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Abstract Nowadays, nanomaterials [NPs; size, 1–100 nm] have emerged as unique
antimicrobial agents. Specially, several classes of antimicrobial NPs and nanosized
carriers for antibiotic delivery have proven their efficacy for handling infectious
diseases, including antibiotic-resistant ones, in vitro as well as in animal models,
which can offer better therapy than classical drugs due to their high surface area-to-
volume ratio, resulting in appearance of new mechanical, chemical, electrical,
optical, magnetic, electro-optical, and magneto-optical properties, unlike from
their bulk properties. Thus, scientifically NPs have been validated to be fascinating
in fighting bacteria. In this chapter, we will discuss precise properties of microor-
ganisms and their modifications among each strain specifically. The toxicity mech-
anisms vary from one stain to another. Even the NP’s efficacy to treat against
bacteria and drug-resistant bacteria and their defense mechanisms change according
to strains in particular composition of cell walls, the enzymic composition, and so
on. Thus, we provide an outlook on NPs in the microbial world and mechanism to
overcome the drug resistance by tagging antibiotics in NPs and its future prospects
for the scientific world.

Keywords Nanoparticles · Antibacterial action · Microbial resistance · NP-assisted
drug delivery · Future prospects of NP-assisted therapy

12.1 Introduction

Antibacterial activity is regarded as the ability of the compounds that can kill or
reduce the progression of the bacterial growth. Most of the antibacterial agents
which are released in the market today are mainly either chemically synthesized or
naturally extracted (Nussbaum et al. 2006). Many natural products, such as
aminoglycosides, as well as purely synthetic antibiotics like sulfonamides are
often used. In broad spectrum, the mediator molecules of the compounds may be
either bactericidal (which kill bacteria) or bacteriostatic (slowing down bacterial
growth).
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There are some essential related terms for studying the antibacterial agents that
are mentioned as in the following:

Terms Explanation

Biocide A widespread chemical or physical agent which inactivates microorganisms

Bacteriostatic The property of a specific biocide agent which is able to bacterial multiplication

Bactericidal A specific term referring to the property by which a biocide is able to kill bacteria

Disinfectants Products or biocides used to reduce only the number of viable microorganisms on
the inanimate objects

Septic Characterized by the presence of pathogenic microbes in living tissue

Antiseptic A biocide or product that inhibits the growth of microorganisms in or on living
tissue

Aseptic Free of or using methods to keep free of microorganisms. h. Antibiotics: Natu-
rally occurring or synthetic organic compounds which inhibit or destroy selective
bacteria, generally at low concentrations

Sterilization The process where all the living microorganisms, including bacterial spores, are
killed. Sterilization can be achieved by physical, chemical, and physiochemical
means

Asepsis The employment of techniques (such as usage of gloves, air filters, UV rays, etc.)
to achieve microbe-free environment

12.1.1 Chemical and Physical Agents for Antimicrobial
Action

The chemical and physical agents are the most widespread methods used for
controlling microorganism. The physical methods include radiation, heat, and filtra-
tion which can destroy or eradicate detrimental microorganisms.

12.1.2 Radiation

Mainly there are two types of radiations, namely, ionizing and non-ionizing.
Non-ionizing rays are poorly penetrating low energy rays, while ionizing rays are
good penetrating high-energy rays.

Non-ionizing Rays These non-ionizing rays are with wavelength longer than the
visible light. Microbicidal wavelength of UV rays lies in the range of 200–280 nm,
with 260 nm being the most effective. UV rays generated from a high-pressure
mercury vapor lamp produce wavelength that maximally absorbs microorganisms
and causes the germicidal effect. UV rays induce formation of thymine–thymine
dimers, which ultimately inhibit DNA replication. A nonlethal dose UV ray even
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induces mutations in cells. The UV radiation inactivates microorganisms such as
bacteria, viruses, and yeast within seconds. Since UV rays don’t kill spores, they are
considered to be of use in surface disinfection.

Ionizing Rays Ionizing rays, similar to the prior, are of two types, particulate and
electromagnetic rays. Electron beams which are particulate in nature produce high-
speed electrons by a linear accelerator from a heated cathode, while gamma rays are
electromagnetic in nature and are employed to sterilize articles like syringes, gloves,
dressing packs, foods, and pharmaceuticals, and sterilization can be achieved in a
few seconds. Moreover, the instruments can be switched off.

12.1.3 Heat

Heat is another easier way of sterilization which exerts oxidative effects as well as
denaturation and coagulation of proteins. The objects that couldn’t withstand ele-
vated temperatures can quiet be sterilized at lower temperatures by extending the
interval of exposure. There are two types of heat sterilization – dry and moist heat.
The dry heat deeds by protein denaturation, oxidative damage, and toxic effects of
higher levels of electrolytes, while the moist heat cracks by coagulation and dena-
turation of proteins. Moist heat is more effective than dry heat in action as the
temperature necessary to exterminate microbe by dry heat is higher than the moist
heat. The minimum time required to kill a suspension of organisms at a
predetermined temperature in a specified environment is known as thermal death
time. In laboratory-scale cultures, a temperature of 121 �C for 15 min is utilized to
kill spores. This process is called autoclaving.

12.1.4 Filtration

Filtration as the word sense just separates microbes out instead of killing them.
Membrane filters with pore sizes ranging 0.2–0.45 μm are frequently used to
eliminate particles from solutions that are non-autoclavable. Numerous applications
of filtration contain measuring sizes of viruses, removing bacteria from ingredients
of culture media, separating toxins from culture filtrates, counting preparing suspen-
sions of viruses and phages free of bacteria, purifying hydrated fluid, and clarifying
fluids. Different types of filters are earthenware filters, membrane filters, sintered
glass filters, asbestos filters, as well as air filters. The additional antimicrobial agents
are those chemicals which rescind pathogenic bacteria from inert surfaces (Marzieh
et al. 2012).
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12.2 Biological Inhibitory Mechanisms

Antibacterial properties of drugs and its essential mechanisms behind the process are
very important to understand the underlying principles of its inhibitory action. Many
of the bactericidal/bacteriostatic antimicrobials used currently are the ones which
inhibit DNA, RNA, cell wall, or protein synthesis processes, as a result of the
specific mechanistic pathways as described below:

12.2.1 Inhibition of DNA Replication by Quinolones

The processes like DNA synthesis, mRNA transcription, and cell division require the
intonation of chromosomal supercoiling over strand breakage catalyzed by topo-
isomerase and rejoining responses (Gellert et al. 1976; Drlica and Snyder 1978;
Espeli and Marians 2004). The synthetic quinolone class of antimicrobials exploits
these reactions by targeting DNA–topoisomerase complexes (Sugino et al. 1977;
Gellert et al. 1977; Drlica et al. 2008). Quinolones a derivative of nalidixic acid was
introduced in the 1960s to treat urinary tract infections, which was a by-product of
the synthesis of chloroquine (a quinine; Hooper and Rubnstein 2003). Nalidixic acid
and other first-generation quinolones (e.g., oxolinic acid) are hardly used today
owing to their toxicity, whereas second (ciprofloxacin)-, third (levofloxacin)-, and
fourth (gemifloxacin)-generation quinolone antibiotics (Table 12.1) are widely
marketed. These can be classified on the basis of their chemical structure and of
qualitative differences between the killing mechanisms they execute (Rubinstein
2001; Hooper and Rubnstein 2003).

