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Abstract

The idea that external rhythms synchronize attention cross-modally has attracted much interest and scientific inquiry. Yet,
whether associated attentional modulations are indeed rhythmical in that they spring from and map onto an underlying
meter has not been clearly established. Here we tested this idea while addressing the shortcomings of previous work
associated with confounding (i) metricality and regularity, (ii) rhythmic and temporal expectations or (iii) global and local
temporal effects. We designed sound sequences that varied orthogonally (high/low) in metricality and regularity and
presented them as task-irrelevant auditory background in four separate blocks. The participants’ task was to detect rare
visual targets occurring at a silent metrically aligned or misaligned temporal position. We found that target timing was
irrelevant for reaction times and visual event-related potentials. High background regularity and to a lesser extent
metricality facilitated target processing across metrically aligned and misaligned positions. Additionally, high regularity
modulated auditory background frequencies in the EEG recorded over occipital cortex. We conclude that external rhythms,
rather than synchronizing attention cross-modally, confer general, nontemporal benefits. Their predictability conserves
processing resources that then benefit stimulus representations in other modalities.
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Introduction
Musical rhythms powerfully influence human listeners by mak-
ing them tap, sway or dance in synchrony. This, often involun-
tary, response is thought to be part of a more general entrain-
ment process including, for example, the rhythmical alignment
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of cross-modal attentional oscillations. Here we investigated a
rhythm’s influence on attention by testing the role of metricality,
the key defining feature of musical rhythms, and pitching that
against regular temporal that characterize both rhythmical and
non-rhythmical sound streams.
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The idea that musical rhythms entrain the human mind was
first formalized in Jones’ dynamic attending theory (DAT); (Jones,
1976; Jones and Boltz, 1989). In this theory, Jones argued that
mental processes like attention are not consistent but oscil-
late between performance peaks and troughs. She also devel-
oped a temporal perception account that diverged from classical
frameworks. Jones suggested that, instead of relying strictly on
isolated intervals or durations, we also leverage on temporal
structures afforded by the environment. If these structures are
metrical in that intervals are nested hierarchically resulting
in integer ratios (Figure 1), they facilitate the development of
rhythmic expectations and the entrainment of attention such
that attentional peaks align with salient temporal positions.
Please note that although metricality is typically treated as a
binary phenomenon, whether it is indeed binary is questionable.
One might speculate that ratios approaching an integer are more
metrical than ratios further way from an integer, and to accom-
modate this possibility, we here treat metricality as a continuous
construct.

Since its inception, DAT received much empirical support
and has been instrumental in the linking of oscillations in
behavior and brain function (e.g. Buschman and Kastner,
2015). Looking specifically at attention, Jones and colleagues
devised a now popular paradigm that we will present in a
bit more detail here (Jones et al., 2002). In its original form,
participants listened to two tones separated by a retention
interval and decided whether the final comparison tone had
the same, a higher or lower pitch than the first tone. Distractor
tones varying in pitch were presented during the retention
interval isochronously, that is, with a regular stimulus-onset
asynchrony (SOA). The final comparison tone could occur with
that same SOA, slightly earlier or slightly later. Participants
responded more accurately when the target temporally pre-
served rather than violated the isochronous sequence. Moreover,
this was also true when the target occurred at twice the SOA,
implying that listeners represented and used the underlying
meter.

With this and similar paradigms, much evidence accumu-
lated showing that humans are sensitive to and benefit from the
temporal structure of stimulus streams not only in the auditory
(Chang et al., 2019; Bouwer et al., 2020) but also in the visual
(Rohenkohl and Nobre, 2011; Cravo et al., 2013) and tactile modal-
ity (Jones et al., 2017; Jones, 2019). Moreover, the effect of rhythm
was shown to transcend modalities, leading to the entrainment
of modality-unspecific attending. In one of the first attempts to
demonstrate this, McAuley and colleagues presented a central
fixation point that, after a waiting interval, moved into one of
the screen’s corners (Miller et al., 2013). The waiting interval was
filled with tones spaced isochronously, and the following change
in fixation point location could occur with an identical SOA as
to preserve the intervening rhythm or slightly earlier or later.
Results replicated unimodal findings in that synchronous visual
change was more readily tracked as indexed by a shorter saccade
latency. Moreover, saccade differences between the different
SOA conditions disappeared when the auditory sequence was
randomly timed. Other research has corroborated these results
and provided further support for DAT (Escoffier et al., 2010,
2015; Brochard et al., 2013; Bolger et al., 2014; Trost et al., 2014;
Johndro et al., 2019).

