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Abstract: Additive manufacturing technologies offer important new manufacturing possibilities,
but its potential is so big that only with the support of other technologies can it really be exploited.
In that sense, parametric design and design optimization tools appear as two appropriate complements
for additive manufacturing. Synergies existing between these three technologies allow for integrated
approaches to the design of customized and optimized products. While additive manufacturing
makes it possible to materialize overly complex geometries, parametric design allows designs to be
adapted to custom characteristics and optimization helps to choose the best solution according to
the objectives. This work represents an application development of a previous work published in
Polymers which exposed the general structure, operation and opportunities of a methodology that
integrates these three technologies by using visual programming with Grasshopper. In this work,
the different stages of the methodology and the way in which each one modifies the final design
are exposed in detail, applying it to a case study: the design of a shoe heel for FDM—an interesting
example both from the perspectives of ergonomic and mass customization. Programming, operation
and results are exposed in detail showing the complexity, usefulness and potential of the methodology,
with the aim of helping other researchers to develop proposals in this line.

Keywords: additive manufacturing; optimization; parametric design; infill optimization; mass
customizing; biomechanics; FDM

1. Introduction

The opportunities and new possibilities offered by additive manufacturing are too wide to be
exploited or explored only from approaches focused on the manufacturing process. The paradigm shift
that these technologies allow is not only based on new manufacturing technologies and processes [1–4],
but on the possibility of proceeding with design in a different way [5], as well as proposing different
solutions from the traditional technologies for many products and designs.

The limitations of the manufacturing technologies available to materialize a product determine its
design. So, it would not make sense to have a set of new manufacturing technologies [6] which offer new
possibilities, and continue considering previous design solutions that are conditioned by the limitations
of other manufacturing technologies. It would mean obtaining the same result, but by using other
techniques and without taking advantage of their possibilities, since reducing the limitations caused by
new technology increases the ability of designers to offer new solutions previously impossible. Thus,
it is reasonable to think that the progressive introduction of additive manufacturing technologies in
the different productive sectors will mean the appearance of new design solutions to old problems

Polymers 2020, 12, 2119; doi:10.3390/polym12092119 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0001-5826-4904
https://orcid.org/0000-0002-1840-2505
https://orcid.org/0000-0003-3463-3255
http://www.mdpi.com/2073-4360/12/9/2119?type=check_update&version=1
http://dx.doi.org/10.3390/polym12092119
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 2119 2 of 30

in the coming years. In this context, it is necessary to explore new strategies to maximize capacity,
synergies and the integration of new technologies such as additive manufacturing, parametric design
and optimization, an objective to which the authors believe this work can contribute.

The high level of geometric freedom that additive manufacturing technologies allow [7]
significantly increases possible design solutions. In this context, parametric design and optimization
processes become very important [8].

Parametric design makes it possible to adapt a basic design to specific characteristics of use by
modifying the value of some parameters. These design tools can be applied in any field, but their
potential is especially significant in the case of products that must be adapted to the particular
characteristics of each user, an approach of high interest for mass customization strategies. Thus,
any product affected by ergonomic aspects can benefit from this type of approach. Commercial
applications [9–12] in markets such as fashion or customized purchases are examples of this potential,
but applications in the field of medicine can be of special relevance. More specifically, application of
the proposed methodology to the case study developed in this work is considered of interest to channel
the response to very different problems studied in the field of biomechanics, which could benefit
from design strategies that incorporate some degree of customization [13–15]. On the other hand,
when the number of feasible solutions that meet design objectives, such as lightweight parts, is high,
optimization processes become very important as tools to guide the choice of the most appropriate
solutions. These tools allow for the design and manufacture of optimized and customized lightweight
structures in different fields and devices, such as customized neck orthosis [16] or load-bearing
implants [17].

In any case, currently, additive manufacturing technologies also have some limitations.
The standardization of some processes and products is an example [18,19]. Also, the materialization
of the pieces itself presents some limitations, with special attention to the effects of process
parameters [20–27], a topic widely studied in the scientific literature.

This work presents part of the results obtained in the research developed in the first author’s
doctoral thesis [28]. Thus, the operation of a methodology designed to integrate additive manufacturing,
parametric design and optimization within a continuous workflow is shown. This approach allows
for obtaining optimized and custom designs to be manufactured using additive manufacturing.
The structure of the methodology, its main parts and its operating logic have been studied in previous
works [28,29]. However, the complexity and extension of the visual programming developed with
Grasshoppers [30] requires a detailed exposition focused on the description of the coded parametric
design and the way to connect them to link the sequence of operations and plug-ins [31] that define the
final design. In this work, the application of the proposed methodology to a practical case allows for a
better understanding of particular aspects, since the structure of the associated programming and the
successive results obtained throughout the phases of the methodology are shown step by step.

The development of this work seeks to illustrate the potential and utility that the methodology
can have in different fields, as well as to explain why the choice of the practical case was very
thoughtful. In this way, a shoe heel was selected as a case study due to its simplicity, the need to
meet clear mechanical requirements, the interest of part lightening through topology optimization and
the need to adapt the design to the particular characteristics of each user. This last aspect is relevant
because it makes it a good example for the implementation of the methodology in mass customization
strategies [32], and it is an approach with which the authors are working [28,33].