12.2.2 The Role of Protein Expression in Quinolone-
Mediated Cell Death

The double-stranded DNA breaks caused by topoisomerase inhibition by quinolones
induce the DNA stress response (SOS response), where RecA is stimulated by DNA
damage and encourages self-cleavage of the lexA repressor protein, persuading the
expression of SOS response genes such as DNA repair enzymes (Courcelle and
Hanawalt 2003) which enhances the activity of quinolones (except in the case of
nalidixic acid) (Howard et al. 1993). The prevention of the activation of the SOS
response has also been displayed to decrease the development of drug-resistant
mutants by hindering the generation of error-prone DNA polymerases (Criz et al.
2005), horizontal transfer of drug-resistant elements (Guerin et al. 2009), and
homologous recombination. Owing to these studies, illuminating the co-treatment
with the protein synthesis inhibitor chloramphenicol and quinolones inhibits the
ability of quinolones (Beaber et al. 2004)

12 Nanoparticles: Antimicrobial Applications and Its Prospects 325



T
ab

le
12

.1
S
om

e
an
tib

io
tic

ta
rg
et
s
an
d
th
e
pa
th
w
ay
s
in

w
hi
ch

th
ey

ef
fe
ct

D
ru
g
ty
pe

D
ru
g

D
er
iv
at
io
n

S
pe
ci
es

ra
ng

e
P
ri
m
ar
y

ta
rg
et

P
at
hw

ay
s
af
fe
ct
ed

R
ifa

m
yc
in
s

R
N
A
sy
n-

th
es
is
,

in
hi
bi
to
r

R
if
am

yc
in
s,
ri
fa
m
pi
n,

an
d

ri
fa
pe
nt
in
e

N
at
ur
al
an
d
se
m
is
yn

th
et
ic
fo
rm

s
of

an
sa
m
yc
in
s
(d
er
iv
ed

fr
om

S.
m
ed
ite
rr
an

ei
)

G
ra
m
-p
os
iti
ve

an
d

G
ra
m
-n
eg
at
iv
e
sp
e-

ci
es

an
d

M
.t
ub

er
cu
lo
si
s

D
N
A
-

de
pe
nd

en
t,

R
N
A

po
ly
m
er
as
e

R
N
A

tr
an
sc
ri
pt
io
n,

D
N
A

re
pl
i-

ca
tio

n,
an
d
S
O
S
re
sp
on

se

β-
la
ct
am

s

C
el
l
w
al
l

sy
nt
he
si
s,

in
hi
bi
to
rs

P
en
ic
ill
in
s
(p
en
ic
ill
in
,a
m
pi
ci
l-

lin
,o

xa
ci
lli
n)
,c
ep
ha
lo
sp
or
in
s

(c
ef
az
ol
in
,c
ef
ox

iti
n,
ce
ft
ri
ax
on

e,
ce
fe
pi
m
e)
,a
nd

ca
rb
ap
en
em

s
(i
m
ip
en
em

)

