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and mathematically model the

relationship between the size of a dataset

and the risk of re-identification. Our

results show that the risk decreases

slowly with dataset size, making even

large country-scale datasets very likely to

be re-identifiable.
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THE BIGGER PICTURE Data about us are being collected in many different ways, when we use our bank
cards, use our phones, browse the web, or even drive our cars. These datasets contain detailed information
about our lives. For each person, a dataset might contain thousands to tens of thousands of records. Pre-
vious research has shown that knowing just a few points about a target can single out the vast majority of
people in location datasets. However, some had argued the risk of re-identification becomes negligible if we
look at large-scale datasets containing tens of millions of people.
Here, we empirically measure,mathematicallymodel, and provide a lower bound on the relationship between
the size of a dataset and the risk of re-identification. Our results all show that re-identification risk decreases
very slowly with increasing dataset size. Contrary to previous claims, people are thus very likely to be re-iden-
tifiable even in country-scale datasets.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Although anonymous data are not considered personal data, recent research has shown how individuals can
often be re-identified. Scholars have argued that previous findings apply only to small-scale datasets and that
privacy is preserved in large-scale datasets. Using 3 months of location data, we (1) show the risk of re-iden-
tification to decrease slowly with dataset size, (2) approximate this decrease with a simple model taking into
account three population-wide marginal distributions, and (3) prove that unicity is convex and obtain a linear
lower bound. Our estimates show that 93% of people would be uniquely identified in a dataset of 60M people
using four points of auxiliary information, with a lower bound at 22%. This lower bound increases to 87%
when five points are available. Taken together, our results show how the privacy of individuals is very unlikely
to be preserved even in country-scale location datasets.
INTRODUCTION

Throughout our day, we interact with many digital services when

using our phone, payingwith our credit card, or using public trans-

port with a smart card. This results in our location data being

collected broadly, sometimes on the scale of countries. For

instance, Vodafone UK collects location trajectories of 20M citi-

zens1—a third of the population—while up to 5 million people

use London’s subway daily.2

Location data have been used extensively in research. In urban

planning, mobility data can be used to monitor urban activity3 and

help design better cities.4 In epidemiology, it has been used to

monitor and mitigate the spread of infectious diseases such as
This is an open access article und
Ebola andCOVID-19.5–10 In computational social science, it has al-

lowedus togain unprecedented insights into the spatial distribution

ofpoverty,11 andeven tostudy the impactofmassemployment lay-

offs on society.12 Further, the use of location data has withstood

scrutiny into potential biases in their collection mechanisms.13

Despite this, the large-scale collection and use of location data

has raised serious privacy concerns. It consists of fine-grained

records of where we are and how we move around, and was

considered sensitive by 82% of Americans in a recent survey.14

Location data can furthermore be used to predict individuals’ in-

come,11,15 their home and work locations,16–21 when they sleep

and wake up,22–26 their gender and age,27 their personality,28

who their friends are,29,30 and where they tend to socialize.31
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A B Figure 1. The relationship between unicity

and dataset size

(A) Empirical (solid lines) and estimated (dashed

lines) unicity decreases slowly with the size of the

dataset. Inset: close up of the region eR0:7.

(B) The estimated unicity remains high even in large

datasets. This is confirmed by the lower bound re-

sults (dotted lines). Taken together, these results

strongly suggest that unicity remains high even in

country-scale datasets.
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Unicity has been proposed as a measure for the risk of re-iden-