The optimization strategy proposed in this work pays special attention to the optimization of the
filling. The ability to define infill structures against the solid parts of traditional designs represents
one of the most interesting advantages that additive manufacturing technologies offer. In this sense,
the topology optimization of these structures in a heterogeneous way throughout the piece represents
one of the main objectives of this study, allowing us to adapt the infill design to different load cases
applied to the piece [34].
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The step-by-step explanation of the operation of each part of the methodology and the effects that
each part of its programming causes, is considered interesting and useful for the development of other
similar design strategies in the future. The abundant graphic information that accompanies the work
is also considered very useful since it illustrates the structure of the visual programming developed
and the effects of its different parts throughout the design optimization process, a difficult task without
directly using the software.

2. Materials and Methods

The methodology’s objective is to design optimized lightweight parts while ensuring a good
mechanical behaviour in a continuous workflow in order to be compatible with mass customization
strategies. The lightening of the pieces is achieved by a topology optimization, a further structural
optimization of its lattice infill and its wireframed shell, and finally, by a multi-objective optimization
of the assembly in a continuous workflow. The continuous workflow allows the methodology to
establish any part of the parametric design as a variable or objective in a continuous data flow in order
to automatically generate the most suitable solutions without redefining the model in intermediate
phases [29].

The proposed methodology is applied to the design of a shoe heel for a specific individual under a
mass customization strategy. In this case, the most suitable methodological approach is the continuous
methodology [29] since few variables are involved in the optimization problem and can be easily
delimited in a single algorithm. On the other hand, the objective of the present work is to generate an
optimized design that unifies infill and shell in a unique lattice structure of variable density, so it is not
convenient to break the problem down into parts, but it is interesting to consider all the possibilities in
the same iteration and in the same optimization problem.

2.1. Initial Design Considerations

The case study focuses on urban footwear—specifically, on its heel. No distinction is made as
to whether there is a male or female user, since their morphological differences consist of the size of
the foot and the weight of the person, as well as their loads’ distribution. This information can be
considered in a personalized way with the scanning of the user’s feet and with the user’s gait analysis.

For the design of the last and the heel, the user’s foot, as well as its biomechanics are considered.
Its scientific bases and recommendations, along with the size of the feet are considered.

2.1.1. Biomechanical Considerations and Gait Analysis

Several phases are distinguished in the gait cycle [35,36], so in order to determine the loads to be
supported by the shoe heel, the load distribution values of the hindfoot in the dynamic state of the gait
analysis provided by the user are taken, since it is in the single support phase of the gait cycle when all
the user’s weight falls on one foot and therefore the most adverse load case occurs.

In the proposed case study, the right foot heel is designed. However, the methodology is
applicable to both feet in the same way, only the load, the supports and the 3D model of the scanned
foot vary but when they are introduced into the design problem, the optimized design of the heel is
automatically updated.

The load values distributions are compared to those theorical values given by the gait analysis
shown in Table 1 and then a correction factor is calculated and applied. Furthermore, the deviation of
the body load distribution between the forefoot and the hindfoot according to the heel height is also
calculated, considering the values provided by Witana et al. [37]. In such a way that, based on the heel
height, the individual’s weight, in this case 77 kg, is distributed between the forefoot and the hindfoot
with its correspondent correction factor. On the other hand, to determine the support surface of the
foot, the bitmap images of the report of the static analysis are taken, as well as its pressure distribution
as it represents its broadest state.
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Table 1. Dynamic state load distribution values obtained with a gait analysis. [38].

Description Values Normal Tolerance

Left forefoot load distribution 66% 60% ±3%
Left rear foot load distribution 34% 40% ±3%
Right forefoot load distribution 69% 60% ±3%
Right rear foot load distribution 31% 40% ±3%

2.1.2. Design Criteria for the Last and Heel from a Scanned Foot Model

The anthropometric foot measurements and its morphology are essential for the design of a shoe
last; however, it is also necessary to consider biomechanical aspects and functional corrections for
specific footwear aesthetics. In this sense, a scan of the foot in a static position with all the weight on it
is done to get the maximum widths and ensure that the foot last is not narrower than the foot in any
phase of the gait cycle and so that there is consistency with the visualization of the results of the static
analysis of the tread of the report provided.

The most relevant aspects to consider in the design of the last’s seat are describes below and
illustrated in Figure 1.

• Firstly, the head of the first and fifth metatarsals, which defines the width of the forefoot.
This measure is critical for the adjustment of the footwear and in the terminal stance and
pre-swing, the entire body rests in this place adopting its maximum width, which must be
respected in the shape of the last.

• On the other hand, with regards to the heel, it is convenient that the individual’s weight rests on
the shoe heel’s contact surface centre of gravity. Furthermore, it is highly recommended that the
foot heel rests on a surface oriented with an angle whose value depends on the heel height, thus,
the higher de heel height the greater de angle. Moreover, the heel height is considered without
the sole, since it is also in the forepart, so only the difference in heights, between the horizontal
and the support of the heel, is considered.

• Finally, the waist curve must be respected and adapted as far as possible to the curvature of
the foot.
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Figure 1. (a) Display of the gait analysis results [38]; (b) Scanned model of the foot at rest; (c) Outline
of the most relevant aspects to consider in the design of the shoe last.

Regarding the design of the shoe heel, a series of design variables, shown in Figure 2, are established
in addition to its height, and they modify its shape as it is generated from a parametric design.

• Firstly, the shoe heel seat starting design point is determined as a variable. It can be taken from
the waist at any point, without exceeding the foot seat in any case.