N
at
ur
al
an
d
se
m
is
yn

th
et
ic
fo
rm

s
of

ca
rb
on

yl
la
ct
am

ri
ng

-
co
nt
ai
ni
ng

az
et
id
in
on

e
m
ol
e-

cu
le
s
(f
ro
m

P
.n

ot
at
um

,
C
.a

cr
em

on
iu
m
,a
nd

S.
ca
ttl
ey
a)

A
er
ob

ic
an
d
an
ae
ro
-

bi
c,
G
ra
m
-p
os
iti
ve
,

an
d
G
ra
m
-n
eg
at
iv
e

sp
ec
ie
s

P
en
ic
ill
in
-

bi
nd

in
g

pr
ot
ei
ns

C
el
l
w
al
l
sy
nt
he
si
s,
ce
ll,

di
vi
-

si
on

,a
ut
ol
ys
in

ac
tiv

ity
(r
eg
u-

la
te
d
by

L
yt
S
R
–
V
nc
R
S

tw
o-
co
m
po

ne
nt

sy
st
em

),
S
O
S

re
sp
on

se
,T

C
A
cy
cl
e,
F
e–
S

cl
us
te
r
sy
nt
he
si
s,
R
O
S
fo
rm

a-
tio

n,
an
d
en
ve
lo
pe

an
d
re
do

x-
re
sp
on

si
ve

tw
o-
co
m
po

ne
nt

sy
st
em

s

C
ou

rt
es
y
to

N
at
ur
e
re
vi
ew

,M
ic
ro
bi
ol
og

y,
20

10
:8

:4
23
–
43

5

326 K. M. Varier et al.



12.2.3 Inhibition of Cell Wall Synthesis: Lytic Cell Death

The bacterial cell is sheathed by strata of peptidoglycan (also known as murein), a
covalently cross-linked polymer matrix that is composed of peptide-linked β-(1–4)-
N-acetyl hexosamine. The mechanical strength afforded by this layer of the cell wall
is crucial to a bacterium’s ability to endure environmental conditions that can alter
prevalent osmotic pressures; of note, the degree of peptidoglycan cross-linking
compares with the structural integrity of the cell. Maintenance of the peptidoglycan
layer is accomplished by the activity of transglycosylases and penicillin-binding
proteins (PBPs; also known as transpeptidases), which add disaccharide pentapep-
tides to encompass the glycan strands of existing peptidoglycan molecules and
cross-link adjacent peptide strands of immature peptidoglycan units, respectively
(Bugg and Walsh 1992). The treatment with an inhibitor of cell wall syntheses
changes induction of cell stress responses, cell shape and size, and ultimately cell
lysis. For instance, β-lactams (including penicillins, carbapenems, and cephalospo-
rins) wedge the cross-linking of peptidoglycan units by obstructing the peptide bond
formation reaction that is catalyzed by peptidoglycan-binding proteins (PBPs) (Wise
and Park 1965; Holtje 1998; Park and Uehara 2008). This inhibition is achieved by
penicilloylation of the PBP active site – the β-lactam (containing a cyclic amide ring)
is an analogue of the terminal d-alanyl-d-alanine dipeptide of peptidoglycan.
Penicilloylation of the PBP active site blocks the hydrolysis of the bond created
with the now ring-opened drug, thereby disabling the enzyme (Waxman et al. 1980;
Josephine et al. 2004) through autolysis using autolysins. Autolysins are membrane-
associated enzymes that break down bonds of peptidoglycan strands. Autolysins
have also been displayed to show a part in lytic cell death in bacterial species that
contain numerous peptidoglycan hydrolases, such as E. coli (Tipper and Strominger
1965). In E. coli, a set of putative peptidoglycan hydrolases (lytM domain factors)
were shown to be important for rapid ampicillin-mediated lysis (Uehara et al. 2009).
The discovery that autolysins contributed to cell death expanded our understanding
of lysis and showed that active degradation of the peptidoglycan with inhibition of
peptidoglycan synthesis by a β-lactam antibiotic triggers lysis.

12.2.4 Non-lytic Cell Death

Streptococcus pneumoniae lacking peptidoglycan hydrolase activity can still be
killed by β-lactams, but at a slower rate than autolysin-active cells, indicating that
there is a lysis-independent mode of killing induced by β-lactams (Moreillon et al.
1990; Hoch 2000; Novak et al. 2000). For instance, in Staphylococcus aureus, the
lytSR two-component system affects cell lysis by modifying autolysin activity
(Burnskill and Bayles 1996). lytR triggers the manifestation of lrgAB, which was
found to impede autolysin activity and thereby lead to antibiotic tolerance. lrgA is
similar to bacteriophage holin proteins (Groicher et al. 2000), which control the
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access of autolysins to the peptidoglycan layer. Based on this evidence, a supple-
mentary holin-like system, cidAB, was uncovered in S. aureus and initiated to
activate autolysins, representing S. aureus more susceptible to β-lactam-mediated
killing. Complementation of cidA into a cidA-null strain inverted the damage of
autolysin activity but did not wholly reinstate sensitivity to β-lactams (Rice et al.
2003).

12.2.5 Role of the SOS Response in Cell Death by β-Lactams

The handling with β-lactams leads to variations in cell morphology that are accom-
panying with the primary drug–PBP interaction. Generally speaking, PBP1 inhibi-
tors source cell elongation and are strong activators of lysis, PBP2 inhibitors change
cell shape but do not lyse, and PBP3 inhibitors impact cell division and can persuade
filamentation (Spratt 1975). Accordingly, PBP1-binding β-lactams are also the most
effective inducers of peptidoglycan hydrolase activity, and PBP2 inhibitors are the
least proficient autolysin activators (Kitano and Tomasz 1979).

12.2.6 Inhibition of Protein Synthesis

The mRNA translation process occurs over three sequential phases (initiation,
elongation, and termination) that comprise the ribosome and a range of cytoplasmic
accessory factors (Garrett 2000). The ribosome is composed of two ribonucleopro-
tein subunits, the 50S and 30S, which assemble (during the initiation phase) follow-
ing the formation of a complex between an mRNA transcript, N-formylmethionine-
charged aminoacyl tRNA, several initiation factors, and a free 30S subunit. Drugs
that inhibit protein synthesis are among the biggest classes of antibiotics and can be
divided into two subclasses: the 50S inhibitors and 30S inhibitors (Table 12.2). 50S
ribosome inhibitors include lincosamides (e.g., clindamycin), macrolides (e.g.,
erythromycin), streptogramins (e.g., dalfopristin– quinupristin), amphenicols (e.g.,
chloramphenicol), and oxazolidinones (e.g., linezolid) (Nissen et al. 2000; Katz and
Ashley 2005). The 50S ribosome inhibitors work by physically blocking the access
of aminoacyl-tRNAs to the ribosome or either initiation of protein translation (as is
the case for oxazolidinones) (Patel et al. 2001). Among ribosome inhibitors, the only
class that is broadly bactericidal is naturally derived aminoglycosides. Macrolides,
streptogramins, spectinomycin, tetracyclines, chloramphenicol, and macrolides are
typically bacteriostatic; however, they can be bactericidal in a species- or treatment-
specific manner.

Even though antibiotics can be a preventive measure for bacterial growth, to the
excitement of the scientific community, they exhibit a phenomenon called microbial
resistance. This results in a portent that the microbe develops survival even when
antibiotics are administered after a point where which they get mutated itself and
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become resistant to those antibiotics which they have come across earlier in its
lifetime. Here comes the application of nanoparticles (NPs) as a carrier of antibiotics/
a replacement of antibiotics.

12.3 Positive Side: As an Effective Therapeutic Method
to Combat Microbial Resistance and Multidrug-
Resistant Mutants

Against microbial resistance and multidrug resistance (MDR), numerous NP vari-
ants and NP-based materials have been used as a new line of defense (Singh et al.
2014; Cavassin et al. 2015) having different mechanisms for compaction. The
complementary advantages of using NPs/nanotechnologies as antibacterial agents
compared with traditional antibiotics can be summarized as follows:

1. Overcoming the existing antibiotic resistance mechanisms including the disrup-
tion of bacterial membranes and the hindrance of biofilm formation

2. Combatting microbes using multiple mechanisms simultaneously
3. Acting as good carriers of antibiotics (Zhang et al. 2010)

12.3.1 Overcoming the Existing Antibiotic Resistance
Mechanisms

Many NPs usually counteract at least any one of the common resistance mecha-
nisms. These possessions are effect of the bactericidal mode of NPs, which bases on
their specific physicochemical properties (Chen et al. 2014). The uniquely small size
helps NPs to interact with cells due to a larger surface area-to-mass ratio with handy
and manageable application, in contrast to traditional antibiotics. Besides the inter-
ruption of bacterial membranes, difficulty of biofilm formation is another significant
mechanism, as they portray a major measure in the progress of bacterial resistance
(Peulen and Wilkinson 2011). The distinctive structure and arrangement of bacterial
biofilms deliver protection to the implanted microorganisms, assisting them to
escape from most antibiotics. Moreover, bacterial biofilms are “a breeding ground”
for regular resistance mutations and the interchange and variation of these mutations
among diverse bacterial cells (Khameneh et al. 2016). Studies have revealed that
many NPs can prevent or overcome biofilm formation, including Au-based NPs
(Yu et al. 2016), NPs, 7 CuO NPs (Miao et al. 2016), Ag-based NPs (Markowska
et al. 2013), ZnO Fe3O4 NPs, Mg-based NPs (Lellouche et al. 2012b), NO NPs
(Hetrick et al. 2009; Slomberg et al. 2013), and YF NPs (Lellouche et al. 2012a).
Better prevention of biofilms is attained by a lesser size and larger surface area-to-
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mass ratio, as well as the particle shape of NPs with an extraordinary outcome on
biofilm destruction (e.g., NPs with a rodlike shape are more operational than NPs
with a spherical shape).

