribution of the eQTL SNP-
gene pairs for the non-diabetes associated SNPs was significantly
different to that obtained for the diabetes associated SNPs for
all tissues (t-test p-value = 0·001347; Supplementary Figure 6).
Restricting the effect to eQTL SNP-gene pairs in which the gene

was expressed at >1.0 Read(s) Per Kilobase of transcript per
Million mapped reads (RPKM), to reduce the impact of very
lowly expressed genes, identified some small differences in the
disease and tissue specific distributions of the effects (compare
Figure 3 and Supplementary Figure 5).

The disease and tissue specificity of the spatial eQTL

SNP-gene pairs can be further classified according to the

metabolic function(s) that the interacting gene is involved

in (Supplementary Table 5). Analysis using the curated IPA
knowledgebase identified enrichment for genes involved in lipid
metabolism in the following tissues: adipose (p < 3.07 × 10−2),
skeletal muscle (p < 1.57 × 10−2), and pancreas (p < 4.93 ×

10−2; Supplementary Spreadsheet 3 doi: 10.17608/k6.auckland.
5285044). Notably, there was no enrichment for eQTL SNP-gene
pairs involving genes for lipid metabolism within the liver.

SNPs associated with fasting insulin-based measures of

insulin resistance have previously been linked to a reduction
in subcutaneous adipose tissue and adverse metabolic profiles
(Yaghootkar et al., 2014). Re-analysis of these SNPs, using our
approach, revealed that they mark loci that spatially regulate
genes in tissues central to metabolism including subcutaneous
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TABLE 4 | Three significant (FDR ≤ 0·05) tissue-specific trans-interactions were identified between eQTL SNPs within the fine-mapped IGF2BP2 region on chromosome

and three genes on different chromosomes.

eQTL SNP Gene GTEx eQTL q-value Cell line*

Name Chr Start (bp) TissueU p-value (E-05)

rs13100823 RBM47 4 40,425,272 Whole_Blood 1.68 0.049 HUVEC

rs11705729 KIAA1430 4 186,080,819 Hypothalamus 1.18 0.036 NHEK

rs11927381 DIS3L2 2 232,825,955 Lung 1.08 0.034 NHEK

Thirty-three out of the 36 fine-mapped SNPs within the IGF2BP2 region were identified as significant cis-acting eQTLs within the thyroid tissue. Trans eQTL SNPs were defined as

occurring between loci > 1Mb apart, or on different chromosomes, with a FDR ≤ 0.05. *Cell line in which the SNP-gene interaction was captured. UTissue the eQTL was identified in.

adipose, visceral adipose, and thyroid (Supplementary Table 6).
The strength of our integrative approach is again highlighted
as 14 of the spatially regulated genes were not previously
associated with the SNPs but may contribute to the mechanistic
interpretation of metabolic dysfunction e.g., PPA2, a negative
regulator of the insulin metabolic signaling pathway and CCTN2,
a regulator of leptin (Ugi et al., 2004) and ADIPOQ (Broholm
et al., 2016).

DISCUSSION

Here we identify the functional effects of loci marked by SNPs
associated with diabetes and/or obesity. Our results identify
differential regulation of genes by loci marked by diabetes
and obesity associated spatial eQTL SNPs. These regulatory
interactions occur in a disease and tissue specific manner.
We identify sets of eQTLs in tissues that are known to be
involved in energy homeostasis and adiposity (e.g., thyroid
Milionis and Milionis, 2013 and subcutaneous adipose Lee et al.,
2013). We also identify sets of eQTLs in tissues that are not
classically associated with diabetes or obesity. Our findings
are consistent with the diabetes and obesity associated genetic
variants acting in an individual, tissue, and developmental stage-
specific manner.

The identification of SNP-gene pairs is central to our approach
to integrate these orthogonal data sets. To do this we rely upon

high-resolution (i.e., 1 kb) Hi-C data captured from eight non-
synchronized immortalized human cell lines (Supplementary
Table 1). It can be argued that the identification of these SNP-gene
interactions should incorporate a measure of the significance of
the Hi-C data. However, there is: (a) a high level of conservation
of topologically associated domains between cell lines and
lineages (Dixon et al., 2015); and (b) Hi-C contacts captured
from a population of cells represent a stochastic structure in
which permissible interactions occur at a detectable frequency
even when they are not the dominant interactions (Nagano
et al., 2013). Thus, we contend that the interactions that we
used represent those that are capable of forming within the
human genome. Despite this, it is clear that trans interactions
show much greater cell-type specificity. Therefore, future work
should incorporate tissue and developmental stage specific Hi-C
maps into the analysis to ensure the complete identification of all
possible SNP-gene pairs.