Although seemingly intuitive, the study of rhythmic timing
and its impact on associated mental processes is quite challeng-
ing. Moreover, existing work is compromised by one or more
of the following three methodological shortcomings limiting
conclusions about entrainment.

First, the traditional entrainment paradigm as described
above confounds rhythmic or beat-based with stimulus expec-
tations. Specifically, the metrical structure of rhythms leads
to the perception of a regularly spaced temporal emphasis
called the beat. For an isochronous sequence, the most simple
kind of rhythm, beat perception, coincides with each stimulus
in the sequence. However, for nonisochronous and more
complex rhythms, beats may be perceived at points that are
not acoustically marked (e.g. see high-metrical examples in
Figure 1). By relying on isochronous sequences, most existing
studies, hence, tested attention at points in time where
participants expected both a beat and a stimulus rather than just
a beat. To address this point, some attempts have been made to
employ more complex rhythms that develop expectations for a
silent beat at which a target may then be presented (Escoffier
et al., 2010; Tal et al., 2017).

A second problem concerns the dissociation between the
metricality and regularity of a stimulus sequence (Obleser et al.,
2017). As mentioned above, metricality arises from stimulus
sequences in which smaller intervals form an integer ratio with
larger intervals. Perhaps because such sequences create the
perception of a regularly spaced beat, they are often also referred
to as regular. Yet, upon careful consideration one may wish
to dissociate metricality and regularity. Again in the simplest,
isochronous case, the same interval is being repeated over and
over again inducing a beat and maximizing interval regularity.
In a more complex, nonisochronous case, however, intervals
varying within and across measures may still induce a beat
despite being a lot less regular. Thus, the traditional comparison
of an isochronous condition with a condition in which succes-
sive intervals vary randomly with non-integer ratios confounds
metricality with regularity. It leaves open whether metricality
and its hierarchical organization of time is critical for temporally
aligning mental processes. Alternatively, the brain may simply
rely on any regularity in the environment irrespective of its
structure (Friston, 2010; Breska and Deouell, 2017; Rimmele et al.,
2018; Herbst and Obleser, 2019).

Last, a great challenge has been to control the influence
of local temporal cues on timed behaviors. The final stimulus
of an entrainment sequence presented prior to the target can
be considered a warning signal and the delay between this
stimulus and the target can be considered a foreperiod. Much
research has shown that foreperiod duration impacts reaction
times as a function of other experimental parameters. For exam-
ple, when foreperiods vary within a block, longer foreperiods
are associated with faster responses. However, the opposite
is true when foreperiods are held constant up to a threshold
of about 70 ms (Niemi and Näätänen, 1981). Additionally, the
salience of the warning stimulus, the distribution of experi-
enced foreperiods and whether targets are occasionally omitted
(Polzella et al., 1989) are all relevant. In fact, depending on the
context, the foreperiod may start even before the warning signal
or the last stimulus before the target (Ellis and Jones, 2010).
As such presenting a target synchronously or asynchronously
with a rhythm has complex consequences for local cue-based
preparatory processes.