• Secondly, another design variable is the curvature that the heel adopts in its shape. Even when
it starts from the same point it can take different shapes depending on the tangencies that are
established from the initial and final point.
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• Finally, the heel support surface is considered as a variable. From the foot heel’s support surface
taken from the gait analysis an equidistance of its boundary is generated in order to create different
heel designs while maintaining its centre of gravity.
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Figure 2. (a) Diagram of possible design variations when modifying the starting point of the heel;
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possible design variations when modifying the heel support surface.

2.2. Initial Technological Considerations

In addition to considering specific aspects of the product and its design, it is necessary to
consider aspects related to the technologies used in the process of optimizing the design and its
subsequent manufacturing.

The proposed methodology and the programming structure designed are applicable to any additive
manufacturing technology [28,29]. The sections and subsections defined through the programming
face design problems that are approachable from the different additive manufacturing technologies,
thanks to their common layer-by-layer forming strategy and the geometric freedom that this provides.
However, it is necessary to consider aspects of influence and which are specific to each particular
technology, and incorporate those aspects, and the values associated with them, into the methodology
as input information. In this work, FDM was the selected manufacturing technology and Grasshopper
was the selected coding language for the programming structure of the methodology proposed [39].

2.2.1. Selection and Characterization of the 3D Printing Material

For the application of the methodology to the optimized design of a heel, ABS filament is taken
due to its extensive use in FDM technologies. It is difficult to characterize the anisotropic properties of
the material once printed. However, there are several experimental studies that attempt to offer values
for the characterization of the mechanical properties of 3D printed ABS such as Cantrell’s study [40]
from which most of the values for the characterization of the ABS are taken. Further experimental work
has also been developed in previous works in order to characterize the density of printed parts [18,28].

2.2.2. Selection of the Infill Structure Design

Regarding the selection of the infill structure design, an open cellular structure is chosen in order
to be able to remove any needed support material [41]. Furthermore, a lattice structure is defined
due its stiffness [42] and an octet-truss unit cell design is taken as a starting point where only the
linear elements at 45◦ are considered so that the structure is less conditioned by the printing direction,
as shown in Figure 3. Further studies are developed in previous works to determine the dimensional
tolerance to be applied on the nominal diameter of each bar [28]. Moreover, a uniform repetition
pattern is defined throughout the heel’s infill and a size optimization is done to each bar of the lattice
structure [43].
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2.2.3. Selection of the Coding Tools Used

The methodology is developed in Grasshopper programming language. Grasshopper is a visual
coding application integrated in Rhinoceros (Robert McNeel and Associates, Seattle, WA, USA).
The most appropriate plug-ins, shown in Table 2, are introduced, and applied in the methodology as
helpful frameworks and algorithms for specific tasks. Furthermore, another coding language is also
used in order to be able to code not only in the visual programming language of Grasshopper but also
in the written programming language of Python.

Table 2. Selected plug-ins applied in the proposed methodology.

FEA Topology
Optimization

Multi-Objective
Optimization Lattice Infill Loop

Karamba Millipede Octopus Crystallon Anemone
Intralattice

2.3. Workflow

The workflow developed for the application of the methodology to the proposed case study is
described below. The problem is divided into 6 sections and subsections in order to delve into the
programming of the methodology. The programming structure definition of the proposed methodology
for the case study developed with Grasshopper is shown in Figure 4. Firstly, the initial boundary of the
heel is designed from a parametric approach. The geometric boundary is then topologically optimized
and this final boundary is taken as a starting point for the shell and infill design of the piece. Finally,
the shell and infill lattice structures are optimized from different approaches, first a size optimization
and at last a multi-objective optimization that involves parameters from every part of the problem.
The process and the result of each programming part is illustrated for a better understanding of the
methodology’s workflow.

2.3.1. Section A: The Parametric Design of the Initial Heel Volume

An initial heel volume is performed from a programmed parametric design structure. A series
of variables configured from a range of viable values are involved in the design problem in order to
be able to produce automatic alternative designs. On the other hand, those values and aspects that
are given by the biomechanical determinations and from the anatomical and the gait analysis of the
individual are considered constants.

The programming structure for the development of the parametric design of the initial volume of
the heel consists of 4 parts illustrated in Figure 5 that take as a starting point the scanned model of the
user’s foot, as well as the user’s gait study. In this way, referring the exposition to the alphanumeric
designation of each part, the structure of each one, and of its subparts, is graphically illustrated and
the fundamental aspects for its understanding are exposed.
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The initial parametric design that defines de heel volume consist of 4 different subsections.
Each one develops a different part involved in the design of the final heel volume.

In section A.1. the design of the last’s insole takes the scanned model of the individual as a
starting point and its programming structure consists of 3 other parts illustrated in Figure 5. Firstly,
in section A.1.1. a section of the scanned foot 3D model is done by a plane defined by the two most
prominent points of the foot: the heel and the toe, as Figure 6 shows.Polymers 2020, 12, x FOR PEER REVIEW 9 of 31 

 

 

Figure 6. Programming structure definition to generate the section of the scanned foot model. 

From the previous step, in section A.1.2. the sole of the last without margins is designed by 
taking the previous curve divided into 100 sections and obtaining the closest segment’s points to the 
little finger, the thumb, and the first and fifth metatarsus as well as the most prominent finger. From 
these points curve is made to wrap around the sole of the foot without any gap. Figure 7 illustrates 
the coding developed as well as its results.   