tification in anonymous datasets and was used to show how four

points of auxiliary information (places and times where someone

was) are enough to uniquely identify 95% of people in a large-

scale location dataset.32 These four points of auxiliary information

could be in the form of geo-tagged ‘‘tweets,’’ online check-ins, or

information obtained by more traditional means, such as

observing someone making a call. Unicity (ep) is defined as the

fraction of trajectories that are unique based on knowledge of p

randomly chosen points in a given trajectory. Unicity has since

been used to quantify re-identification risk across a number of do-

mains, including the mobility of vehicles,33 apps downloaded by

smartphones over time,34,35 smart cards used in public trans-

port,24 credit card transaction histories,36 and location data from

mobile phones in a number of countries.32,37,38 A range of studies

have furthermore exploited the unicity of datasets to re-identify

people. Narayanan and Shmatikov famously showed that close

to 90% of people could be re-identified in the Netflix dataset,39

while Riederer and colleagues used the unicity of traces to match

the same individual across multiple datasets.40

Researchers and industry practitioners have, however, argued

that these high unicity numbers are an artifact of the small size of

the datasets considered, and are overestimating the risk of re-

identification.41–43 For instance, Riederer et al.40 relied on a

location dataset of 1.7k people, while other case studies report

unicity on dataset sizes ranging from several thousands (respec-

tively 12k and 55k)33,34 to over 1 million people (1.5M).32 Exam-

ining a published study,36 El Emam et al. estimated that the

unicity of a dataset of z20M trajectories will be as low as 1%

given four points of auxiliary information, the conclusion being

that privacy was preserved in such large datasets.42

We here (1) study 3 months of location data and show empir-

ically that unicity decreases slowly with the size of the dataset, (2)

approximate this decrease with a simple statistical model taking

into account three population-wide marginal distributions along

with the underlying geography, and (3) prove that the decrease in

unicity is a convex function of the dataset size and obtain a linear

lower bound on unicity. We finally perform a sensitivity analysis

suggesting that the decrease in unicity is agnostic to broad per-

turbations in the input distributions. These results disprove pre-

vious claims, instead showing that unicity is likely to remain high

even in country-scale datasets.
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RESULTS

Our experiments are performed on a data-

set of call detail records containing the

location of 1M individuals over 3 months.

Each record contains a unique user ID,
an hourly time stamp, and an antenna ID, which relates to a loca-

tion (see Supplemental information for more details). We formally

model this dataset as a sequence, D = ðD1;.;DNÞ, populated
with user time/location traces of the type Di = ðXi;CiÞ. Xi and

Ci are lists of positions (antennas) and times (hours) representing

the spatial and temporal components of a user’s location trace.

Using this dataset, we empirically study the decrease in unicity

with the dataset size by randomly sampling individuals from our

original dataset and measuring the unicity of the sample as we

increase its size (see Experimental procedures for details). We

use the formal definition of unicity and the estimation algorithm

S2 from de Montjoye et al.36 In line with previous work, we use

the subscript p in epðNÞ to indicate the number of points of auxil-

iary information used in the computation of unicity.

Figure 1A shows that unicity empirically decreases slowly with

the size of the dataset. With three points of auxiliary information,

unicity (solid orange line) goes down from e3ð100KÞ= 0:98 in a

dataset of 100,000 people to e3ð1MÞ= 0:93 in a dataset of a

million people. With two points (solid blue line) this decreases

slightly faster, reaching e2ð1MÞ = 0:69, while unicity with four

points or more (solid red and brown lines) decreases very slowly

with e4ð1MÞ = 0:98. These results show that, while the size of

the dataset has an impact on unicity, the decrease in unicity

is slow.

To further study how unicity decreases with dataset size and

whether it decreases sufficiently in population-scale datasets, we

propose a simple statistical model taking into account three popu-

lation-wide marginal distributions—circadian ðPCÞ, frequency

ðPFÞ, and activity ðPAÞ—along with the network of mobile phone

antennas in a country. Using solely these quantities, the model is

able to replicate the observeddecrease in unicitywith dataset size.

Figure 2 displays the information extracted from the dataset,

three distributions, and the antenna network. ðPCÞ characterizes
the circadian cycle, the overall likelihood of a record to occur at a

given time in a week. The existence of circadian cycles is well

documented in the computational social science litera-

ture,22,23,25,26 and we use their empirical form in the model.

