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Bone defect is a noteworthy health problem and is the second most transplanted tissue
after blood. Numerous bone grafts are designed and applied in clinics. Limitations,
however, from different aspects still exist, including limited supply, mechanical strength,
and bioactivity. In this study, two biomimetic peptides (P2 and P6) are incorporated into
a composite bioactive xeno hybrid bone graft named SmartBonePep R©, with the aim
to increase the bioactivity of the bone graft. The results, which include cytotoxicity,
proliferation rate, confocal microscopy, gene expression, and protein qualification,
successfully prove that the SmartBonePep R© has multi-modal biological effects on
human mesenchymal stem cells from bone marrow. The effective physical entrapment
of P6 into a composite xeno-hybrid bone graft, withstanding manufacturing processes
including exposure to strong organic solvents and ethylene oxide sterilization, increases
the osteogenic potential of the stem cells as well as cell attachment and proliferation.
P2 and P6 both show a strong biological potential and may be future candidates for
enhancing the clinical performance of bone grafts.

Keywords: bone scaffold, bone graft, bone regeneration biomimetic, bioactive proteins, intrinsically disordered,
mesenchymal stem cells, xenograft

INTRODUCTION

Trauma, surgical resection, infections, degeneration, and a myriad of external and internal factors
can alone or in combination lead to critical-size bone defects. Such defects are severe public health
issues and take impact on public healthcare and on the quality of life of the patients involved (Wang
and Yeung, 2017). In fact, disorder of musculoskeletal system is a familiar reason of long-term
discomfort. Although skeletal tissues have certain capacity of self-healing, it remains limited in
critical-size defects where callus formation is unable to bridge and stabilize the compromised bone.
This situation often results in non-union fractures, the formation of pseudarthroses or skeletal
deformation (Winkler et al., 2018). In order to avoid such complications an implant and/or a
graft is often used in a surgical procedure to stabilize the bone and induce new bone formation
in situ. Bone grafts and bone graft substitutes play an important role in terms of mechanically
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supporting the defect, attracting cells, guiding bone ingrowth,
and inducing bone regeneration (Reczyńska et al., 2015; Ionita
et al., 2016; Winkler et al., 2018). Even though a wide range of
synthetic biomaterials with diverse characteristics are available
for clinical use today, e.g., titanium alloys or calcium phosphates
(Campana et al., 2014; Cama et al., 2017; Sukul et al., 2020)Cama
et al., 2017Campana et al., 2014Sukul et al., 2020, there are still
important limitations in their biological aptness (Rahmati et al.,
2020). This includes poor or non-predictable biodegradation
rates (Rumpel et al., 2006), or lack of osteogenic capacity
(Esposito et al., 1999; Sakka and Coulthard, 2011). Therefore,
natural bone grafts are still of great interest. Autologous bone
grafts were the first grafts used to repair bone defects and
have shown great success (Giannoudis et al., 2005). This type
of technique does, however, requires additional surgery, e.g.,
osteotomy on the iliac, causes extra pain and is linked to donor
site morbidity, which represents an additional risk especially for
the older population. More importantly, autologous bone sources
are limited, and the quality of the autograft is in some cases
not high enough (Haugen et al., 2019). Allogeneic bone graft,
bone from different and often dead human donors, is another
option for bone repair. This material allows the treatment of
larger defects, the only manufacturing limitations being amount,
type, and qualities. Nevertheless, the number of potential donors
is becoming increasingly limited and ethical concerns are rising.
Moreover, allogeneic transplants and grafts also involve potential
risks such as triggering immunogenic reactions or transferring
contagious diseases (Sohn and Oh, 2019). An appropriate bone
substitutes ought to resemble the naturally bone, xenografts,
i.e., bone tissue from another species, are also considered to
be a viable option, and to be on a par with allografts and
synthetics (Athanasiou et al., 2010; Schmitt et al., 2015). Amongst
commonly used xenografts, bovine cancellous bone grafts are
regarded the most similar to human bone (Poumarat and Squire,
1993; Fletcher et al., 2018). Albeit sharing the risk profile with
allografts, they are more widely used because they are cheap,
easily available in large amounts, and are standardized. Their
safety and efficacy in skeletal reconstructive surgery since the
1950s has also been demonstrated (Planell et al., 2009).