 

Figure 7. Programming structure definition to generate the sole of the last without gap. 

Figure 6. Programming structure definition to generate the section of the scanned foot model.

From the previous step, in section A.1.2. the sole of the last without margins is designed by taking
the previous curve divided into 100 sections and obtaining the closest segment’s points to the little
finger, the thumb, and the first and fifth metatarsus as well as the most prominent finger. From these
points curve is made to wrap around the sole of the foot without any gap. Figure 7 illustrates the
coding developed as well as its results.

Comfort margins of 15 mm are provided to the previous curve at 3 different points of the forefoot
in section A.1.3., as shown in Figure 8. Although the margins are not given in a uniform way, a 25% is
applied to the end of the little finger and 50% to the end of the thumb.

In section A.2. the heel design programming structure can be broken as well down into 5 parts,
as it is illustrated in Figure 5. Firstly, in section A.2.1 the length of the waist and seat of the foot,
which includes the midfoot and the heel, is calculated. It is found from the intersection between the
longitudinal axis of the shoe last bottom and the line of the metatarsals, where the foot is flexed and
where the weight in the swing phase of the gait cycle is supported, towards the back point of the last
bottom. The visual programming of this step is shown in Figure 9.

Furthermore, in section A.2.2. shown in Figure 10, the waist and seat profile are determined from
the support point of the metatarsals depending on the height of the heel, simulating the process of a
step. From the seat height the most suitable heel seat angle is determined for the chosen heel height,
through a script programmed with Python and integrated in Grasshopper with Gh Python Script,
and it is applied to the profile.
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Figure 9. Programming structure definition to determine the length of waist and seat of the foot. 

Furthermore, in section A.2.2. shown in Figure 10, the waist and seat profile are determined from 
the support point of the metatarsals depending on the height of the heel, simulating the process of a 
step. From the seat height the most suitable heel seat angle is determined for the chosen heel height, 
through a script programmed with Python and integrated in Grasshopper with Gh Python Script, 
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Figure 10. Programming structure definition to determine the heel height and its most suitable seat angle.

Once the heel height and the forefoot support point have been determined, in section A.2.3.
illustrated in Figure 11, the midfoot curve is developed, which should adjust as closely as possible to
the shape of the foot. In order to shape the curvature as accurately as possible, the tangent vectors are
taken at the point of the metatarsals and at the beginning of the last seat.

Moreover, in section A.2.4., the waist curve blends with the last seat profile taking the same angle
as the defined for its corresponding heel hight, as shown in Figure 12. In order not to restrict a priori
the variety of possible design versions and optimize the geometry taking all the possibilities, the heel
profile is left wedge-shaped. Different heel shapes are introduced as a variable to be optimized from
the multi-objective algorithm, as described before, it depends on the starting point of the heel profile
from the waist curve.

Finally, in section A.2.5., the final volume of the designed heel is defined from the Boolean
difference between the extruded heel profile and the extruded sole of the last, each extrusion developed
from perpendicular vectors to each other. The visual programming definition of section A.2.5 is shown
in Figure 13.
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On the other hand, in section A.3., from the study of the user’s gait analysis, the heel seat is
determined. The Grasshopper definition of the seat can be broken down into 3 parts as illustrated in
Figure 5. Firstly, to determine the foot support area, in section A.3.1. illustrated in Figure 14, the image
from the gait analysis is imported and from it the blue channel is extracted. A surface of the same size,
proportion and location as the study image is decomposed in matrix of points. Each point analyses the
colour component and an array of values is obtained, these values are then remapped in order to have
control over the intermediate colour values so it is possible to take maximum pressure points or any
point of foot support.Polymers 2020, 12, x FOR PEER REVIEW 13 of 31 
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individual's scanned foot, as shown in Figure 16. 

Figure 14. Programming structure definition developed to determine the support points of the foot
from the gait analysis.

In section A.3.2. the matrix of pressure points is then decomposed to take only those of the heel and
from the externally located points a contour curve is generated that will define the geometric support
of the shoe heel maintaining the same centre of gravity as the foot heel, following the indications of the
Institute of Biomechanics of Valencia. In order to offer greater flexibility in the aesthetic characteristics
of the design and to be able to offer thin or thick heels, an equidistance value is established for this
contour curve, in such a way that it will always exist a correspondence in proportion and location with
the foot heel, as well as the same centre of gravity. This step is illustrated in Figure 15.
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Figure 15. Programming structure definition developed to determine the support of the heel from the
gait analysis.

At last, in section A.3.3., the study carried out in section A.3.2 is translated to the location of
the scanned foot model, matching the footprint from the gait analysis to the virtual model of the
individual’s scanned foot, as shown in Figure 16.
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Figure 16. Programming structure definition developed to move the heel support to the location of the
scanned model.

Once the general volume of the wedge-shaped heel has been generated, in section A.4., the shape
where the foot rests on is determined as shown in Figure 17. This geometry is taken as a premise in the
Finite Element Analyses to determine the load locations in order to develop successive optimizations.
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Figure 17. Programming structure definition developed to generate the foot seat on the volume of the
designed heel.

2.3.2. Section B: Topology Optimization

Once the initial heel volume is generated, as well as the support of the heel from the parametric
model, the topology optimization is done. The material is this way distributed in the most efficient
way, attending to the load case determined by the gait analysis as well as by the biomechanical
considerations. Millipede is used, it is a structural analysis and optimization plug-in that includes a
Solid Isotropic Material with Penalization method (SIMP) algorithm for topology optimization.