12.3.2 Combatting Microbes Using Multiple Mechanisms
Simultaneously

The antimicrobial mechanism of traditional antibiotics is modest owing for bacteria
to develop resistance. In disparity to traditional antibiotics, NPs combat microbes via
multiple mechanisms that are simultaneously active. The advantage of these simul-
taneous mechanisms is that even though microbes have multiple mutated genes, Nps
can assist so as to reduce the microbial resistance.

12.3.3 Acting as Good Carriers of Antibiotics

NPs not only can combat bacterial and microbial resistance themselves, as men-
tioned earlier, but also can act as a “medium and carrier” of antibiotics. However, the
mechanisms of NP-based drug delivery are different from those presented earlier.

12.3.4 Several Types of NPs Are Currently Used for Drug
Delivery

Solid lipid (SL) NPs (Thukral et al. 2014; Naseri et al. 2015), liposomal NPs
(Daeihamed et al. 2017), polymer-based NPs, inorganic nanodrug carriers (including
magnetic NPs, mesoporous silica NPs, polymer micelles, carbon nanomaterials, and
quantum dots), dendrimer NPs (Liu et al. 2015), and terpenoid-based NPs (Abed and
Couvreur 2014) are used as a transporter for the supply of antibiotics; the central
advantages of NPs associated with conventional distribution systems are as follows:

Size The governable smaller size of NPs is appropriate for accompanying antimi-
crobial operations and fighting intracellular bacteria (Ranghar 2012). The manage-
ment of infections caused by intracellular strains with drug resistance is more
multifarious using antibiotics (Andrade et al. 2013; Qi et al. 2013) because of
antibiotics’ reduced membrane transport. Drugs of ordinary size have less influence
on intracellular microbes. An improved treatment method using drug-loaded NPs as
mediators has been projected to overcome the limitation.

12 Nanoparticles: Antimicrobial Applications and Its Prospects 331



Protection NP carriers can aid to rise the serum levels of antibiotics and shield the
drugs from resistance by targeted bacteria. Within NP carriers, drugs are sheltered
from harmful chemical reactions so as to maintain the potency of the drugs.
Moreover, better efflux and reduced uptake of antibiotics in bacterial cells (such as
in P. aeruginosa and E. coli) are the normal and significant reasons for resistance to
traditional antibiotics. However, researchers have proved that numerous NPs can
incredulous these mechanisms (Muhling et al. 2009), preventing drug resistance. For
example, in the gastrointestinal tract, dendrimers can inhibit P-glycoprotein-medi-
ated efflux (Liu et al. 2015).

Precision and Security NP carriers can minimize systemic side effects and target
antibiotics to an infection site. When we use a carrier, we can reduce the side effects
(including drug toxicity) and can encourage a high-dose drug absorption at the
desired site. NP-based antibacterial drug delivery systems deliver the drug to the
site of action and therefore reduce the side effects. Targeted NP-based drug delivery
entails of active targeting or passive targeting. Active targeting is achieved through
NPs’ surface modification, allowing the NP-based drug delivery system to selec-
tively identify precise ligands on the cells at the site of infection, while passive
targeting is achieved through improved permeation and retaining at the infection site.
Active targeting embraces receptor targeting, temperature targeting, and magnetic
targeting (Xiong et al. 2012).

Controllability Controllable sustained discharge of antibiotics can be attained doc-
ilely. With a conventional delivery method, the blood drug level is maintained for a
short time with the lowest effective dose. As a consequence, frequent dosing is
obligatory, which leads to side effects. With the appropriate NP carrier or method of
drug release, the blood concentration of the medicine at the infection site can be
persistent at the compulsory effective level for a long time, occasioning in good
stability, compact frequency of medication, enhanced patient compliance, and con-
densed patient pain. Along with prolonged drug release (Liu et al. 2016), Nps are
effective even by different types of governable stimulatory factors (such as a
magnetic field, chemical agents, light, heat, and pH) (Lim et al. 2018; Wu et al.
2016; Baig et al. 2016).

Combination Many drugs can be packaged within the same NP or with assisted
constructs to increase the agents’ antibacterial properties. The concurrent combina-
tion of dissimilar drugs helps in developed efficiency due to the joint action of
multiple mechanisms. On the other hand, two or more types of NPs can be used in
combination for improved antibacterial effects and prevention of resistance (Liu
et al. 2015). Fusion NPs can maximize the powers while diminishing the weaknesses
of the individual types of NPs. For example, studies have shown that superior
efficacy of in vivo cellular delivery can be achieved by lipid–polymer hybrid NPs
compared with delivery without polymeric NPs or by liposomes (Hadinoto et al.
2013), which can effectively and expressively decrease the possibility of the growth
of bacterial resistance (Brooks and Brooks 2014). The abovementioned advantages
may unite in diverse combinations with different emphases in the process of actual
application.
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Size The recent studies have revealed that the size of NPs has a great role in its
bioactivity. The length and diameter of nanotubes were attuned by the anodic
oxidation process parameter by increasing the release time of drug. The TiO2
nanotubes and silica NPs administered syneretically on the composite films for
antibacterial activity resulted that the size of the TiO2 nanotubes basically dogged
the amount and machinery of the activity. Smaller NPs having larger specific surface
areas resulted in larger permeability to the cell membranes (Gurunathan et al. 2014;
Deplanche et al. 2010).