The frequency distribution, ðPFÞ, is the relative overall likelihood

of a location to be visited. This distribution too has been studied

before and has been widely shown to be well approximated by a

power-law distribution,44–48 as is also the case here (Figure 2B,

R2 = 0:99). The activity distribution, ðPAÞ, captures the number
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Figure 2. Inputs to the unicity model

(A) The circadian distribution, PC.

(B) The frequency distribution, PF , along with a po-

wer law fit (solid line, R2 = 0:99). The inset displays

the cumulative distribution with 85% of activity

captured by the top 10 locations.

(C) The activity distribution, PA, indicating the dis-

tribution of the number of records per trajectory

along with a b distribution fit (solid line, R2 = 0:98).

(D) Illustration of the sub-graph sampling method

used to generate an antenna set Si where S
ðkÞ
i ˛Si.

The underlying antenna network is represented by

dotted lines. The filled nodes (circles) correspond to

locations already selected, while the hollow nodes

are potential locations that could be selected next

(S
ðk +1Þ
i candidates) (see Supplemental information

for detailed algorithm). Remaining locations are

represented by filled diamonds.
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of records [ðiÞ = jDij that appear in each user trace. We approxi-

mate it here with a b distribution (a = 1:72, b = 14.7, R2 =

0:98). Finally, Si is the set of locations visited by person i. It is

a sub-graph sampled from the Delaunay tessellation of the an-

tenna coordinates ðLÞ in the dataset (see Supplemental informa-

tion for the detailed algorithm).

In short, for each user, our model samples a list of 10 con-

nected antennas ðS1;.;S10Þ on the network and an activity

(number of records in the user’s trace), A � PA. Each record’s

timestamp C and position X is then sampled according to the

circadian distribution C � PC and X = SK ; K � PF . This model

is formally defined in the Experimental procedures.

Figure 1A shows that our simple statistical model closely fol-

lows the empirical measure of unicity from 1 to 1M people

(dashed and solid lines). Using the model, we then study how

unicity is likely to evolve as the size of the dataset increases

to 20M people (Figure 1B). For N = 20M, our model estimates

unicity with three points to be close to be3ð20MÞ = 0:93, while

knowing one more point would increase this to the region of

be4ð20MÞ = 0:99. This is a stark difference with the linear extrap-

olation made by El Emam,42 who reports a unicity of 0.01 with

four points (we replicate El Emam’s method in the discussion

and display our results for up to 60M people in the Supple-

mental information).

The model provides good evidence that unicity is likely to

remain high even in datasets as large as 20M people. For further

evidence, we prove that the decrease in unicity with increasing

dataset size follows a convex form, and use this result to provide

a lower bound on unicity in large datasets. We show in the Sup-

plemental information that the unicity of a dataset of size N can
be expressed as a sum of convex func-

tions of N, and is thus convex.

This builds on two assumptions: (1)

there exists an underlying trajectory distri-

bution TX from which all trajectories Di˛D
are sampled and (2) all trajectories are in-

dependent of one another, DittDj. The

first assumption states that an underlying

distribution for trajectories exists. Such a

distribution would also capture correla-
tions between individuals on a large scale (e.g., commuting pat-

terns, cities, weekends). The second assumption presumes that

the correlation between specific individuals is negligible when

estimating unicity of large datasets.

A direct consequence of unicity being a strictly decreasing

convex function is that it will be lower bounded by its

linear tangent (treating unicity as a function of a real-

valued N):

eðDðNÞÞR eðDðN0ÞÞ+ ðN�N0Þ,de
dN

����
N=N0

: (Equation 1)

Re-arranged and expressed for discrete values, this gives a

lower bound for unicity:

eðDðN0ÞÞ � eðDðNÞÞ%ðN�N0Þ,ðeðDðN0 � 1ÞÞ� eðDðN0ÞÞÞ:
(Equation 2)

Using the tangent to the empirical unicity curves estimated by

discrete difference over the range of N˛½0:9M;1M�, we obtain a

lower bound of 0.73 for e4ð20MÞ and 0.9 for e5ð20MÞ (Figure 1B,

dotted lines).