In the data structure developed for the topology optimization of the case study piece, 4 parts of
the process can be distinguished, which are illustrated in Figure 18.
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the foot seat shape developed in section A.4. The value of the load exerted on the heel of the right 
foot in the cycle of the step in which the whole individual’s weight rests on this foot is determined 
before with the biomechanical considerations and tread study. Consideration is given both to the 
distribution of the user’s weight in the most unfavourable case; this is in the single support gait cycle’s 
phase, and to the distribution of the weight between the forefoot and rearfoot with different heel 
heights. Both cases are calculated using integrated scripts in Grasshopper, either with mathematical 
expressions or with conditional structures programmed in Python. 

Figure 18. Programming structure definition developed for the topology optimization of the heel.

In section B.1., shown in Figure 19, the boundary and loading conditions are established. It is
necessary to determine the location and value of the loads, the area of high material density, the starting
volume, the location and type of supports and, finally, the mechanical properties of the material to
be used.
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Figure 19. Programming structure definition developed for the boundary and load conditions for the
topology optimization of the heel.

The location of the foot heel load on the initial heel volume is determined in section B.1.1. from the
foot seat shape developed in section A.4. The value of the load exerted on the heel of the right foot in
the cycle of the step in which the whole individual’s weight rests on this foot is determined before with
the biomechanical considerations and tread study. Consideration is given both to the distribution of
the user’s weight in the most unfavourable case; this is in the single support gait cycle’s phase, and to
the distribution of the weight between the forefoot and rearfoot with different heel heights. Both cases
are calculated using integrated scripts in Grasshopper, either with mathematical expressions or with
conditional structures programmed in Python.
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From the data obtained from the gait analysis and the values provided by Witana et al. [37],
the load to be applied to the heel is obtained. These values are obtained using the programming
structure shown in Figure 20 from the calculations previously explained.
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Figure 20. Programming structure for the calculation of the load distribution in the right hindfoot.

It is necessary to define the boundary volume with a fixed density region in the footwear design
to be able to assemble the heel with the other pieces. In this case, it is established in section B.1.2. as a
condition to maintain the density of the seat geometry of the backpart developed in the initial heel
volume design in section A.4. The boundary region is determined in section B.1.3. from the initial
heel volume design to define the domain of the topology problem with the Millipede topological
optimization algorithm. Fixed supports are defined in section B.1.4. as the support of the heel and its
location are determined with the geometry generated in section A.3. from the individual’s gait analysis
previously explained. The characteristic values of the material are introduced into the function in
section B.1.5.

The Finite Element Model (FEM) is determined in section B.2. by introducing the resolution of
the discrete meshed model as a variable. Depending on the entered value, a result will be achieved
in greater or lesser detail. However, for greater detail, greater consumption of computer resources is
needed. Therefore, it is necessary to find a balance between the detail to be obtained and the resources
required, since this process, added to all of the data flow of the methodology, will be repeated a high
number of times in the form of iterations to determine the most optimal result from the multi-objective
optimization algorithm. In the case study developed for this work, low resolution values have been
taken in order to reduce the resources needed, since the objective is not to develop a commercial piece
but to check the feasibility of the methodology.

The inputs of Millipede’s topological optimization algorithm such as the number of iterations,
the target density or the penalty factor are introduced in section B.3. as constants to simplify the
process and not consume more computing resources. The programming structure definition of the
discrete model for the FEA is shown in Figure 21.
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2.3.3. Section C: Shell Design 

Based on the resultant mesh from the topology optimization algorithm, the design of the heel’s 
shell is defined as shown in Figure 23. In order to continue to lighten the piece, a wireframe structure 
with variable bar sections is selected to work collaboratively with the lattice infill structure. The 
lengths of the bars are adjusted to the size of the unit cell of the infill, establishing a mathematical 
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variable in the multi-objective optimization algorithm to find the best surface design for the proposed 
case study. 

Figure 21. B.2. Programming structure definition of the discrete model for Finite Element Analysis
(FEA) developed within the topology optimization algorithm. B.3. Millipede’s topology optimization
algorithm and the introduced constants as inputs.

Finally, in section B.4., the resulting mesh from the topology optimization is generated. The iso
contour input value is entered as a constant; however, this value could be defined as a variable instead,
since different values generate different geometries as illustrated in Figure 22. The resulting volume
percentage with respect to the initial volume is then determined to be able to calculate the volume
reduction produced by the topology optimization algorithm.
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Figure 22. Programming structure definition of the resulting mesh from the topology optimization and
its resulting volume percentage with respect to the initial volume.

2.3.3. Section C: Shell Design

Based on the resultant mesh from the topology optimization algorithm, the design of the heel’s
shell is defined as shown in Figure 23. In order to continue to lighten the piece, a wireframe structure
with variable bar sections is selected to work collaboratively with the lattice infill structure. The lengths
of the bars are adjusted to the size of the unit cell of the infill, establishing a mathematical relationship
to reduce or enlarge them proportionally according to a scale factor. This is defined as a variable in the
multi-objective optimization algorithm to find the best surface design for the proposed case study.
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2.3.4. Section D: Infill Design

On the other hand, and based on the mesh solution generated by the topology optimization
algorithm, the lattice infill design is defined. In the programming structure definition of the heel infill,
2 parts of the process can be distinguished and are illustrated in Figure 24.
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Figure 24. Programming structure definition of the infill geometry.