Shape Shape also accounts for antimicrobial activity. NPs interacting with periplas-
mic enzymes cause varying gradations of bacterial cell damage with respect to the
shape of NPs (Cha et al. 2015). A comparison of ZnO NPs with pyramid, plate, and
sphere shape showed the arrangement of β-galactosidase (GAL), and shape-specific
ZnO NPs produced photocatalytic activity (Prasannakumar et al. 2015). Pseudomo-
nas desmolyticum and S. aureus were greatly affected with prismatic-shaped Y2O3
NP due to the direct interaction between NPs and the surface of the bacterial cell
membrane (Hong et al. 2016). Moreover, cube-shaped AgNPs exhibit stronger
antibacterial activity than sphere-shaped and wire-shaped AgNPs with similar diam-
eters, due to the specific surface area and facet reactivity (Actis et al. 2015) having a
lesser effect on microbiota susceptibility (Talebian and Sadeghi 2014).

Roughness Roughness also acts as a factor with respect to antibacterial action as the
roughness of NPs increases the size and the surface area-to-mass ratio, which pro-
motes the adsorption of bacterial proteins, followed by a reduction in bacterial
adhesion (Sukhorukova et al. 2015).

Zeta Potential Recent studies have validated that the zeta potential for NPs has
durable influence on bacterial adhesion. The electrostatic attraction among positively
charged NPs and the bacterial negatively charged cell membrane has a positive
surface charge and is prone to being adsorbed on the bacterial surface and is
meticulously connected with bacteria, in contrast to their negatively charged coun-
terparts (Pan et al. 2013), and rises vascular permeability (Maeda 2010), by limiting
bacterial attachment through ion exchange (Fang et al. 2015). In comparison with
negatively charged and neutral NPs, positively charged counterparts have been
believed to enhance ROS production, which leads to interactions between the NPs
and the bacterial surface (Arakha et al. 2015).

Doping Modification The NPs used in clinics can be now altered for its aggregation
using doping modification techniques allowing NPs to disperse in hydrophilic or
aqueous environments. Doping modification is also one of the most operational
methods to normalize and regulate the interaction of NPs with bacteria. Lately, the
ZnO NPs with Au (gold) combination to form ZnO/Au nanocomposites were
administered to improve photocatalytic activity and to enhance ROS generation.
These effects are the result of the following factors: an altered ZnO bandwidth, better
light absorption owing to the surface plasmon resonance wavelength of Au,
enhancement of the photo-induced charge carrier reactivity, and amplified electron
transport efficiency and carrier charge separation (He et al. 2014). For instance, ZnO
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NPs doped with fluorine generate more ROS than ZnO NPs, resulting in greater
damage to bacterial cells (Guo et al. 2015; Podsporka et al. 2017). The ZnO NPs
have “O” content at the surface regulating antimicrobial effectiveness against both
Gram-positive and Gram-negative bacteria (Mehmood et al. 2015). Nano-TiO2
reduces the formation of biofilms in dental implants, showing greater antimicrobial
action. In comparison with unmodified TiO2, nano-TiO2 increases photocatalytic
activity, as the doped form can effectively extend the active spectrum to the visible
light region by the valence bandwidth elevation and the forbidden bandwidth
deprivation (Peng et al. 2010; Sangari et al. 2015).

Environmental Conditions Various environmental conditions displayed significant
differences in antimicrobial activity. For example, the temperature of the environ-
ment potentially influences the antibacterial activity following its effect on the ROS
generation rate. When ZnO NPs are encouraged by temperature, electrons are
detained at the active sites. Afterward, the electrons interact with oxygen molecules
(O2) for ROS generation, thereby increasing the antimicrobial effectiveness of ZnO
NPs. A decrease in the pH increases the rate of dissolute ZnO NPs, which elevated
the antimicrobial properties (Saliani et al. 2015). In addition, under acidic condi-
tions, the injury of ability of poly (lactic-co-glycolic acid) (PLGA)-poly(l-histidine)
(PLH)-poly(ethylene glycol) (PEG)-encapsulated vancomycin deceased selectively.
Certain results proposed that protonation of the imidazole groups of PLH selectively
under acidic conditions intensely influenced NP surface charge switching. The
surfaces of the NPs were charged positively at low pH that becomes beneficial to
the interaction with the negatively charged groups of the bacterial cell barrier,
prompting multivalent strong electrostatic regulation (Radovic et al. 2012). Another
study proposed that the interaction of Ag+ with dissolved oxygen and protons
caused an oxidative dissolution mechanism for AgNPs which could activate
AgNPs and release many Ag ions, enhancing the antibacterial activity of the
AgNPs in acetic acid than in neutral water (Peretyazhko et al. 2014).The culture
medium characteristics, such as osmotic pressure and pH, can influence the aggre-
gation, surface charge, and solubility of NPs. Antibacterial tests in five types of
media demonstrated that the antimicrobial activity of ZnO NPs is mainly due to free
Zn ions and zinc complexes. Furthermore, the medium can supply nutrients to
bacteria to improve their tolerance to NPs (Li et al. 2011). Finally, a study has
shown that preparation of ZnO NPs under different stirring conditions can affect
their antibacterial activity against Gram-positive (B. subtilis) and Gram-negative
(E. coli) bacteria and a fungus (C. albicans; Khan et al. 2016).

12.4 Mechanism of Action of Nanoparticles

One key element in the design of a more potent antibacterial system is the under-
standing of its mode of action. This involves two distinctive steps – the first one is
the way the system will behave in the physical or chemical modifications occurring
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in environments involving aggregation, dissolution, RedOx photo-reactions, release
of adsorbed silver species, adsorption or desorption of ions, molecular species or
polymers, or interaction with other nanoparticles or surfaces which can all have an
effect on the speciation of silver, modifying this metal availability and impacting the
antibacterial effect, while in the second step, the silver-containing species interact
with the bacterial cell and lead to the cellular death. This impact trusts on the
considered organism, even the synthetic parameters (ligand type, shape, size, wash-
ing steps, dispersion, evaluation procedures for bacterial strain used, growth inhibi-
tion due to toxicity criterion or full eradication, nature of the test to assess it, presence
of light or oxygen, composition of the medium, and so on) (Misra et al. 2012). As
many modes of action are hypothesized from experiential observations and condi-
tion evaluated, several decontamination pathways analyzed for silver nanoparticles
remain unclear to this date. But some of the theorized silver nanoparticle (AGNP)
effects are described in detail below followed by gold and metal NPs.