Although attempts have been made to address one or more of
the aforementioned issues (e.g. Escoffier et al., 2010; Rohenkohl
et al., 2012; Cravo et al., 2013; Miller et al., 2013; Herrmann et al.,
2016; Tal et al., 2017), so far they have not been considered
together, thus leaving us without a strong test of the assump-
tions of DAT in general and cross-modal rhythmical entrainment
in particular. Here we aimed at providing such a test. Specifically,
we asked participants to monitor the color of a fixation cross
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Fig. 1. Stimulus background manipulation. (A) Metrical properties of the measures used to create the background rhythms. The upper part of panel A illustrates one

exemplary rhythm in its high (left) and low (right) metricality variant. Shown in blue are the within-measure intervals in milliseconds. Shown in black is the ratio of

each interval to the smallest interval. The lower part of the figure illustrates the temporal position of sounds for all the measures in the experiment. The red dashed

lines mark the position of the beat. (B) Histogram of tapping performance illustrated as a roseplot. Rose paddles represent cumulative participant taps for the five high

(violet) and the five low metrical measures (green). Larger paddles reflect more taps at a given angle. The 0 position reflects the beat which occurred every 750 ms. (C)

Regularity manipulation. Metricality and regularity were orthogonally manipulated. In the high regular condition, one of the high metrical or the low metrical measures

was repeated throughout a block. In the low regular condition, we presented a random order of all high or all low metrical measures.

while passively listening to an auditory sequence. The temporal
structure of this sequence varied orthogonally in metricality
and regularity across different stimulus blocks. Metricality was
manipulated via the ratio of intervals within measures making
up a sequence. Regularity was manipulated by either varying or
repeating the measures within a sequence. Irrespective of met-
ricality and regularity, all sequences comprised a silent period

including the fourth beat in the highly metrical condition. Addi-
tionally, the number of notes and the silent period duration were
held constant. As in previous studies (Escoffier et al., 2010, 2015;
Brochard et al., 2013; Tal et al., 2017), we manipulated the target’s
temporal position by presenting task-relevant color changes
either on the silent beat or slightly earlier or later. However,
rather than comparing the different target positions within one
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background condition, we examined the background effect on
one target position. This latter approach enabled us to control
local temporal processes associated with different foreperiods.

If indeed auditory stimuli entrain attention as suggested by
DAT and such entrainment emerges cross-modally, we should
observe an interaction between a target’s temporal position (i.e.
a/synchrony with the silent beat) and background metricality.
Moreover, synchronous targets should be processed more effi-
ciently when metricality is high as compared to low. A similar
effect should be absent for non-synchronous targets. Alterna-
tively, auditory stimuli may modulate visual attention as a func-
tion of regularity. If so, targets should be processed more effi-
ciently when regularity is high as compared with low, and this
effect should be independent of the targets’ temporal position.

Methods
Participants

We recruited 75 participants for the main experiment and of
those 11 were excluded from data analysis due to experimenter
error (N = 8), flat channels during recording (N = 2) or missing
data (N = 1). Half of the remaining 64 participants were female
with an average age of 24 years (s.d. 4), and the other half were
male with an average age of 24 years (s.d. 3). All female partic-
ipants were right-handed. Twenty-nine male participants were
right-handed, one was ambidextrous, and for two handedness
was unavailable.

Stimuli

Our background rhythms were designed based on 10 especially
composed measures. Half of these measures were high, and the
other half were low in metricality. High metricality measures
induced four beats whereby the first three beats were acousti-
cally marked and the fourth beat was silent. High metricality
measures served as the basis for the composition of low met-
ricality measures. These latter measures had the same duration
and comprised the same number of sounds as their originals.
However, sounds were shifted to fall on off-beat positions with
the exception of the first and last note in the measure. Moreover,

whereas the intervals in the high-metrical rhythms were related
by ratios of 1:2:4:6, they were related by ratios of 1:3.43:5.43:8.57
in the low metrical rhythms. Figure 1A illustrates sound timings
for each of the 10 measures.