Firstly, in section D.1., the unit cell design is defined as illustrated in Figure 25; a design similar
to that of the octet-truss is chosen, although only the bars at 45◦ are taken and those that have other
orientations are disregarded. Mathematical relationships are established between the coordinates of
the points that define the endpoints of the linear elements so that the value of the unit cell size can be
taken as the variable to be optimized.
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optimization of the lattice structure of the infill and shell can be conceptually decomposed.  

Figure 25. Programming structure definition of the infill unit cell and its visualization in the
Rhinoceros interface.

Once the unit cell has been defined, in section D.2., it is repeated throughout the part according
to the universal coordinate system and in a uniform and constant way as shown in Figure 26.
The Intralattice plug-in algorithm [44] performs repetition and trims the linear elements that protrude
from the part, while the Crystallon [45] algorithm performs the translation of the infill nodes of the
elements that were cut by the surface contour and then moves to the location of the closest wireframe
shell nodes. The maximum distance to be considered is restricted so that it only affects the closest
shell nodes. Finally, to avoid duplicate elements or inconsistencies at node locations, a clean function
is applied.
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2.3.5. Section E: Infill and Shell Optimization

A structural size optimization is developed, both of the wireframe shell and of the infill together
since the structure works unitarily against the heel load conditions. Therefore, a lattice structure
of variable density is automatically generated according to the bar stresses for the given load case.
Figure 27 shows the different parts into which the programming structure definition of the structural
optimization of the lattice structure of the infill and shell can be conceptually decomposed.
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Figure 29 illustrates the different parts of the programming structure definition of the FEA 
carried out with the Karamba 3D plug-in [46] in section E.2. It illustrates the different parts defined 
by previous geometries and the values calculated for load and material characterization that are used 
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Figure 27. Programming structure definition of the structural optimization of heel lattice infill and
wireframe shell.

The programming of a loop that iterates over the programming structures of sections E.2 and E.3 is
developed in section E.1. and illustrated in Figure 28 in order to optimize the cellular structure in each
roaming. Each iteration checks one by one, and through a matrix of values, if each bar mechanically
resists the efforts to which it is subjected or not. In the case of compliance, it maintains its section,
initially defined as the minimum the additive fabrication technology can manufacture, and in the case
of non-compliance, it increases its section. A loop escape sequence is created to stop the iterations.
A comparison and a conditional structure determines whether the normal forces of each bar exceeds
the elastic limit of the material, even considering a safety factor.
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Figure 28. Programming structure definition for the generation of the structural optimization loop of
the heel infill and shell.

Figure 29 illustrates the different parts of the programming structure definition of the FEA carried
out with the Karamba 3D plug-in [46] in section E.2. It illustrates the different parts defined by previous
geometries and the values calculated for load and material characterization that are used as inputs
to the load case for the FEA algorithm; therefore, no further zooms are made to the programming
structure, as it is considered unnecessary for explanation of programming. The structural analysis is
done for the lattice structure formed by infill and shell elements weld together in a unique structure.
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Figure 29. Programming structure definition developed for the FEA of the lattice structure of the heel
infill and shell.

Firstly, in section E.2.1., the structural elements generated for the wireframe shell and those
generated for the infill are joined in a unitary structure to be analyzed. Secondly, in section E.2.2.,
loads are configured, both their location and their value. In the first place, the position of the nodes
that are included in the volume occupied by the geometry generated in section A.4 is determined.
The coordinates of those points located in the same position as the foot seat on the heel are taken,
as well as the load values considered for the topology optimization load case. On the other hand,
the point supports of the heel are defined in section E.2.3., both their location and mobility restrictions.
Those nodes in contact with the horizontal plane are taken, dispatching those whose z coordinates are
greater than 0, with an error margin of 0.005 mm. On the other hand, the degrees of freedom of the
fixed supports are defined.

The section of the bars of solid circular cross section is defined in section E.2.4. with the minimum
diameter that the additive technology to be used—in this case FDM—admits, this is 1 mm as a starting
point. It is defined independently for each bar by a matrix definition in order to be able to individually
modify the dimension of each section depending on the needs. Besides, the material to be used is
characterized in section E.2.5. with the same mechanical properties that were established for the
topology optimization. Furthermore, the elements described in sections E.2.1., E.2.2., E.2.3., E.2.4 and
E.2.5 are introduced in section E.2.6. as inputs to generate the FEM and then perform the FEA with the
algorithm from the Karamba plug-in. The plug-in returns the numerical results of the stresses and
moments to which the bars are subjected. Therefore, the results of the normals of each bar are extracted
individually in section E.2.7. to analyze one by one whether or not they exceed the elastic limit of the
material with a certain safety coefficient.

In section E.3., illustrated in Figure 30, the resizing of the structure is carried out evaluating
whether or not each bar exceeds the elastic limit, based on the values of the normals derived from
the FEA. Next, a conditional programming structure is established, and finally, radius values for the
sections are reassigned if necessary.
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Figure 30. Programming structure for assigning the sections to the lattice structure.