12.4.1 Role of Silver NPs in Antimicrobial Action

The presence of a Ag0 core has intuitively attributed the antimicrobial activity by
most researchers. AgNPs incline to accumulate at the bacterial membrane forming
aggregates when they are put in connection with bacteria and cause perforations
leading to cellular death (Li et al. 2010). However, different sizes (from 1 nm to
several hundreds of nm) also interact for the action mechanisms between biological
components and AgNP surfaces as the particle size can propose their action mech-
anism slightly without a secondary species. The AgNPs generate cytotoxic action by
inactivating enzymes of bacteria by producing reactive oxygen species (Kim and
Ryu 2013). Some other mechanisms give a prevalent role to Ag+ species. Some
systems containing initially silver (+1) species release ROS by simple dissolution or
ion exchange such as salts (Valentine et al. 1998), zeolites (Sambhy et al. 2006), or
ionomers (Dallas et al. 2011), which doesn’t happen with metallic Ag0
nanoparticles. Thus the monovalent silver species becomes antibacterial agent
keeping NPs as a reservoir. The silver ions possess affinity toward organic most
notably thiols with which they form a quasi-covalent bond (Ag–S binding energy
being around 65 kcal/mol), amines and phosphates. Affinity of Ag+ for selenol
groups is analogous (Han et al. 2001), but these moieties are fairly uncommon in the
living world. Furthermore, silver can act as a linking agent between several thiols
forming aggregation of the thiol-containing molecules which are irreversible (Parikh
et al. 1999). Several molecules (DNA, peptides (membrane-bound or inside the cell),
or cofactors) have been recognized as the target of these ions that was observed with
the dying bacteria. With contrast to the antibiotics which targets one particular
constituent of the bacterial life cycle, Ag+ ions will adsorb voluntarily to any high
affinity moiety; thus unlikely many pathways are affected causing the cellular death.
A much more probable hypothesis would be that silver binds non-specifically to a
wide variety of targets, perturbing simultaneously many aspects of the cell
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metabolism and leading to its death. Among all pathways affected, some are very
sensitive to little amount of silver species too. This capability to disrupt a large
variety of pathways may be one reason explaining the antibacterial action of silver
nanoparticles against a very broad spectrum of microorganisms. Park et al. presented
that developed ROS were intricated in more than half of the antibacterial activity by
comparing Ag+ action in the presence and absence of oxygenic respiration. The
release of chemisorbed ions at the surface of the particles along with oxidation was
another source of Ag+ ions in nanoparticulate systems (Dobias and Berrier 2013). A
percentage of the novel silver salt will remain oxidized comparatively even if a mild
reducing agent (such as sodium citrate) is added to the solution by remaining free in
solution or bound to the surface of the Ag0 nanoparticles by a group of pending
citrate ligands (Henglein 1998).

Chloride is much available in both environmental and biological systems which
forms the slightly soluble precipitate AgCl. However, in presence of excess chloride,
soluble silver (+1) polychloride species AgClx (x� 1)� are formed and contribute to
the antibacterial activity (Chambers et al. 2013; Levard et al. 2013). The size and
shape dependency of the nanoparticle also contributes to the release of Ag+ ions
required to dissolve AgNPs (Pal et al. 2007); Zhang et al. 2011). The improved
activity occurs due to a larger surface per unit of mass scales like 1/R (the number of
particles scales like 1/R3 and the surface like R2, with R the radius). These minor
NPs reveal more active surface and are thus more prone to dissolution. For analo-
gous reasons, accumulated NPs uncover a smaller amount of surface to the solvent
than separated NPs and possess a lesser antibacterial impact (Bae et al. 2010).
However, it has been recently validated by Liu et al. that the released Ag+ scale
well if the samples were regularized by their exposed surface. Afterward, Xiu et al.
showed in 2012 that the substantial parameters to evaluate the activity of silver
nanoparticles were the silver released as Ag+ and not the quantity of primary silver
added as nanoparticle (Fig. 12.1) to the solution.

The phytosynthesized AgNPs from Urtica dioica were explored for its
antibacterial activities for a range of pathogenic microorganisms, by Jyoti et al.
2016. The inhibition zone’s diameters in millimeter are presented in Fig. 12.2 and
Table 12.3. The AgNPs unveiled higher activity than AgNO3 solution and leave
extracts which were served as controls. Moreover, the antibacterial activities were
found to be augmented with the higher concentration of AgNPs. In present study,
zone of inhibition was found to be highest (27 mm) against S. marcescens and lowest
(18 mm) against K. pneumoniae. These findings are in agreement with previous
studies that examined antibacterial activity of AgNPs (Ghosh et al. 2012). However,
the mechanism of the inhibitory action of the metal nanoparticles on microorganisms
is not still clearly known and need further research assistance.
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Fig. 12.1 Different methods by which silver nanoparticles react for various physiochemical,
biological, and environmental conditions. (Courtesy to Nano today 2015, 10: 339–354)

Fig. 12.2 Antibacterial activities of synthesized silver nanoparticles of Urtica dioica. (Courtesy to:
J of Rad res and app sciences 9(2016): 217–227)
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12.4.2 Applications of Gold Nanoparticles

Very recently, in the research field , many applications for gold NPs (Au NPs)
starting from engineering to medicine, have been attributed (Patra et al. 2015). The
biocompatibility of gold nanoparticles made them fit enough to be used in the
treatment of arthritis and cancer (Jain et al. 2006) and antimicrobial therapies.
Under dark-field light-scattering microscopy, Au NPs can sense endocytosis,
tumor metabolites, and receptors in cells (Dykman and Khlebstov 2011). Some Au
NP-based diagnostic kits are under clinical trials (Kumar et al. 2015). Green-
synthesized Au NPs (Fig. 12.3) have also been used in the development of quanti-
fication of blood glucose, biosensors, toxic metals, disease markers, and insecticides
(Liu and Lu 2003). Au NPs also have the potential to degrade and detoxify toxic
pollutants (Lopez et al. 2004; Hernández et al. 2006). Some other applications have
been shown in Fig. 12.4.

For many decades, gold has been used as a treatment in many traditional
medicines. Robert Koch first explored the biocidal potential of gold (Glišić and
Djuran 2014). Apart from their other applications, due to its ability for the electro-
static flux across membranes, resulting in distorted membranes, the antimicrobial
activity of Au NPs has been typically oppressed (Li et al. 2010). Moreover,
nanoparticles also improve many gene expressions serving in redox processes
leading to microbial death (Nagy et al. 2011) through smaller size, distinctive surface

Fig. 12.3 The visual summary of gold nanoparticle synthesis and aggregation of the NPs
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chemistry, photothermic nature, and polyvalences (Gu et al. 2003; Gopinath et al.
2013). The reaction of Au Nps with sulfur- or phosphorus-holding bases leads to
inactivation of enzymes (nicotinamide adenine dinucleotide (NADH) dehydroge-
nases), which interrupt the respiratory chains by high amount of free radical gener-
ation causing cell death. Another proposed hypothesis is that these NPs decline the
ATPase activities and GNP may also prevent the tRNA binding to ribosomal subunit
(Cui et al. 2012). For instance, during leishmaniasis, Au NPs produces an elevated
electron numbers by yielding ROS (O � 2 and •OH). These ROS may even abolish
DNA and other cellular components of the pathogen. Another possible mechanism is
that these Au NPs obstruct the H+ efflux in the transmembrane.