Our results show that unicity decreases slowly with the size of

the dataset and that it, very likely, remains high even in popula-

tion-scale datasets. This refutes previous claims that privacy is

preserved in population-scale datasets, instead showing the

risk of re-identification to be high. Modern location datasets

have a great potential to improve our society, for example, by

training AI algorithms, but robust privacy engineering solutions

are needed to use them safely.
Patterns 2, 100204, March 12, 2021 3



A B Figure 3. Range of distributions studied for

the sensitivity analysis

The ranges of perturbed activity PA (A) and fre-

quency PF (B) distributions are displayed (dotted

lines) along with their empirical forms (solid lines).
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DISCUSSION

Taken together, these results show that the scale of a dataset

does not prevent re-identification. Human mobility, much like a

physical fingerprint, is highly unique and can be used to find a

person across mobility datasets.

Legally, the European Union (EU) General Data Protection

Regulation sets a high threshold for what constitutes anonymous

data, namely that the individual should not be identifiable taking

into account both the ‘‘available technology at the time of the pro-

cessing’’ but also future ‘‘technological developments’’ (Recital

26). The Article 29 Working Party, the predecessor to the Euro-

pean Data Protection Board, in its guidance sets out three criteria

to assesswhether a dataset is anonymous, singling out, linkability,

and inference49with the former two being directly applicable here.

As an example, the Centre for Humanitarian Data of the United

Nations (UN OCHA) adopted 5% as a threshold for what consti-

tutes an acceptable re-identification risk.50 Even our lower bound

of 22% far exceeds this liberal threshold.

Finally, here we study the unicity of location datasets with a

spatial resolution of z1 km2 and a temporal resolution of an

hour. Fine-grained GPS data are likely to lead to even higher

values of unicity, and previous research has shown that, in gen-

eral, de-identification methods do not meaningfully reduce the

risk of re-identification. For instance, research32,34 has shown

that reducing the spatial and temporal resolution of the data

further only slowly decreases the risk, while another study51

concluded that location data ‘‘show poor anonymizability [as

measured by k-anonymity], i.e., require important spatial and

temporal generalization in order to slightly improve user privacy".

Ensuring that these data canbeaccessed and usedbroadly is of

paramount importance, but this should not comeat the expenseof

people’s privacy. A range of privacy engineering techniques allow-

ing data to be used while giving individuals strong privacy guaran-

tees have been developed and are starting to be used.52–54 As

standards for anonymization are being redefined, in the EU and

around the world, it is essential for them to emphasize the strong

limits of de-identification, possibly banning the uncontrolled

release of individual-level de-identified data, and to give guidance

on the use of modern privacy-engineering solutions.

In the next three sections we discuss the underlying assump-

tions of the unicity model and some considerations regarding the

sensitivity of our results and, finally, include a discussion on pre-

vious estimates of unicity.
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Assumptions underpinning the
simple unicity model
We here evaluate the four assumptions

underpinning the simple unicity model we

present.

First, the model treats each of the four in-

puts in Figure 2 as independent of one
another. Considering them, or some of them, jointly might further

improve the model. This would, however, also increase its

complexity and, therefore, its sensitivity to small changes in the

data.Although furtherexplorationwouldbe interesting,weconsider

that the simple model approximates the decrease in unicity with

increasing dataset size well enough to support our conclusion

that unicity is unlikely to be low even in population-scale datasets.

Second, our model uses input distributions extracted from a da-

taset of 1M people to study the unicity of datasets with up to 60M

people (see Supplemental information). This assumes that these

distributions estimated from a smaller sample are representative

of the larger sample (i.e., the estimation of the distributions has

converged). We show that this is a reasonable assumption by

instantiating our model M with distributions extracted from sam-

ples of sizes significantly smaller than 1M, and showing that the

unicity results remain largelyunchanged (FigureS5 inSupplemental

information). We also perform a sensitivity analysis to evaluate the

impact of broad variations on these input distribution on our results

(see next subsection).