Most xenografts are produced by defatting, decellularizing,
and deproteinizing cancellous bone, which are necessary
processes for the elimination of antigenicity, the mineralized
bone matrix alone being the substance in clinical use (Meloni
et al., 2017). Thus, the toughness of xenograft is lowered
compared to natural bone even though the strength can
be mostly retained (Cornu, 2012). Moreover, due to the
process of sterilization and storage allografts and xenografts
have significantly decreased osteogenic and osteoinductive
function compared to living autografts (Pape et al., 2010).
A new concept using a xeno-hybrid graft substitute has been
introduced to reduce this discrepancy between xenografts
and natural bone. This medical device, named SmartBone R©

and certified for clinical use, is manufactured by adding a
biocompatible polymer coating and gelatine-derived collagen
fragments to the deproteinized bovine bone matrix, in order
to create a biomaterial that has similar characteristics to
natural bone (Pertici et al., 2014; D’Alessandro et al., 2017;

Cingolani et al., 2018; Ferracini et al., 2019). The polymer used
poly(L-lactide-co-ε-caprolactone) (PCL-LA) increases the
toughness of the graft, while the collagen fragments present the
integrin binding motif, RGD, on the polymeric coating with the
specific role to further improve the biological performance of the
biomaterial (Rossi et al., 2015; Roato et al., 2018).

Bioactive macromolecules such as growth factors or cell
attachment motifs, have been suggested to be favorable for
improved bone regeneration in critical-size bone defects. The
RGD motif is widely used to promote initial mesenchymal
cell attachment onto scaffolding materials via integrin receptors
(Kapp et al., 2017; Chahal et al., 2020). However, cell attachment
in itself is not enough for optimized bone repair, while
the following proliferation and differentiation process of the
attached cells needs further stimulation from the surrounding
microenvironment to enable proper bone repair. Growth factors
and other biomolecules can be utilized to accelerate bone healing
when incorporated into a bone graft substitute (Lv et al., 2015;
Lin et al., 2019). Several biomolecules have obtained FDA
approval for such use including BMPs (bone morphogenetic
proteins), bFGF (basic fibroblast growth factor), and VEGF
(vascular endothelial growth factor) (Janicki and Schmidmaier,
2011; Wang and Yeung, 2017). The regulation of bone healing
by a growth factor is, however, a very complex and highly
orchestrated process that need to be closely controlled at several
stages to avoid deleterious treatment outcomes. Thus, there is
intense controversy regarding the clinical use of growth factors
such as BMPs, and hence a pressing need to find safer and more
effective bone stimulating strategies for bone tissue engineering
that better biomimics the natural healing process (Epstein, 2013;
Oryan et al., 2014).

This study aims to investigate the potential of biomimetic
peptides, belonging to a group of proteins called “intrinsically
disordered proteins” (IDPs), which are highly diverse in their
effects and yet adaptable and specific, in their action. These
molecules have no strict internal structure and can therefore
adapt to several binding configurations due to their one-to-many
and many-to-one signaling capacities (Wright and Dyson, 2015).
These two biomimetic peptides P2 and P6 were fused into the
polymeric coating of the SmartBone R© matrix, simultaneously
with the RGD motif during the graft production process, in an
effort to further increase the bio-efficacy of this promising xeno-
hybrid bone graft substitute. The peptide sequence P6 is identical
to part of the amelogenin (AMEL) sequence (Zhang et al., 2010;
Wald et al., 2011). Amelogenin naturally occurs in tooth enamel
and plays a major role in matrix biomineralization (Fang et al.,
2011; Ruan and Moradian-Oldak, 2015). P2 biomimetic nature is
based on the common characteristics of proline-rich regions in
hard tissue extracellular matrix proteins (Rubert et al., 2011; Villa
et al., 2016). Another main advantageous of these biomimetic
peptides is that they can withstand organic solvents and thus is
more versatile when incorporation into new hybrid biomaterials
than growth factors (e.g., BMPs).

Since bone marrow derived human mesenchymal stem cells
(hMSCs) are the most abundant progenitor cell-type present at
the site of bone injury and are the major facilitators of bone
regeneration, we tested the biocompatibility and bio-efficacy
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of these novel composite bone grafts in hMSCs cultures,
both growth culture medium and differentiation medium with
osteogenic supplements being used. The effects of bone graft
with added biomimetic proteins P2 and P6 on hMSCs were
assessed by cytotoxicity assays, proliferation assays, real-time
PCR, multiplex proteomics, immunofluorescence staining, and
confocal microscopy.