Antimicrobial potential of the many NPs is determined by the size and surface
chemistry according to Herdt et al. stating that gold surface attachment leads to DNA
degradation (Brayner et al. 2006; Herdt et al. 2006). Moreover, according to Ahmad
et al. 2013, a 7 nm Au NPs could confine the H+ transmembrane efflux of the
Candida species further than the 15 nm Au NPs. Moreover, the antimicrobial
activity also differs according to the cell wall composition. This was well evidenced
by the Au NPs’ highest activity against Gram-negative bacteria than Gram-positive
bacteria due to the composition difference as described in earlier section. Other than
the cell wall structure of bacteria, surface modification (coating or capping agents),
concentration, and purification methods also affect the antibacterial activity (Zhang
et al. 2015; Kaviya et al. 2011). The antibacterial activity efficacy of Au NPs can be
enhanced by antibiotic coatings especially aminoglycoside antibiotics (Payne et al.
2016). It is very interesting that comparing green-synthesized Au NPs to chemically
synthesized Au NPs shows effectual antibacterial activity against certain bacterial
strains, which may be due to the synergistic effect of Au NPs and extracts (Mishra
et al. 2011).

12.4.3 Metal Oxide NPs

Recently, apart from ZnO used as a wide bandgap semiconductor (3.36 eV), with
potential electronic applications (Baxter and Aydil 2005) and a wide range of

Fig. 12.4 Several antimicrobial actions of nanomaterials
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nanostructures makes ZnO for nanoscale optoelectronics and piezoelectric
nanogenerators (Song et al. 2006). They are used powerfully to fight microorgan-
isms (Sawai et al. 1995). There are some reports (Sawai et al. 1995) considered
which reveals by a conductometric method a considerable antibacterial activity of
CaO, MgO, and ZnO, which were attributed by the generation of reactive oxygen
species on the surface of these oxides. Once ZnO destroys the cell membrane, the
ZnONps remain forcefully adsorbed on the dead bacteria surface preventing further
antibacterial action continuing to release peroxides into the medium showing high
bactericidal efficacy. From the results of another study (Stoimenov et al. 2002), it
was being observed that the smaller particle size enhances the activity due to its large
surface area-to-volume ratio. The thorough mechanism of ZnONP activity is still
under study.

12.4.4 NP for Antifungal Action

Antifungal activity of NPs is less explored compared to antibacterial activity.
Gajbhiye et al. (2009) reported efficacy of biosynthesized silver nanoparticles
against P. glomerata, P. herbarum, Trichoderma sp., F. semitectum, and
C. albicans. Moreover, they furthermore described the synergistic properties in
blend with fluconazole. Jo et al. (2009) deliberated the activity of both nanoparticles
and silver ions against two plant pathogenic fungi, Magnaporthe grisea and
Bipolaris sorokiniana. The antifungal activity of NPs in arrangement with dissimilar
heterocyclic compounds like thiazolidine, pyrazolo, phthalazine, hydrazide,
tetrazolo, and pyridazine derivatives was considered against C. albicans and Asper-
gillus flavus. Nasrollahi et al. (2011) investigated antifungal activity of chemically
synthesized AgNPs against C. albicans and S. cerevisiae explaining the potential
activity of AgNPs as compared to standard antifungal agents (viz., amphotericin B
and fluconazole). Pawan et al. (2012) augmented the potential antifungal activity of
chitosan nanoparticles against R. solani, A. flavus, and A. alternata from chickpea
seeds. In another study, Tile and Bholay (2012) reported significant activity of
AgNPs against Trichophyton rubrum, C. albicans, and A. fumigatus. In an extensive
study, Xu et al. (2013) evaluated AgNPs and natamycin against 216 strains of fungi
demonstrating higher activity compared to natamycin. One of the possible explana-
tions is destruction of membrane integrity of fungi and inhibition of normal budding
process in yeasts (Kim et al. 2009).

12.4.5 Antiviral Activity of NPs

NPs have established marvelous care for its antibacterial activities, but the antiviral
properties of metal nanoparticles continue to be an emergent area (Galdiero et al.
2011). The best known examples are West Nile virus, SARS coronavirus,
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Hantavirus, monkeypox virus, Nipah virus, Chikungunya virus, Hendra virus, and,
last but not least, the threat of pandemic influenza viruses, most recently of avian or
swine origin (Howard and Fletcher 2012). Thus, a greater is there to develop a novel
unique cure for antiviral agents, which incredulous the issue of antiviral resistance.
For instance, AgNPs are developing as one of the remedies for the administration of
viral diseases due to their possible antiviral activity that requires maintenance of
long-lasting therapeutic regimens or circulating drug concentration. Three key
aspects can be extrapolated from the studies conducted so far on the antiviral
properties of NPs: (1) NPs have validated antiviral activity against many viruses
affecting both prokaryotic (De-Gusseme et al. 2010; Narasimha 2012) and eukary-
otic organisms, making them a true broad-spectrum antiviral agent; (2) viral inhibi-
tion even relies on the size of NPs (Speshock et al. 2010); and (3) early infection
might be the general time frame where NPs exert their antiviral activity imposing the
rest of the viral replication cycle (Baram-Pinto et al. 2009; Trefry and Wooley 2013).
However, an exact mechanism of NP antiviral activity and a particular phase of
infection at which NPs exert antiviral activity have yet to be revealed.

12.5 Limitations of the Current Research

To the surprise, it should be noted here that many antibacterial mechanisms of NPs
are still uncertain. For instance, many studies point the antibacterial activity to ROS/
oxidative stress, whereas for other NPs, such as MgO NPs, the antibacterial mech-
anism may not be related with the regulation of metabolism of bacterial strains.
Therefore, the antibacterial mechanisms of NPs are substantially relevant in
addressing for future research.

The lack of cohesive standards is one limitation of the existing studies on the
antibacterial mechanisms of NPs. In particular, different bacterial strains, NP char-
acteristics, and action times were examined in different studies making it difficult to
compare antibacterial activity. Thus, no solitary method accomplishes all the situa-
tions for procurement evidence about the antibacterial mechanisms of NPs as each
type of NPs exhibits distinct antibacterial effects. A complete analysis is often
suggested to study the probable antibacterial mechanisms.