Third, themodel assumes each trajectory to contain at most one

unique location. This allows for themean frequencydistribution (PF )

to be used in themodeling process (Figure 2B). As seen in the inset

of Figure 2B,more than 85%of the activity in the average trajectory

iscapturedby the top10 locationsvisited.Furthermore,wefind that

PF changes only slightly when the number of unique locations is

altered, and that our conclusions are not influenced by this choice.

Finally, our model assumes that the set of locations appearing

in each trajectory can be described by a connected planar sub-

graph of the underlying antenna network. We believe this to be a

reasonable assumption, as previous work suggests that sub-

graphs spanned by each trajectory in human mobility are highly

localized, with the distribution PðrgÞ of the radius of gyration—a

metric for how far people tend to travel on average—following

a power law with increasing radius.55

Sensitivity analysis
Our simple statistical model for unicity takes as input three distri-

butions. However, these distributions may vary depending on

specifics of the dataset, such as the country where it was

collected or the sources of location information. Here we perform

a sensitivity analysis to ensure the robustness of our model to

even broad changes to the distributions.

We first perturb the PA and PF distributions (Figure 3) around

their empirical forms using a scaled earth mover’s distance as



Table 1. Summary of unicity results at N= 20M as per the

sensitivity analysis

e2 e3 e4 e5

Mean 0.307 0.735 0.876 0.935

Standard deviation 0.175 0.216 0.159 0.113

Minimum 0.071 0.260 0.431 0.544

Maximum 0.704 0.997 1 1
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the guiding metric (see Supplemental information for details).

The PC distribution, on the other hand, has been shown to be

very stable across datasets22–26 and we thus keep it constant

throughout our analysis.

These distributions are combined to produce 63 different in-

stantiations of the unicity model (Figure S2). Table 1 summarizes

the unicity values for models using the broad range of distribu-

tions in Figure 3, at a dataset size of 20M trajectories (see

Supplemental information for 60M results). Note that the lowest

unicity values across all instantiations of the model are still high,

with Minðe4ð20MÞÞ = 43:1% and would still be considered as

putting people’s privacy at risk.

Further, we study how certain aspects of human mobility

contribute to unicity. Starting from empirical user location traces

Di = ðXi;CiÞ, first, we find that removing the association between

times (Ci) and locations (Xi), by shuffling the vectors and recom-

bining them, only slightly affects unicity values (Figure S4A).

Specifically, consider a dataset D0 composed of trajectories

D0i = ðX0i;C0iÞ such that:

X0i = siðXiÞ;

C0i = piðCiÞ;

where si and pi refer to random permutations of the spatial and

temporal components of Di. This only marginally affects unicity,

showing that unicity does not depend on the specific places be-

ing visited at specific times, as long as those times and places

appear in the trace with their respective frequencies

independently.

Second, we replace the set of locations in each trajectory with

uniformly picked locations. Instead of using the sub-graph sam-

pling method displayed in Figure 2D, we populate each Si with

antennas picked from the entire set of locations L uniformly at

random. We find that this leads to unicity being overestimated

(Figure S4D).

Third, replacing PC or PF with uniform distributions (Figures

S4B andS4C) or attempts tomodel unicity using a simple combi-

natorial model (Figure S3) also cause the model to overestimate

unicity. These demonstrate the importance of all three distribu-

tions and the underlying geography to correctly capture the unic-

ity of mobility datasets.

This analysis, combined with the relative simplicity and gen-

erality of the unicity model, strongly suggest that our results

would generalize to any location dataset. Likewise, the strong

underlying combinatorial effect that underpins unicity com-

bined with previous research34–36 suggests that unicity will

similarly decrease slowly in other types of high-dimen-

sional data.
El Emam’s method
El Emam42 proposed a method (hereafter the EE method) to es-

timate the uniqueness of a population-size (N) dataset given the

unicity eðmÞ of a smaller sample dataset of size m. Using this

method, he estimates that the uniqueness for a population of

size N= 22,106 is about 1%, given a uniqueness of 90% of a

sample of size m= 22,106 of the same dataset. This estimate

forms the basis for his claim that uniqueness is low in large-scale

datasets.