Firstly, in section E.3.1. represented in Figure 31, all values are taken in absolute value so as not
to differentiate between the bars subjected to tension or compression. A distinction could have been
made between both; as shown in Figure 32, the determination was made to take the elastic limit of the
material from the most unfavorable situation that is of tension and apply it to the entire structure for
greater rigidity of the structure.
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Figure 32. Visualization of the results of the FEA. (a) Bars subjected to compression; (b) Bars subjected
to tension; (c) the whole of the structure with colour differentiation between the bars subjected to
tension and compression.

Moreover, in section E.3.2. it is verified that the tension to which each bar is subjected, considering
a safety coefficient of 1.05, does not exceed the elastic limit of the material by performing the following
calculation for each bar:

ƒy ≥ (N · γ)/πr2 (1)

where the tension to which each bar is subjected with a safety coefficient is represented by ƒy, ABS elastic
limit by N, the value of the normal of each bar represented by γ is the safety coefficient of 1.05 and r
represents the circular cross section radius for the bar.
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A comparison and conditional structure are defined as shown in Figure 33; if the calculated value
is less than the elastic limit of the material, a value of 0.2 mm would be added to the radius of the
circular cross section of the bar. This process, together with the FEA, would be repeated as many times
as necessary so that all the elements meet the requirement of having a lower value than the elastic limit
of the material, thus ensuring the rigidity of the piece.
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it takes as objectives data obtained in different parts of the process: the volume of the topologically 
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Figure 33. Programming structure definition of the comparison and conditional sequence to check the
stiffness of the bars and resizing the bars in the event of being below the elastic limit.

Consequently, in section E.3.3. that is represented in Figure 34, the sections of the bars would
gradually increase until every element of the structure resists the established load case. Therefore,
the structure consists of a variable density lattice structure with a minimum cross section diameter
of 1 mm.
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Figure 34. (a) Programming structure definition of diameter assignment to the circular cross sections
of the structure bars calculated in step E.3.2. (b) Preview of the lattice structure result in the
Rhinoceros interface.

2.3.6. Section F: Multi-Objective Optimization of the Heel Design

The methodology is applied to the case study of the heel design with a continuous methodological
approach; this is with a single multi-objective optimization algorithm at the end of the workflow,
and after the lattice infill and shell optimization, as well as the topology optimization.

The optimization problem takes variables from different parts of the methodology data flow:
from the starting heel volume design, the unit cell design of the infill and the shell design. Likewise,
it takes as objectives data obtained in different parts of the process: the volume of the topologically
optimized part, the volume of the lattice structure of the infill and the shell weld together into a
single structure and the normal stresses of the bars. The programming structure definition of the
multi-objective optimization problem to be solved in Octopus is illustrated in Figure 35.
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Figure 35. Programming structure definition to define the multi-objective optimization problem to be
solved with the Octopus plug-in algorithm.

On the one hand, in section F.1., the variables that take different values in the iterations produced by
the multi-objective optimization algorithm are the following, and the location within the programming
structure definition of the methodology for the case study is represented in Figure 36.

• V1—The advance of the heel in the waist path from the evaluation of the curve according to a
range of values in which the value 0 corresponds to the beginning of the curve and the value 1
corresponds to the end.

• V2—The heel support surface defined as the equidistance to the heel seat surface extracted from
the gait analysis of the individual described in section A.3.2.

• V3—The infill’s unit cell size where the three axes have their dimensions restricted to be equal
values, introduced in section D.1.

• V4—The maximum length of the wireframe shell bars defined from a mathematical relationship
with the unit cell size of the fill from a scale factor, its introduction is described in section C.
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The defined variables take a number of finite values within a range of predefined boolean and
float numbers that act as constraints in the search for feasible solutions.
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• The infill cell size varies from 5 mm to 15 mm with an increase of 1 mm in its three axes alike.
• The advance of the heel design along the waist curve varies from 0 to 100% with an increase

of 0.01%, where 0% corresponds to a wedge as it starts from the beginning of the waist path,
and 100% corresponds to a narrow heel as it starts from the end of the waist path, next to the
heel seat.

• The width of the heel determined by the offset value from the contour curve of the heel support
surface extracted from the gait analysis. It takes varies from a negative value of 25 mm to a
positive value of 25 mm with a step of 0.001 mm.

• The size of the wireframe shell bars, determined by a scale factor with respect to the infill’s unit
cell size that configures the infill. This scale factor varies in a range of values from 0.5 to 2 with a
step of 0.1.

The constraints established through the listed values are determined by biomechanical design
criteria, as well as by size limitations of the manufacturing technology considered.

On the other hand, the defined objectives are defined in section F.2. and its location within the
programming structure definition of the methodology for the case study is represented in Figure 37.

• O1—Minimize the percentage of volume of the result from the topology optimization with respect
to the starting volume of the initial heel volume design.

• O2—Minimize the maximum normal stress of the lattice structure bars from the optimized
structure conformed by the infill and the shell.

• O3—Minimize the volume of the optimized lattice structure conformed by the infill and the shell.
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For the multi-objective optimization within the continuous methodology, the plug-in Octopus
is used in section F.3. Octopus incorporates a multi-objective optimization evolutionary algorithm
based on Pareto. These algorithms perform iterations modifying the values of the variables to obtain
different solutions and thus generate populations. Each population of solutions is analyzed based on
its achieved objectives, and identifies those located on the Pareto Front to simplify the search for the
designer [47].

In Octopus plug-in various algorithms are available and for the resolution of the problem,
the evolutionary algorithm SPEA-2 of Zitzler was chosen [48]. It is possible to guide the search for
solutions by approaching the new generations generated to a selected individual solution, in such a
way that the successive solutions will approach the objectives set in said selection.