MATERIALS AND METHODS

Bone Graft Preparations
The xeno-hybrid bone graft SmartBone R© (SBN) was
manufactured by I.B.I. SA (Mezzovico-Vira, Switzerland).
It consists of a bovine bone-derived mineral matrix which
is improved by reinforcement with the co-polymer coating
poly(L-lactide-co-ε-caprolactone) (PLCL) and the addition of
RGD-exposing collagen fragments from animal-derived gelatine
(D’Alessandro et al., 2017). During standard manufacturing
process of SBN, the biomimetic peptides P2 and P6 (Zhu
et al., 2020) were embedded into the polymer coating of SBN,
producing SmartBonePep R© (SBP) with a nominal concentration
capable to provide a release rate equivalent to 1 µg/cm3/d over a
2 weeks time (Figures 1A–F) (Perale et al., 2019). These two bone
grafts were called SBP2 and SBP6, respectively (Zhu et al., 2020).
A third group which combine both P2 and P6 added was also
added (SBP2+P6). The release profiles, cytotoxicity, SEM, and
mechanical strength of both SBN and SBP has been described by
Perale et al. (2019) and thus not repeated here. The sequences
of the biomimetic synthetic peptides P2 and P6 (designed by
Corticalis AS, Oslo, Norway and supplied by Pepmic Co., Ltd.,
Jiangsu, China) are available are previously described (Ramis
et al., 2012). Both peptides were prepared as stock solutions at
4 mM in 0.1% acetic acid and stored at−20◦C.

Cell Culturing, Expansion, and Seeding
Commercially available hMSCs (Lonza, Germany) were
employed for cell experiments. Cells were cultured in
mesenchymal stem cell growth medium (MSCGM, Lonza,
Germany) as recommended by the cell provider, in a standard
cell culturing environment of 37◦C humidified atmosphere with
5% CO2. Two types of medium were used in the experiments: (1)
growth medium and (2) differentiation medium. The osteogenic
differentiation medium was made by the enrichment of basal
medium with 10 mM β-glycerophosphate (50020, Sigma Aldrich)
and 100 µM ascorbate-2-phosphate (A8960, Sigma Aldrich). For
the cell expansion, the growth medium was used and changed
every 3 days, and cells between passage 5 and 7 were used for
experiments. If not specified, differentiation medium was used
for experiments. A suspension of 8× 104 cells, volume of 200 µl,
was microseeded on the surface of three different samples per
group (circular shaped, diameter: 12 mm, height: 3 mm) in a
24-well plate and redone three times (three replicates). After
30 min incubation for cell attachment and penetration inside
the graft matrix by media and cells soaking (Roato et al., 2018),
full volume of the culturing medium was then gently added. The

medium was changed on day 2, 5, and 7 of each week and cells
were cultured until day 28 at 37◦C and 5% CO2.

Cytotoxicity
Following indications by current revisions of the ISO-10993
norm series, lactate dehydrogenase (LDH) activity in the culture
media was used to evaluate the cytotoxicity of the samples (four
samples, replicated three times, n = 12). All the measurements
were performed according to the manufacturer’s kit instructions
(Roche Diagnostics, Mannheim, Germany). After 48 h of
culturing, 50 µl of the culture medium was taken out and mixed
with 50 µl of the reaction mixture. The incubation was performed
at room temperature for 30 min in the dark environment.
LDH activity was determined in an ELISA reader by measuring
the oxidation of nicotinamide adenine dinucleotide (NADH) at
490 nm in the presence of pyruvate. Results were presented
relative to the control by calculating the OD value as follows.
Cells cultured in the culturing plate without interference were set
as the negative control, while cells in the culturing plate treated
with medium containing 1% Triton X-100 were set as the positive
control (100% cell death).

Cytotoxicity was calculated using the following equation
(Eq. 1):

Cytotoxicity =
(

Experimental group −Negative control
Positive control − Negative control

)
× 100% (1)

Cell Viability/Metabolic Rate
Measurement
The MTS test was used for cell viability evaluation. Samples
were transferred to a new 24-well plate to avoid measuring the
metabolic activity of the cells that had adhered to the tissue
culture plastics. The test was run on three replicates. 120 µl of
MTS substrate (CellTiter 96 R© AQueous MTS Reagent Powder
G1111, Promega) with 600 µl of culture medium was added to
each sample. Thereafter, the samples were incubated at 37◦C and
5% CO2 for 2 h. During this time the yellow substrate was reduced
by mitochondrial enzymes to a purple product. The product
absorbance was measured using the reader InfiniteM200PRO
(Tecan) at 490 nm, reference wavelength 690 nm.