We here show that the EE method (1) is unrealistic and (2)

provably gives the lowest possible estimate for the risk in the

larger dataset, and that (3) by using our dataset, we observe

that the real empirical unicity is significantly higher than the up-

per bound given by the EE method.

First, the method is unrealistic, as it effectively generates a da-

tasetD of sizeNwhere a fraction a of records are unique, while all

the other records are identical to exactly one and only one other

record. The parameter a is selected such that the expected esti-

mated uniqueness on a sample of size m, which we denote by

nDðmÞ, is equal to the empirical unicity. This assumes that users

in the real mobility dataset are either unique or exact duplicates

of another user.

Second, we prove in the Supplemental information that the

risk estimated by the EE method will be lower or equal to the

risk of any other dataset of size N, as this estimate is an affine

function of m. In other terms, this method will always return the

absolute lowest possible estimate of the risk.

Third, we apply the EEmethod to our dataset and show that its

estimate of the risk is significantly lower than the real empirical

value, leading to the risk of re-identification being strongly under-

estimated. For a dataset of 200,000 people, we empirically

observe an e2ð200KÞ = 0:86. Using this number, El Emam’s

method would estimate the risk of a larger 1M person dataset

to be e2ð1MÞ = 0:3, while the correct empirical value is z0:7.

Taken together, our results cast serious doubt on the validity of

the EE method to carry out risk assessments.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Yves-Alexandre de Montjoye (demontjoye@

imperial.ac.uk).

Materials availability

There are no physical materials associated with this study.

Data and code availability

Due to reasons of confidentiality and user privacy, we cannot share the raw

data. However, we can make available all the input distributions and raw

empirical results upon request for purposes of reproducibility.

The code used for all experiments is available at: github.com/computatio-

nalprivacy/scaling-unicity.

The unicity model in detail

We propose a simple statistical model M taking into account three popula-

tion-wide distributions: activity (PA), circadian (PC), and frequency (PF ). This

model samples location traces for each user independent of other users to es-

timate unicity of a dataset of size N. These location traces are then grouped

together to compute unicity.

Formally, the model M can be written as:

MðPA;PC;PF ;L;NÞ = D= ðD1;.;DNÞ: (Equation 3)
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EachDi˛D is a location trace for a unique user, represented as a list of Li re-

cords ðXðjÞ
i ;C

ðjÞ
i ÞLij = 1. The length Li of trace Di is sampled from the empirical ac-

tivity distribution PA:

P½Li = [ � = PAð[ Þ: (Equation 4)

The timestamps of each record in a trace, ðCðjÞ
i ÞLij = 1, are sampled indepen-

dent of the empirical circadian distribution PC:

P
h
C

ðjÞ
i = c

i
= PCðcÞ cj˛f1;.; Lig: (Equation 5)

For the spatial component, for each user, a connected sub-graph Si of size

10 is first sampled from the Delaunay tessellation of the antenna coordinates

L. This sub-graph is then randomly ordered as a list, which we denote by

Si = ðSðkÞ
i Þ10k =1 with a slight abuse of notations. Finally, the locations of the re-

cords X
ðjÞ
i ˛Xi are sampled independent of Si according to the empirical fre-

quency distribution PF :

P
h
X

ðjÞ
i = S

ðkÞ
i

i
= PFðkÞ cj˛f1;.;Lig: (Equation 6)

Note that when the size of the dataset N sampled by our model M in-

creases, this corresponds to sampling more individuals from the same under-

lying geography. This is what wemean throughout this work when we increase

the size of the dataset, e.g., in unicity curves (Figure 1): we consider the dataset

to be a growing sample from the same underlying population.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100204.
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18. Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M.,

Rowland, J., and Varshavsky, A. (2011). Identifying important places in

people’s lives from cellular network data. In Pervasive Computing,

Volume 6696 of Lecture Notes in Computer Science, K. Lyons, J.