The eQTL SNP-gene connections we described were identified
across and not within a single population. This complication
arose because the Hi-C cell lines and GTEx data we used
were not generated from the same samples. While this may
be suboptimal, we contend that previous transferability studies
have identified common genetic variants that have regular
effects across populations (Waters et al., 2010; Saxena and
Palmer, 2016). Consistent with this, we identified a series of
regulatory connections that involved previously identified fine-
mapped transancestral SNPs within intron 1 of the IGF2BP2
locus (Horikoshi et al., 2016). In addition to strong zones
of cis-regulation of IGF2BP2 itself, three of the transancestral
eQTL SNPs within intron 1 of IGF2BP2 regulate diabetes and
obesity related genes in trans (i.e., RBM47 Benton et al., 2015,
KIAA1430 Sandholm et al., 2017, and DIS3L2 Kim et al., 2010).
Notably, the cis eQTLs affect the thyroid, while trans eQTLs
affect the lung, hypothalamus and whole blood tissues. Despite
the fact that there is no Hi-C data that identifies race specific
changes in genome organization, the identification of effects
associated with transancestral SNPs is consistent with allele
frequencies impacting on elements responsible for the formation,
maintenance, or regulatory outcomes of SNP-gene interactions.
Therefore, allele frequency dependent changes to tissue specific
eQTL distributions may contribute to race specific differences
in the development and progression of diabetes and obesity. As
such, it is important to match samples and integrate the Minor
Allele Frequencies (MAFs) of the variants (Auton et al., 2015)
into future investigations.

The etiological association of diabetes and obesity spatial
eQTLs can follow any of the four described models for
comorbidity pathways (Valderas et al., 2009): (1) the direct
causation model where the genetic variants for one disease
directly cause the second disease; (2) the association model, in
which the genetic variants for the two diseases are correlated
and thus increase the likelihood of the diseases occurring
simultaneously; (3) the heterogeneity model, whereby the genetic
variants are uncorrelated but each can cause the comorbid
diseases; or (4) the independence model, in which the comorbid
diseases arise as a result of a third distinct disease condition.
We observed a low direct overlap between the eQTLs for type
2 diabetes and obesity. Yet, regions marked by obesity and
type 2 diabetes SNPs were associated with numerous significant
regulatory impacts on genes within the glucose-insulin and leptin
signaling pathways. These observations are consistent with the
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FIGURE 2 | SNPs mark regulatory regions that act to regulate genes within the glucose-insulin and leptin signaling pathways. Novel and predicted eQTL SNP-gene

interactions fall within: (A) the glucose-insulin; and (B) the leptin signaling pathways. The dominant effect for the eQTL SNPs is to down-regulate the gene transcript

level, consistent with the SNP falling within an enhancer region. Novel eQTL SNP-gene pairs contribute numerous regulatory interactions to both pathways including:

trans-regulatory connections (e.g., JAK2); and combined action on single genes (i.e., IRS1 and POMC).
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FIGURE 3 | Diabetes and obesity disease-associated spatial SNPs with significant eQTL effects (FDR > 0.05) are unevenly distributed throughout human tissues.

Tissues with <10% total number of spatial eQTL SNPs in type 2 diabetes and obesity include the liver (1.3, 3.9%), stomach (7.5, 9.7%), and pituitary gland (8.1,

8.2%) respectively. Other tissues: adrenal gland, atrial aorta, coronary artery, brain - anterior cingulate cortex (BA24), brain - caudate basal ganglia, brain - cortex,

brain - frontal cortex (BA9), brain - hippocampus, brain - hypothalamus, brain - nucleus accumbens basal ganglia, brain - putamen basal ganglia, breast - mammary

tissue, sigmoid colon, transverse colon, gastroesophageal junction, liver, ovary, pituitary, prostrate, spleen, stomach, testis, uterus, and vagina. All eQTL SNP-genes

included in this analysis were expressed with an RPKM of >1.0 (GTEx version 4.1, accessed on 09/30/16).

rewiring of physical and genetic interaction networks across
complex disease conditions (Muoio and Newgard, 2008; Hou
et al., 2014; Hu et al., 2016; Boyle et al., 2017). Collectively our
results indicate that the comorbidity pathway for diabetes and
obesity is likely due to the combined effect of correlated changes
within pathways and tissues.