Cell Proliferation Assay
The samples (n = 3) after performing MTS test were washed
twice with PBS and transferred to sterile tubes with 700 µl of
lysis buffer in each. The lysis buffer consists of 10 mM Tris
(T1503, Sigma Aldrich), 1 mM EDTA (EDS, Sigma Aldrich) with
0.0004% Triton X-100 (T8787, Sigma Aldrich). Samples were
then frozen. They were vortexed after thawing. Samples were
further frozen, thawed, and vortexed, three cycles in total. Finally,
10 µl of sample, respectively dsDNA standard from the assay, was
transferred to a black 96-well plate with a transparent bottom.
Then 200 µl of working solution Quant-iTTM dsDNA Assay Kit
(Q33120, Invitrogen) was added. A fluorescently labeled probe in
the working solution emitted a signal after binding to dsDNA.
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FIGURE 1 | Graphical overview of experimental work. Dissolved and physical entrapment of P2 and P6 in a polymer matrix (PCL-LA) and mesenchymal stem cells
seeded onto the bone graft. The peptides are presented as red sphere and are being released off the bone graft as the PCL-LA swells.

The fluorescence was measured at excitation wavelength 485 nm
and emission 528 nm.

Confocal Microscopy
Confocal microscopy was performed on three samples for
each group at each time point on day 14th and 21st to
observe cell expansion. Samples were first washed three times
with PBS and then fixed with 4% paraformaldehyde for
12 min. After washed with PBS for three times, samples were
stained with phalloidin labeled with Alexa-488 for 1 h and
DAPI for 20 min. Original images were taken using laser
scanning confocal microscopy (Leica TCS SPE Microsystems

Wetzlar GmbH, Wetzlar, Germany) and stacked images were
generated in Image J.

ALP Activity Evaluation
Alkaline phosphatase (ALP) activity was measured
spectrophotometrically using a p-nitrophenyl phosphate
(pNPP) as a substrate for this enzyme (N7653, Sigma Aldrich).
ALP activity leads to the conversion of a colorless substrate to
the yellow product p-nitrophenol. The test was run in triplicates
(n = 3). 300 µl of ALP substrate was added to each well. Samples
were shielded from direct light and incubated for 45 min at
room temperature. The entire volume of the solution was then
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transferred to a new well and 150 µL of 2 M NaOH was added
to stop the reaction. Finally, the absorbance of 150 µl of the final
solution was measured at 405 nm.

Immunofluorescence Staining
Scaffolds (n = 3) were and washed three times with PBS. Methanol
was then added to fix the adhered cells. They were kept for
20 min at room temperature, then stored at −20◦C. Scaffolds
were washed three times in PBS before staining. After that
samples were incubated at room temperature in 0.1% Triton
X-100 (T8787, Sigma Aldrich) with 1% BSA (SH30574.02, HY
Clone) in PBS. After 30 min was the liquid aspirated and 1%
Tween20 (P9416, Sigma Aldrich) in PBS was added. Cells were
incubated for 20 min at room temperature. Finally, the samples
were washed three times in PBS. Primary antibody rabbit anti-
osteocalcin (T4743, Peninsula Laboratories) was diluted in PBS
1:200 and samples were incubated in it overnight at 4◦C. In
the next step the samples were washed with 0.05% Tween20
(P9416, Sigma Aldrich) in three cycles—after 3, 5 and 10 min
of incubation in solution. The samples, after final washing
with PBS once a secondary antibody Alexa Fluor 633 (A21070,
Life Technologies) in dilution 1:500 in PBS was added, were
incubated for 50 min at room temperature in the dark. Samples
were then washed three times in PBS. Hoechst 34580 (H21486,
Life Technologies) diluted 1:5000 in PBS was added to the
samples for 15 min at room temperature. The samples were then
washed twice in PBS and scanned under a confocal microscope
(Zeiss LSM 880 Airyscan, Germany). It was taken at least four
scans from each group. Hoechst 34580 was shown as blue and
osteocalcin as red.