We tested the metricality manipulation in a separate
tapping experiment in which 16 individuals (8 female, mean
age = 26 years), not participating in the main experiment, were
asked to tap along each of the measures described above. Each
measure was looped 40 times in a separate block. The five
metrical and the five nonmetrical blocks were always presented
consecutively forming two supra-blocks. The order of blocks
within each supra-block was randomized for each participant.
Participants were asked to close their eyes and tap using their
dominant hand. Their taps were recorded on a custom-built
touch pad with a temporal resolution of 1 ms. We analyzed the
tapping data in a circular statistics framework. This means that
instead of treating time linearly, we conceptualized the 750 ms
interval between beats to form a 360◦ circle with the silent beat
in the 0 position and the delay between this position and the
participants’ tap expressed as an angle. A Rayleigh test indicated
that taps were nonuniformly distributed around the beat when
metricality was high (statistic = 0.746, P < 0.0001) but not when
it was low (statistic = 0.178, P = 0.159). Additionally, the vector
length associated with the mean tapping angle was significantly
greater in the high (0.41) as compared with the low metricality
condition (0.12; F[1,15] = 15.48, P < 0.0001, ηG

2 = 0.278). Thus,
together both tests demonstrate that, as expected, high metrical-
ity enabled good beat alignment and regular tapping. By contrast,
there was no evidence for the measures with low metricality that
participants tapped selectively on the position coinciding with
the beat in high-metrical measures. Additionally, their tapping
was significantly more variable (Figure 1B).

During the experiment, auditory sequences were played at
comfortable loudness (∼65 dB) using two loud speakers posi-
tioned to the left and right of the monitor.

Procedure

The experiment was divided into several phases (Figure 2). First,
participants were asked to tap with their dominant hand on

Fig. 2. Primary experiment procedure. Illustrated on the left is the blocked outline of the experiment. A free tapping exercise was used to measure spontaneous tempo.

This was followed by a 3 min period in which participants performed the visual target detection task in silence. Afterwards, participants were presented with four

blocks each comprised of a 9 min sound and 3 min silence phase. Illustrated on the right is a target trial. For half the measures/trials, the fixation cross changed color

for 100 ms prompting participants to press a button.
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a custom-built touch pad for 3 min. Subsequently, they com-
pleted a visual target detection task in silence. This task block is
referred as ‘initial silence’ and was followed by four more visual
target detection blocks. During the initial larger part of these
blocks, one of the auditory conditions played in the background
(high metrical/high regular, high metrical/low regular, low met-
rical/high regular, low metrical/low regular). The final shorter
part of each block was silent. Both block parts are referred to as
sound and post-sound silence. In what follows, we will explain
each study phase in greater detail. We begin by describing the
visual target detection task and then proceed to explaining how
this task was combined with sound background and silence. At
the end of this section, we will shortly integrate the various
procedural elements.

During the visual target detection task, participants were
asked to focus on a white fixation cross presented on a gray
background and to press a button in case the cross changed
intermittently to blue. Changes in fixation cross color lasted for
100 ms. The onset time of color changes varied. This variation
was designed based on the temporal properties of the auditory
background measures and was comparable across the different
experimental blocks. Because our auditory stimulus measures
served as the basis for target-to-target intervals, we will first
explain the timing of targets when there was auditory back-
ground and then detail the timing of targets when there was
silence.

The measures used for the different sound conditions all
shared a silent period of 1125 ms surrounding the forth beat
position. Specifically, the last note of a given measure played
375 ms after the third beat position, and the next note was the
first note of the subsequent measure. Targets could be aligned
with the silent beat position, with an earlier or later metrical off-
beat position or an earlier or later nonmetrical off-beat position
(Figure 3). Note that for ease of reference, we will refer to these
positions as on-beat, metrical off-beat and nonmetrical off-beat
positions both in the context of high and a low metricality
backgrounds. Metrical off-beat positions fell 187.5 ms before
and after the fourth silent beat position, which represents the
beats quarter subdivision. To match the metrical off-beat posi-
tions’ average temporal distance from the beat, nonmetrical off-
beat positions occurred equidistantly either 56.3 ms before or
after each metrical off-beat position. Please see Figure 3A for a
graphical illustration of possible presentation time points.