Hightower, and E.M. Huang, eds. (Springer Berlin Heidelberg),

pp. 133–151.

19. Mahmud, J., Nichols, J., and Drews, C. (2014). Home location identifica-

tion of Twitter users. ACM Trans. Intell. Syst. Technol. 5, 47.

20. Li R., Wang S., Deng H., Wang R, and Chen-Chuan Chang K. Towards

Social User Profiling: Unified and Discriminative Influence Model for

Inferring Home Locations. In Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pa-

ges 1023–1031, New York, NY, USA, 2012. ACM.

21. Cho E., Myers S.A., and Leskovec J. Friendship and Mobility: User

Movement in Location-based Social Networks. In Proceedings of the

17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1082–1090, New York, NY, USA, 2011. ACM.

22. Monsivais, D., Ghosh, A., Bhattacharya, K., Dunbar, R.I.M., and Kaski, K.

(2017). Tracking urban human activity from mobile phone calling patterns.

PLoS Comput. Biol. 13, e1005824.

https://doi.org/10.1016/j.patter.2021.100204
https://doi.org/10.1016/j.patter.2021.100204
https://www.vodafone.co.uk/about-us/company-history/%20
http://tcrn.ch/2ywXGdy
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref3
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref3
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref3
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref4
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref4
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref4
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref5
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref5
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref5
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref6
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref6
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref6
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref6
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref6
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref7
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref7
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref7
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref8
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref8
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref8
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref9
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref9
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref9
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref10
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref10
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref10
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref10
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref11
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref11
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref11
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref11
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref12
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref12
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref12
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref13
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref13
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref13
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref14
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref14
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref14
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref15
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref15
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref18
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref18
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref18
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref18
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref18
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref18
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref19
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref19
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref22
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref22
http://refhub.elsevier.com/S2666-3899(21)00014-3/sref22


ll
OPEN ACCESSArticle
23. Monsivais, D., Bhattacharya, K., Ghosh, A., Dunbar, R.I.M., and Kaski, K.

(2017). Seasonal and geographical impact on human resting periods. Sci.

Rep. 7, 10717.

24. Kondor, D., Hashemian, B., de Montjoye, Y.-A., and Ratti, C. (2020).

Towards matching user mobility traces in large-scale datasets. In IEEE

Transactions on Big Data, 6, p. 1, 714-726.

25. Hasan S., Zhan X., and Ukkusuri S.V. Understanding Urban Human

Activity and Mobility Patterns Using Large-scale Location-based Data

from Online Social Media. In Proceedings of the 2Nd ACM SIGKDD

International Workshop on Urban Computing, UrbComp ’13, pages 6:1–

6:8, New York, NY, USA, 2013. ACM.

26. Ahas, R., Aasa, A., Silm, S., and Tiru, M. (2010). Daily rhythms of suburban

commuters’ movements in the Tallinn metropolitan area: case study with

mobile positioning data. Transport. Res. C Emerg. Tech. 18, 45–54.

27. Felbo, B., Sundsøy, P., Pentland, A., Lehmann, S., and de Montjoye, Y.-A.

(2017). Modeling the temporal nature of human behavior for demographics

prediction. In Machine learning and knowledge discovery in databases,

volume 10536 of lecture notes in computer science (Springer),

pp. 140–152.

28. de Montjoye, Y.-A., Quoidbach, J., Robic, F., and Pentland, A.S. (2013).

Predicting personality using novel mobile phone-based metrics. In

International conference on social computing, behavioral-cultural

modeling, and prediction (Springer), pp. 48–55.

29. Onnela, J.-P., Saram€aki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K.,
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