Quantification of Gene Expression Levels
RNA was isolated on day 14 and 28 using a RNeasy Mini kit
(Qiagen GmbH, Germany, catalog no. 74106) and following
the manufacturer’s protocol. The total amount of nucleic
acid was diluted to 366.96 ng/µl for each sample. The
reaction was run using triplicates (n = 3). The mRNA was
subsequently transcribed to cDNA using RevertAid H Minus
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
Waltham, MA, United States, catalog no. K1632), according
to the manufacturer’s protocol. Expressions of osteogenic
marker genes including runt-related transcription factor
2 (RUNX2) (Hs01047973_m1), collagen type I (COL-I)
(Hs00164004_m1), osteocalcin (OC) (Hs01587814_g1), and
bone sialoprotein (IBSP) (Hs00913377_m1) (all TaqMan,
Thermo Fisher Scientific) were measured. As the 2-1Cp
method was used, the values were normalized with eukaryotic
elongation factor-1 (EEF1) (Hs00265885_g1, TaqMan, Thermo
Fisher Scientific) as a housekeeping gene. The parameters
of qPCR were set as follows: activation—95◦C, 10 min;
amplification—95◦C for 10 s, 60◦C for 10 s (50 cycles);
termination—40◦C for 1 min. The TaqMan Gene Expression
Master Mix (Thermo Fisher Scientific, Waltham, MA,
United States) and RT-PCR Grade Water (Thermo Fisher
Scientific, Waltham, MA, United States) was added to each
sample. Samples were stored in a freezer at −80◦C between the
isolation of RNA, cDNA synthesis, and RT-PCR. To measure

the fluorescence intensity Light Cycler 480 (Roche, Basel,
Switzerland) was used.

Quantification of Specific Extracellular
Proteins
Medium was collected on day 2, 7, 14, 16, and 21, with four
replicates for each group. Medium samples were stored in
a freezer at −80◦C until final use. Multianalyte profiling of
protein levels in the culture medium was performed using the
Luminex 200 system (Luminex, Austin, TX, United States),
employing xMAP technology where Bone Metabolism
Multiplex Assay was used (Human Bone Magnetic Bead
Panel, MILLIPLEX, Germany). All the acquired fluorescence
data was analyzed by the xPONENT 3.1 software (Luminex,
Austin, TX, United States). Selected markers as osteocalcin
(OCN), osteopontin (OPN), osteoprotegerin (OPG), dickkopf-
related protein 1 (DKK-1), sclerostin (SOST), interleukin-6
(IL-6), and tumor necrosis factor-α (TNF-α) in the culture
medium at different time points. All processes were performed
according to the manufacturer’s protocols.

Statistical Analysis
Normality tests were first run on the datasets. Normally
distributed results were expressed as means± standard deviation
(SD). One-way ANOVA and Tukey’s tests were used for
multiple comparisons among groups while two-way ANOVA
and Bonferroni post-tests were applied when different points in
time were included. Statistical analysis was run in SPSS12 (IBM
SPSS, Armonk, NY, United States). A significant difference was
considered where p < 0.05, * marking a significant difference
versus SBN, # as versus SBP2, and 1 as versus SBP6.

RESULTS

Cytotoxicity, Cell Viability/Metabolic
Activity, and Cell Proliferation
No cytotoxicity behavior was observed in any of the groups in the
growth medium or in the differentiation medium. SBP2 exhibited
significantly lower toxicity in the growth environment than the
other three groups (Figures 2A,B). The MTS test was used for cell
viability evaluation. The cellular metabolism levels of all groups
increased during the experiment. No significant difference was
detected among groups. A trend of growing metabolic activity
could be detected in SBP2+P6, and may portrait a synergistic
on cell metabolism (Figure 2C). The amount of dsDNA was
also quantified for cell proliferation evaluation. A significant
decrease in dsDNA concentration was observed in all groups
on day 7. A gradual increase was, however, observed on day
14 for all groups except for the group with SBP2 (Figure 2D).
The percentage of stem cells was determined as a number of
cells with positive expression of CD105, CD73, CD90 and with
negative expression of CD45, CD34, CD14, CD19, HLA-DR.
98.44% of cells in this passage preserved the stemness phenotype
(Supplementary Figure A1).
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FIGURE 2 | (A,B) Cytotoxicity of SBN and SBP analyzed via lactate dehydrogenase (LDH) activity. (C) Metabolic activity of hMSCs. (D) dsDNA quantification.
(E) alkaline phosphatase (ALP) activity. *p < 0.05 for when compared to SBN, #p < 0.05 for when compared to SBP2, 1p < 0.05 for when compared to SBP6
(n = 3).