The tissue specificity of the regulatory effects we identified
is consistent with current observations of the dynamic changes
that occur within the local and global landscapes of genome
organization in different cell types (Dixon et al., 2015; Doynova
et al., 2016). The partitioning we observed for the diabetes and
obesity associated SNPs was significantly different to the tissue-
specific profiles for non-diabetes associated SNPs (p < 0.001).
This finding reinforces the high discovery potential of integrating
diverse sets of partially orthogonal data. This is particularly
pertinent for polygenic type 2 diabetes and obesity where the
metabolic dysbiosis is associated with a fundamental breakdown
in the ability of the body to maintain and regulate a stable
equilibrium for energy metabolism. The increased numbers of
obesity eQTLs may reflect the fact that obesity can result from
perturbations to a greater number of pathways, or at more points

within these pathways, than diabetes. However, the absolute
number of eQTL SNP-gene pairs that are influencing gene
regulation in a particular tissue is not necessarily a direct measure
of the significance of the changes for either diabetes or obesity.

We undertook a discovery approach that makes no a priori
assumption of tissue relevance. This was necessary because the
GTEx database is a growing resource that does not currently
include all the tissues that are classically considered “relevant”
to the pathogenesis of Type 2 diabetes or obesity. The utility
of our discovery-based approach is reinforced by studies on
Huntington’s disease that have identified pre-pathology changes
in tissues, which were not previously associated with the
pathogenesis or progression of Huntington’s disease (Carroll
et al., 2015). Treatment of these tissue specific changes are
therapeutically possible, can delay onset and improve quality of
life for Huntington’s carriers. Therefore, the incorporation of
tissues that are not classically associated with diabetes or obesity
into our analysis potentially informs on system-wide changes that
contribute to the development of the disorders. Future expansion
to cell-type specific data that overcomes mRNA averaging
effects is important. However, these approaches also suffer from
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FIGURE 4 | Metabolic restriction model for integrated effects of diabetes and obesity associated SNPs. In this model, increasing the number of obesity and type 2

diabetes associated eQTL SNP-gene interactions in critical tissues results in small but cumulative increases in risk due to reductions in capacity to respond to peak

energy supply. Genes that are subject to tissue specific eQTL effects are annotated. The esophagus, lungs, and tibial artery and nerve do not have established roles in

the regulation of metabolic functions although there are associations between these organs (or their dysfunction) and diabetes and obesity.

limitations caused by the artificial nature of the environment,
lack of appropriate cell-to-cell communication, and tissue
manipulation etc. Future work aimed at understanding how
SNPs contribute to these disorders through specific pathological
pathways, for example impacts on the insulin secreting islets that
constitute <1% of the pancreas, will require an approach that
integrates cellular and tissue specific understandings.

Our results provide novel insights into the separate roles of
different adipose repositories in the development of themetabolic
syndrome (Lee et al., 2013; Neeland et al., 2013; Liesenfeld et al.,
2015; Tahara et al., 2015). For example, the adipose expandability
hypothesis attempts to explain the well-known differential effects
of subcutaneous and visceral fat on diabetes and obesity. This
hypothesis posits that the capacity of subcutaneous adipose
to store fat and modulate circulating adipokines can be

exceeded, after which adipokine derangements and ectopic fat
deposition occur (Tan and Vidal-Puig, 2008; Lagathu et al., 2010;
Cuthbertson et al., 2017). Thus, our observation that subsets of
population level diabetes and obesity associated SNPs impact
on gene expression within the subcutaneous fat, potentially
altering its capacity to store fat and moderate levels of circulating
adipokines, is notable. Specific individuals contain different
combinations of SNPs. Thus, it is possible that genotype specific
combinations of diabetes and obesity associated SNPs, which
mark regulatory regions that have negative effects on lipid
related gene expression within subcutaneous fat, can partially
explain individual responses. Unlike single gene disorders, loss of
regulatory responsiveness need not be catastrophic but may lead
to a small but compounding increased risk over an individual’s
lifetime. eQTL SNP-gene interactions occurring in other tissues
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critical to metabolic control (e.g., pancreatic cells; Figure 4) can
increase this risk further.

In conclusion, we propose that the identity and number of
obesity and diabetes spatial eQTL SNP-gene pairs that are active
within different tissues reduces the ability of these tissues to
contribute to the maintenance of a healthy energy metabolism
(Figure 4). Environmental conditions, including absolute levels
of food and exercise, can moderate this genetic risk. Thus, the
clinical risk for polygenic disorders is the sum result of the
gene-environment interactions that occur within the context of
a four-dimensional regulatory network that is “tuned” by the
combinatorial action of regulatory sites that spatially cluster
and are subject to genetic variation. Future personalized studies
that integrate an individual’s tissue specific eQTL profile with
longitudinal measurements of clinical biomarkers of type 2
diabetes and obesity will clarify the different mechanisms that
contribute to the development and apparent paradoxes that are
associated with these disorders.
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