Each participant experienced 30 on-beat, 30 metrical off-beat
and 30 nonmetrical off-beat targets across 180 measures in each
sound phase. Target time points as well as measures with and
without targets were presented in random order. In an effort to
explore and control for foreperiod distribution effects, not all
participants were exposed to all metrical and nonmetrical off-
beat time points. As illustrated in Figure 3B, participants were
divided into four groups (1a, 1b, 2a, 2b) with different time point
combinations. Groups 1a and 1b had 30 on-beat targets and
30 metrical off-beat targets (15 before and 15 after the beat).
Additionally, group 1a had 30 nonmetrical off-beat targets closer
to the beat (15 before/15 after), whereas group 1b had 30 non-
metrical off-beat targets further away from the beat (15 before/15
after). Groups 2a and 2b had 30 on-beat targets. Additionally,
group 2a had 30 metrical off-beat targets before the beat and 30
nonmetrical off-beat targets around this early metrical off-beat
position (15 before/15 after). Group 2b had 30 metrical off-beat
targets after the beat and 30 nonmetrical off-beat targets around
this late metrical off-beat position (15 before/15 after). Our pri-
mary analysis reported below was done across all four groups,
which controls for foreperiod distribution. The interested reader

can find an analysis of foreperiod distribution effects in the
Supplementary Materials.

As described earlier, metricality was manipulated by
adjusting the intervals within a measure and regularity by
adjusting the number of times a measure was repeated within
a background block. This resulted in four sound background
conditions: (i) the high-metrical and high-regular condition
simply looped one of the five high-metrical measures through-
out the block, (ii) the high-metrical and low-regular condition
presented all five high-metrical measures in random order,
(iii) the low-metrical and high-regular condition looped one of
the five low-metrical measures throughout the block, and (iv)
the low-metrical and low-regular condition presented all five
low-metrical measures in random order. Across participants,
all high and low metricality measures occurred equally often
in the regular conditions with the exception of measure
1 which occurred 1 more time each for male and female
participants due to the counterbalancing constraints described
further below.

The time points developed for target presentation were held
constant across sound and silence phases. During the initial
silence phase and the post-sound silence, participants were
presented with 30 targets with 10 each falling on on-beat, off-
metrical and off-nonmetrical positions, respectively. These posi-
tions had no meaning in the context of silence but simply
preserved the range of target-to-target intervals across sound
and silence.

In sum, an experimental session began with a tapping exer-
cise (see Supplementary Materials for results). Subsequently,
participants completed the experimental task in silence fol-
lowed by four additional task blocks each comprised of a sound
and post-sound silence phase. The order of these latter four
blocks was counterbalanced by nesting the factor metricality in
regularity and vice versa and by presenting the superordinate
and nested levels in all possible orders, resulting in a total of 32
counterbalancing groups. Each sound phase took 9 min in which
180 measures were played consecutively. The initial and post-
sound silence phases took 3 min each and were followed by a
short break.

Electrophysiological recording and analysis

The EEG was recorded using 61 Ag/AgCl electrodes, which were
located according to the extended 10–20 system of the American
Clinical Neurophysiology Society (2006). An additional four elec-
trodes were attached above and below the right eye and at the
outer canthus of each eye to measure eye movements. The left
mastoid was used as online reference. Electrode impedance was
below 5 kΩ. The data was recorded at 500 Hz with a BrainAmp
EEG system. Only an anti-aliasing filter was applied during data
acquisition (i.e. sinc filter with a half-power cut-off at half the
sampling rate).

EEG data were preprocessed with EEGLAB v14.1.1 (Delorme
and Makeig, 2004). The recordings were high-pass filtered with
a −6 dB cut-off at 0.1 Hz (0.2 Hz transition bandwidth, zero-
phase FIR, 8251 points). For the ERP analysis, the continuous data
were scanned visually to remove nontypical artifacts caused by
muscle movements, poor connections or electrode drifts. Chan-
nels with excessive artifacts were interpolated. Afterwards, the
data were re-referenced to the scalp average. A 0.5 Hz high-pass
filter (1 Hz transition bandwidth, zero-phase FIR, 1651 points)
was applied prior to subjecting the data to adaptive mixture-
independent component analysis (AMICA) (Palmer et al., 2011).
The resulting independent component structure was applied
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Fig. 3. Target positions in the experiment. (A) Illustrated on the left are all possible target positions relative to the onset of the silent beat. The different shapes illustrate