Cell Expansion
Cell behavior on bone grafts was observed under confocal
microscopy with phalloidin marking the cytoskeleton and DAPI
marking the nucleus. It could be noticed that on day 14, a
larger amount of hMSCs was present on SBP than on SBN
under the growth environment. Among the SBPs, SBP2 strongly
promoted cell proliferation. This was not, however, as strong for
SBP6. Multilayers of cells were observed on all SBPs on day 21
(Figure 3A). For cells and bone grafts cultured in differentiation
medium, generally cell expansion level was lower than those

cultured in growth medium. Nevertheless, SBPs still provided
greater cell proliferation effects than SBN (Figure 3B).

Alkaline Phosphatase Activity
The level of ALP activity in the SBN group was the same on
day 7 as it was on day 14. Increased activity was observed in
SBP2 and SBP2+P6 in the second week, while contrarily in SBP6
the activity was decreased. The peak was measured on day 7 in
SBP6 and significant differences compared to other groups were
proved (Figure 2E).
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FIGURE 3 | Cell behavior of human mesenchymal stem cells (hMSCs) with growth medium (A) and in differentiation medium (B) stained with phalloidin (green) and
DAPI (blue) observed under laser scanning confocal microscopy. Scale bar: 100 µm (n = 3).

Immunofluorescence Staining of
Osteocalcin
The expression level of osteocalcin (OCN) was detected via the
immunofluorescence staining method. A high level of OCN was
detected in SBP6 on day 28. The expression of OCN could also be
noted in P6 on day 21 and in SBP2+P6 on day 28 (Figure 4). The
dept profiles shows that the cells penetrated deep into the porous
materials (Figure 4). Due to the negative controls, we can exclude
possible non-specific interaction of secondary antibody with the
biomaterial or biomaterial autofluorescence.

Gene Expression
Expressions of osteogenic marker genes including runt-related
transcription factor 2 (RUNX2), collagen type I (COL-I),
osteocalcin (OCN), and bone sialoprotein (IBSP) were measured

on day 14 and 28. No difference was observed for RUNX2 among
all groups. The COL-I expression in SBP6 was significantly
higher than in SBN on day 14. SBP6 exhibited the lowest OCN
expression on day 14, while SBP6 and SBP2+P6 were significantly
higher than other groups on day 28. As to IBSP, SBN and
SBP2+P6 displayed higher expressions than SBP2 and SBP6 on
day 14, whereas SBP2 and SBP2+P6 were higher than others on
the day 28, with SBP2+P6 as the highest (Figure 5).

Quantification of Specific Extracellular
Proteins
On day 2, 7, 14, 16 and 21, medium was collected and
multianalyte profiling of protein levels in the culture medium was
performed including osteocalcin (OCN), osteopontin (OPN),
osteoprotegerin (OPG), dickkopf-related protein 1 (DKK-1),
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FIGURE 4 | Immunohistochemical staining of OCN (red) and Hoechst 34580 staining of cell nuclei (blue) on day 21 and 28. Cell penetration to the scaffolds are
presented as depth profiles at day 28 in third row and OCN negative controls at the bottom. Scale bar: 20 µm (n = 4).

sclerostin (SOST), IL-6, and TNF-α. Significant differences in
OCN secretion could be observed in both the growth and
osteogenic environment. In the growth environment, SBPs all
exhibited higher levels of OCN compared to SBN on the 7th
day, and this remained high on the 21st day in SBP6 and
SBP2+P6. With stimulation of osteogenic medium, secretion of
OCN in SBPs was kept high during all the experiment. Significant
differences could be detected in all SBPs on day 7 and 14, and in
SBP6 and SBP2+P6 on day 21 compared to SBN.

For OPN, significant difference was only noted on day 7
through comparing SBP6 with SBN in the growth environment.
No other difference was detected. For OPG, SBP6 exhibited
higher secretion on day 21 and 28 than SBN in the osteogenic
environment. For DKK-1, secretion level was at the lowest in
SBP6 compared to all other groups on the 21st day in growth
environment. For SOST, not significant difference was found

among all groups in the two different environments. As to
the inflammatory markers, significant difference could only be
detected on day 14 in IL-6 when comparing SBP2+P6 and
SBN (Figure 6).