Our other limitations are the multifaceted bacterial cell membrane structure and
the deficiency of research methods for in vitro studies. Furthermore, in vitro models
cannot completely sham the in vivo situation to precisely replicate the cellular body
interactions. Therefore, it is intolerable to appraise the antibacterial action of NPs
solely through in vitro bacterial cell culture.

Regarding nanoneurotoxicity like crossing of NPs across the bacterial cell mem-
brane, many questions are still unanswered by the research community. The cell
membrane of a bacterial is both a barrier and a channel for the movement of
substances in and out. In bacterial cell membranes, especially Gram-negative strains
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have porins that allow the passage of molecules of around 600 Da molecular weight
across the bacterial cell body. Therefore, due to their size, almost the transport of
nearly all NPs will be limited. However, certain scholars have projected that porins
can facilitate the passage of NPs with thicknesses in the range of 1–9 nm through the
bacterial cell membrane. Endocytosis of microorganisms, similar to what is observed
for eukaryotic cells, may be measured as additional mechanism of NP movement.

In an era of increasing MDR, NPs are a feasible alternative to antibiotics and seem
to have great potential to resolve the difficulty in which bacteria are evolving
resistance to numerous antibiotic types, and it is becoming very hard to combat
infectious diseases and treat patients, leading to serious mortality.

12.6 Antibiotic-Tagged NPs to Overcome the Current
Research Limitations

As mentioned above, the researchers are facing great difficulty in designing an apt
NP drug for antimicrobial therapy. Hence, they developed the idea of antibiotic-
tagged NPs to reduce the MDR and its side effects. Accordingly Kumar and his
coworkers in 2016 analyzed the synergistic effects of AgNPs with eight antibiotics
against pathogenic bacteria (Fig. 12.5 and Table 12.4). In many cases, they could
analyze that the effects of antibiotics were enhanced. Synergistic interaction of
AgNPs and streptomycin showed a minute increase in the inhibition zone against
seven pathogenic bacteria in the range 0.1 to 0.9 with the exception of B. cereus
where a 6.1-fold increase was seen. When combined with kanamycin, amikacin,
tetracycline, and cefetaxime, the AgNPs showed comparable synergy (a 0.1–4.4-fold
increase). Amoxicillin depicted the highest overall synergistic activity as for
S. marcescens, while vancomycin with AgNPs revealed synergistic activity against
E. coli. A greater fold increase in case of inhibition zone was initiated against
S. epidermidis, B. subtilis, and E. coli in the existence of a blend of cefepime and
AgNPs. S. epidermidis, S. marcescens, E. coli, S. typhimurium, Klebsiella pneumo-
nia, S. marcescens, and B. subtilis were found to be subdued in combination of
AgNPs and antibiotics, which otherwise indicated a resistant pattern in the manifes-
tation of the antibiotics (vancomycin, cefetaxime, ampicillin, kanamycin, amikacin,
cefepime) alone. Thus it could be augmented that AgNPs enhance its efficacy in
company of most of the antibiotics, against many drug-resistant bacteria (Fayaz et al.
2010; Ghosh et al. 2012; Singh et al. 2013).

Moreover, this research provides helpful insight into the development of new
antibacterial agents. The combination of antibiotics and NPs will make it difficult for
pathogenic bacteria to develop resistance which otherwise renders the available
antibiotics inefficient; hence, this combination therapy can be further studied to
develop new formulation of NPs in synergy with antibiotics.
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Fig. 12.5 Plates showing the increase in diameter of inhibition zone of antibiotics with AgNPs
against pathogenic bacteria
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12.7 Conclusion and Future Prospects

Nanoparticles have manifold applications in numerous fields of science such as
electronics, probes, disease diagnostics and treatment, remediation, imaging, and
cellular transportation. Various physicochemical methods are being used to synthe-
size Nps. But, biogenic reduction of the salts to produce NPs is inexpensive, safe,
and eco-friendly. Furthermore, NPs of desired morphology and size are also syn-
thesized in massive amounts through this process. Their reduction potential and
stability are endorsed to bioactive molecules existing in these biological resources.
Among these bio-reductants, plant extracts are more advantageous than biological
resources. Therefore, in this prospect, using plant sources for NPs synthesis can open
new horizons in the future for antibacterial action as well.

The developing microbial resistance can be ruled out, by many means of many
nanomaterials. However, several preclinical and clinical trials are on research levels
for better considerations to visualize the restrictions as well as the potential of many
nanoparticles to elucidate the antimicrobial mechanisms of these metallo-
nanoparticles. Table 12.5 summarizes the potential applications for some
nanoparticles that have received some attention in research. Unlike antibiotics that
may have only one mechanism of action, nanomaterials can be related to multiple
cell processes owing to its potential application in the fight against multidrug-
resistant microorganisms. Once explored, it will revolutionize the microbiology
world both on laboratory and commercial scale.

Representation of the studied and possible effects of ceria and conventional
nanoparticles on a bacterial lipid bilayer and cytoplasm is as follows: (1) damage
of the cell wall and peptidoglycan layer caused by direct contact with nanoparticles;
(2) release of toxic ions; (3) damage of proton efflux bombs with serious problems
on pH regulation and modification of membrane charges; (4) generation of reactive
oxygen species (ROS) that can damage biological systems (degrading the cell wall);
(5) reactive oxygen species (ROS) degrading DNA, RNA, and proteins that can also
interfere in protein synthesis; and (6) low adenosintriphosphat (ATP) production due

Table 12.5 Some nanoparticles with their possible antimicrobial mechanism and current or future
applications in health sciences

Nanomaterial
Antimicrobial
mechanism Applications

Silver (Ag) 1, 2, 3, 4, 5, 6 Potable water filters, clothing, medical devices, coatings for
washing, refrigerators, food containers

ZnO 2, 4, 5 Antibacterial creams, lotions and ointment, deodorant, self-
cleaning glass and ceramics

Cu/CuO 4, 5 Medical devices

TiO2 1,4, 5 Air purifiers, water treatment systems for organic contaminant
degradation, biofouling-resistant surfaces

Al2O3 5 Coating surfaces

CeO2 5 Modify the material to exert antioxidant effects through
altered electronic states
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to acidification (mechanism 3) and reactive oxygen species (ROS) presence (mech-
anisms 4 and 5) (Courtesy to: Formatex 2013: 143–154).
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