on-beat, metrical off-beat and nonmetrical off-beat positions. (B) Illustrated on the right are the distributions of possible target positions as a function of participant

group. The different colors index which group saw which target position and the numbers indicate how often that target position was presented. Again, the different

shapes illustrate on-beat, metrical off-beat and nonmetrical off-beat positions. For group 1, the beat position was central among target positions, whereas in group 2,

the beat position was peripheral. This allowed us to examine the role of foreperiod distribution and a potential benefit resulting from a central beat position.

to the original data with the 0.1 Hz filter setting. Components
reflecting typical artifacts (i.e. horizontal and vertical eye move-
ments and eye blinks) were removed and the data back-projected
from component space into EEG channels space. Another visual
scan was done to remove data with residual artifacts, a low-pass
filter was applied at 30 Hz (7.5 Hz transition bandwidth, zero-
phase FIR, 221 points), and the signal was epoched separately
for measure and target onset using a time window from −200
to 500 ms around measure and target onset. Bad epochs were
rejected automatically using the joint probability and thresh-
olding functions in EEGLAB with the rejection criteria set at
three s.d. and ±100 μV, respectively. The epoched data were
submitted to a current source density transformation using the
CSD tool box (Kayser and Tenke, 2006) with its default settings
and baseline corrected using the 200 ms pre-stimulus period.

For the analysis of measure onset ERPs, the number of
correct/artifact-free trials ranged from 125 to 179 with a mean
of 164 for each combination of metricality and regularity. For the
analysis of target onsets, we separately considered the initial
silence, sound and post-sound silence phases. The initial silence
phase had, after artifact rejection, trial numbers ranging from
3 to 10 with a mean of 9 for on-beat, metrical off-beat and
nonmetrical off-beat positions, respectively. Ideally we would
have confirmed the absence of ERP differences between these
positions. Due to the low trial numbers, however, this was not
done. The post-sound silence had, for each sound condition,
a minimum of 10, a maximum of 30 and a mean of 27 trials
after artifact rejection. We conducted separate ANOVAs with
trial number as the dependent variable for the sound and
post-sound silence phases and found that trial numbers did
not differ significantly between conditions (all Ps > 0.102). The
factors used in these ANOVAs were identical to those used
in the ERP analysis reported below. Prior to the analysis of
target onset ERPs, the average of nontarget (control) epochs was
subtracted from the average of target epochs to (i) eliminate
signal differences resulting from auditory stimulus history
and (ii) isolate visual processing and its modulation by the
auditory background manipulations (Escoffier et al., 2015). In

each block, control epochs were defined for each target position
as the equivalent duration time window in nontarget trials,
which were randomly selected without replacement according
to the relative frequency of the target position. This subtraction
method was applied to both silence and rhythm blocks to render
them comparable. We focused our ERP analysis for measure
onsets on the P1 over temporal electrodes (T8, TP8, T7, TP7).
This electrode selection diverges from many published studies
on auditory processing, which pursued effects over fronto-
central channels instead. However, visual inspection of the
current ERPs revealed the best defined and largest sound-related
deflections over temporal cortex. We refer the interested reader
to the Supplementary Materials which shows ERPs time-locked
to measure onset for all recording channels and includes a
statistical analysis of fronto-central effects. Following up on
previous work (Escoffier et al., 2015), we explored the target onset
N1 and P3 over occipital electrodes (O1, Oz, O2). Analysis time
windows were set based on prior research and visual inspection
of grand mean voltages and were 110–130 ms, 150–170 ms and
250–400 ms for auditory P1 and visual N1 and P3, respectively.