DISCUSSION

In this study, we utilized hMSCs to study the biocompatibility
and biological functions of xeno-hybrid bone graft with
entrapped biomimetic peptides. The cell behavior was
investigated in both growth and osteogenic microenvironments.
The biomimetic synthetic peptides (P2 and P6) belongs to a
group named IDPs which has no definite three-dimensional
structure under natural conditions (Kalmar et al., 2012;
Wright and Dyson, 2015). These biomimetic IDPs enjoys
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FIGURE 5 | Osteogenic related gene expression analyzed via qPCR. *p < 0.05 for when compared to SBN, #p < 0.05 for when compared to SBP2, 1p < 0.05 for
when compared to SBP6 (n = 4).

unique benefits in combination, spatial transformation, and
coordination. IDPs are involved in plenteously of biological
activities and are regarded as “one too many signaling” protein.
Hydroxyapatite (HAp) crystal formation, growth control, and
its orientation is controlled partly of fully disordered IDPs
(Wald et al., 2017). P2 and P6 has common proline-rich
regions to such biomineralization controlling (amelogenin and
ameloblastin) (Ramis et al., 2012). The idea behind the studied
bone graft substitute was to pool a commercially bone graft
(SmartBone R©) with a biomimetic peptide with IDP functions.
The request for a more sophisticated bone graft with advanced
bioactivity and biomimetic properties is growing as orthopedic
surgeons are using BGs in more challenging clinical cases
than earlier (Haugen et al., 2019; Sanz et al., 2019). Although
variances of biomolecule stimuli, such as recombinant growth
factors have been successfully embedded in other bone graft
materials for promoting osteogenic differentiation or enhancing
osseointegration, these biomolecules are associated with both
high costs and lack of sufficient evidences of safety and efficacy
(Fu et al., 2013; James et al., 2016), which impedes long-term
clinical applications. Carragee et al. found that the risk of
adverse dealings associated with rhBMP-2 was 10–50 times
greater than what was originally reported (Carragee et al.,
2011). However, synthetic biomimetic peptides are both safer
and more cost-effective (Delawi et al., 2016), and in addition,
they can withstand exposure to strong organic solvents and
ethylene oxide sterilization (Zhu et al., 2020). When using
growth factor such as BMPs ones need to be precaution

with exposure to organic solvents which limits its use for in
new biomaterials.

The addition of the biomimetic P2 and P6 improved the
biological characters of SBN (Roato et al., 2018). As shown in
confocal images for growth medium, SBPs had a strong effect
on promoting the proliferation of attached stem cells when
compared with SBN, particularly SBP2, where multilayers of cells
were already formed at the early stage (day 14), which was also
in correspondence with the result of LDH activity, indicating
that SBPs could provide an ideal microenvironment for hMSCs
colonization. Mesenchymal stem cells are multipotent, active
as forerunners to a several cell types such as adipocytes,
osteoblasts, and chondrocytes. When the hMSCs were exposed
to the osteogenic differentiation medium, the proliferation
would be partly suppressed and hMSCs would differentiate
into osteoblasts phenotype. However, even suppressed, large
numbers of cells could still be observed on the surface of
SBPs. The proliferation progress was not totally inhibited in the
differentiation environment under the stimulation of IDPs.

A series of experiments was performed to study how the
IDPs affected the differentiation of hMSCs on the bone grafts.
ALP activity is an early marker of osteoblast differentiation.
SBP6 exhibited a strong effect on ALP activity enhancement
at an early point in time (day 7), suggesting that P6 might
potentially be involved in this progress of the osteogenesis effect.
An interesting phenomenon occurred for ALP activity where
we saw a higher expression for SBP2 than the combination
of both peptides (SBP2+P6). It seemed that SBP6 had higher
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FIGURE 6 | The quantification results of specific extracellular protein (OPN,
OPG, DKK-1, SOST, IL-6, and TNF-α). Results were shown normalized to
SBN at different time points. *p < 0.05 for when compared to SBN, #p < 0.05
for when compared to SBP2, 1p < 0.05 for when compared to SBP6 (n = 4).