The Octopus interface allows for the results to be visualized so that the designer can assess the
results in a more intuitive way to be able to intervene and guide the search with greater criteria.
This allows the morphology of the design to be visualized, as well as the values of the objectives
achieved by each solution.

The interaction of the designer or analyst in the iterative process of searching for optimal solutions
is possible by directing the search from the visualization of geometric results, variables and objectives.
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Moreover, it is also possible because of the generation of solutions from a continuous data flow in
the methodology.

A resultant mesh is generated in section F.4. from the chosen element of the Pareto ready to export
to a compatible format for an additive manufacture technology; FDM in this case. The selection of the
final optimized design and the criteria considered are exposed below.

3. Results and Discussion

As a result of the application of the methodology to the selected case study where topology, size and
multi-objective optimizations are simultaneously developed in a continuous workflow, 10 generations
of a population size of 180 solutions are obtained. Those solutions that are located on the Pareto front
are displayed in Octopus interface. From them, 6 solutions that are considered a priori most suitable
are selected considering not only the objectives achieved, but also aesthetic aspects of design and their
objectives are compared. The variables from which each of the solutions start are also collected to
assess the most appropriate solution.

Figure 38 shows, in addition to the selection of the 6 solutions to be analyzed, the last population
generated with the Pareto optima highlighted with an opacity of 100%. All of them are within the
feasible region since in the definition of the problem the values of the variables were restricted to those
possible for the manufacturing technology to be used. The mutation of the variables of the solutions
achieved is also visualized in the parameter graph. Table 3 shows the infill and shell lattice structure of
the generated heel, as well as their variables values and the achieved objectives. These values where
extracted from the Octopus interface and from the recorded history of the iterations.

The objectives achieved by each of the solutions are compared in order to select the most suitable
one, as shown in Figure 39. On the one hand, solution 4 achieves the lowest values of volume
for the topology optimized geometry and material quantity for the final lattice structure solution.
However, it achieves the highest value of normal maximum stress in its cellular structure. On the
other hand, solution number 5 achieves the lowest value of maximum effort in the bars of its structure,
although with the highest value of general volume.
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Table 3. Multi-objective optimization solutions with its variable values and achieved objectives.
V1—Heel advance in the waist path (range from 0 to 1), V2—Offset value for the boundary of the
heel support surface (mm), V3—lattice infill unit cell size (mm), V4—scale factor for the length of the
wireframe shell elements, O1—Volume of the topology optimized geometry with respect to the initial
heel volume design (%), O2—Maximum normal stress of the lattice structure (KN), O3—Final volume
of the lattice structure (m3).

Solution Variables Objectives Solution Variables Objectives
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Solution 4 has been selected as the most suitable since despite having a greater maximum normal
force, and after the size optimization, it still has the smallest volume of the 6 compared solutions,
which would mean material savings. On the other hand, since it has a lower general volume, it would
also entail a lower cost since it would occupy a lower volume in the printer in order to manufacture
together with other parts.

The diameters applied to the bars of solution number 4 in order to be able to resist all efforts are
as follows: 1 mm, 1.4 mm, 1.8 mm, 2.2 mm and 2.6 mm. However, very few bars need to be resized
into diameters above 1.4 mm as showed in Figure 40.
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The increase of the diameter section applied to the bars is carried out gradually. In Figure 41 the
variable density infill and shell lattice structure is represented.
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Figure 41. (a) Detail of the variable density lattice structure. (b) Visualization of the 3D model of
solution number 4.

The result of the adopted solution number 4 is shown in Figure 41, where the heel rests on the
boundary volume of fixed density defined from the topology optimization defined by a reduction of
20.31 mm from the foot heel seat extracted from the gait analysis. The initial volume design of the heel
does not cover the entire waist curve profile, but starts from practically half to 42% of the path. Finally,
in regard to the infill and shell size, solution 4 adopts a lattice infill unit cell size of 11mm in all its axes
and the wireframe shell elements take a larger value where a factor of 1.6 scale is applied.

4. Conclusions

The application of the proposed methodology to the developed case study offers design results
that are considered of interest and utility. A topologically optimized heel geometry has been obtained,
but in addition, the infill and shell of the piece has also been optimized in the same process, adapting it
to local forces in a non-continuous way throughout the piece. In this way, the methodology generates
as a result a cellular structure that extends along the optimized geometry of the part which is composed
of an open cellular infill structure and a wireframe shell. This structure is the result of a multi-objective
optimization process and presents variable bar diameters throughout the part according to the existing
stresses in each area of the part. The multi-objective optimization problem has been raised without
formal restrictions and considering variables prior to topology optimization, which allows for avoiding
a preconception of the design that can lead to less optimal solutions.

This approach is considered applicable to many other contexts. Other designs that require a
certain degree of customization to adapt ergonomic aspects to the characteristics of the final user are
good examples in which the application of this methodology can be useful. Biomechanical applications
are therefore one of the lines of work that the authors want to explore in future developments derived
from this work. But the application of the methodology is also operative as a support for the design
of products of other types whose topology optimization needs to be addressed considering different
objectives and acting on different variables. The optimization of structural parts or furniture would be
examples of this.

The step-by-step explanation of the methodology, the level of detail and the graphic support of the
work are considered useful as a reference for other researchers who are working on design strategies
with approaches similar to that of this study.
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