stimulation on ALP activity on day 7, while SBP2 had higher
stimulation on ALP activity on day 14. When P2 and P6 release
together into the cell media, we observed a halved effects on
each time points, leading to a lower ALP activity instead of
synergistic effect. We therefore postulate that the P2 and P6
might have competitive effect on their receptors. Further analysis

of the mRNA expression revealed that SBP6 could affect the
expression of COL-I on the 14th day, and also demonstrated
that OCN expression was strongly promoted on the 28th day
in SBP6 and SBP2+P6, while SBP2 could also stimulate OCN
expression on the earlier time point (day 14). In addition,
P2 could promote IBSP expression, as proved by the results
of SBP2 and SBP2+P6 on day 28. The expression of RUNX2
mRNA, which is a transcription factor at the beginning of the
osteogenic signaling cascade, showed no significant differences.
We assumed that OCN was the key point of the phenomenon.
OCN, a bone γ-carboxyglutamic acid protein, is a secreted
factor influencing matrix mineralization and global metabolism.
It is a small protein that composes approximately 10% of non-
collagenous protein part in bone (Gallop et al., 1980). OCN
is associated with the mineralized matrix of bone and has
the ability to bind calcium, showing an adsorption affinity
for hydroxyapatite (McKee and Cole, 2012). Therefore, the
addition of IDPs in this xeno-hybrid bone graft could facilitate
extracellular matrix mineralization potentially via boosting OCN
synthesis. Similarly, osteogenic peptides derived from collagen
type I, BMP-7 and mainly BMP-2 enhanced OCN expression
and synthesis in a dose-dependent manner (Lukasova et al.,
2017). Since OCN is synthesized almost exclusively by highly
differentiated osteoblasts (Price et al., 1976; Eastell and Hannon,
2007)Eastell and Hannon, 2007Price et al., 1976, these results
indicated that the hMSCs on the SBPs were in the process of
differentiation to osteoblasts phenotype. The effect on OCN
was also seen in a previous study with these materials, when
human osteoblasts from a variety of donors were seeded onto
SmartBonePep R© (Zhu et al., 2020).

Luminex methods allowed for further analyze the osteogenesis
markers on the protein level. DKK-1 and SOST are involved in
the down regulating of osteogenesis. No difference was found
among groups in two different culturing environments for these
two markers, demonstrating that there was no suppressing effect
for SBN nor SBPs. For the inflammatory markers, only on
the 14th day we could notice that SBP2+P6 secreted a higher
amount of IL-6 than SBN. This indicated that the combination of
these two peptides might have slightly up-regulated inflammation
effects. OPN and OPG are important regulatory factors for
osteogenesis. However, few differences were noticed in this study.
Nevertheless, hMSCs on SBP6 still secreted a higher amount of
OPG when exposed to the differentiation environment. What
was exciting was the results of OCN secretion quantification:
SBPs intensively enhanced the production of OCN at each
point in time compared with SBN when hMSCs were cultured
in differentiation medium. This effect could still, although
reduced, be detected when the differentiation environment was
switched to the growth environment. These results demonstrated
that SBPs, especially with P6 entrapped, could promote OCN
secretion in hMSCs even without the stimulation from the
osteogenic medium. SBP6 therefore has an osteogenic effect on
hMSCs mainly by facilitating the OCN expression. Finally, the
immunofluorescence results again provided confirmation of this
effect, a high amount of OCN being noticed on the cells attached
to SBP6. A limitation of our study was the bone graft was only
exposed to in vitro conditions. In a clinical setting, the cell
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attached to the bone grafts can act slightly different due to various
stimuli including blood and lymph flow which we are not able
to mimic in static cultivation. However, in vitro experiments are
crucial first step in any new material development.

Above all, the entrapped biomimetic peptide modified the
biological functions of SmartBone R©, promoting the proliferation
and osteogenesis process of hMSCs. Specifically, SBP6 promoted
osteogenesis partially via upregulating OCN, and SBP2 tended to
facilitate cell proliferation.

CONCLUSION

Two biomimetic peptides, P2 and P6, when in corporate
into a degradable bone graft, demonstrated to possess multi-
modal biological regulations on hMSCs. The biomimetic
peptides improved the bone formation capacities bioactive of
mesenchymal stem cells and these peptide withstood the bone
graft manufacturing processes including exposure to strong
organic solvents and ethylene oxide sterilization. P6 increased
stem cell attachment and proliferation when compared to P2 and
controls (bone graft without biomimetic peptides). The studied
biomimetic peptides may be a future candidate for enhancing the
clinical performance of bone graft.
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