For the analysis of EEG oscillations, preprocessing was done
as described for the ERP with the exception that the data
were split into 30 s long epochs after the 0.1 Hz high-pass
filtering. The cleaned EEG data were transformed into frequency
domain using fast Fourier transform (FFT), resulting in frequency
spectrum amplitudes in μV ranging from 0 to 250 Hz with a
frequency resolution of 0.033 Hz. To improve signal-to-noise
ratio, the frequency spectra were averaged across epochs in
each condition and baseline corrected by subtracting from
the amplitude at each frequency bin the average amplitude at
surrounding frequencies (−0.0667 to −0.1333 Hz to the left and
+0.0667 to +0.1333 Hz to the right of each bin) (Lenc et al., 2018).
Of interest to us were frequencies corresponding to measure
onset (i.e. meter frequency) at 1/3 Hz and the beat position
at 4/3 Hz. Amplitudes at these frequencies were analyzed for
the same set of electrodes as selected for the ERP. Please note
that our electrode selection differs from previous work because
we used a reference-free CSD transformation as to better
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localize/isolate region-specific activity over primary auditory
and visual cortex (Kayser and Tenke, 2015). Because of salient
differences in the trial numbers left after artifact removal,
we matched trial numbers across the factors/levels for the
below statistical analyses. Specifically, for each participant
we identified the condition with the lowest number of trials
and randomly selected trials from the other conditions. Trial
numbers matched across conditions averaged to 10.6 with a
between subject range of 5–16.

To explore the possibility that 1/3 and 4/3 Hz rhythms were
tagged in the EEG, we adopted a previously developed approach
that aims at comparing the EEG signal to a processed sound
signal modeling cochlear firing patterns (Lenc et al., 2018,
2019b). To this end, we first down-sampled the experimental
sound recording for each participant and condition to 5000 Hz.
We then applied a Patterson–Holdsworth ERB filter bank with
128 channels to simulate the cochlear filtering (Patterson and
Holdsworth, 1996) and entered the result to the Meddis hair–
cell model implemented in the Auditory Toolbox in MATLAB
(Slaney, 1998). To facilitate comparison with the EEG, the
model output was further down-sampled to 500 Hz and then
Hilbert transformed as to get the estimated cochlear response
envelope. The result was subjected to a fast Fourier transform
with a frequency resolution of 0.033 Hz. The amplitudes in
the frequency domain were then averaged across the 128
cochlear channels. As for the EEG, the averaged amplitude in
each frequency bin was corrected by subtracting the averaged
amplitude of its surrounding frequencies.

For statistical analysis, EEG and cochlear model FFT results
were separately normalized. To this end, we computed the
amplitude mean and s.d. for 1/3 Hz, and this frequency’s
harmonics up to the 30th harmonic. We then subtracted from
the amplitude of each target frequency (i.e. 1/3 and 4/3 Hz) the
mean amplitude and divided the result by the s.d. This process
was applied to all experimental sound recordings presented in
each condition and for each participant.

All statistical analyses were conducted in R (R Core Team,
2015) with the ez package (Lawrence, 2016). Follow-up analy-
ses of significant interactions were corrected for multiple com-
parisons using the ‘Bonferroni’ setting with the p.adjust func-
tion. As an effect size measure, we report the generalized eta
squared (ηG

2).

Results
Behavioral results

We computed a d′ measure based on the normalized probability
of false alarms and hits as well as the mean reaction times
for hits. Both measures were subjected to separate ANOVAs for
the initial silence, the sound blocks and the post-sound silence
blocks. Time (on-beat, off-nonmetrical, off-metrical) served as
the single repeated measures factor when analyzing the initial
silence. Metricality (high, low) and regularity (high, low) were
additional factors when analyzing the sound blocks. During
the post-sound silence, only metricality and regularity were
explored due to an overall reduction in trial numbers.

The d′ scores ranged across participants and conditions from
1.53 to 4.26 and were overall very high, implying good perfor-
mance. An ANOVA with d′ as the dependent variable revealed
no effect for the initial silence block (P = 0.576), only a marginal
three-way interaction during the sound blocks (F[2,126] = 2.64,
P = 0.075, ηG

2 = 0.003) and nonsignificant effects during the post-
sound silence blocks (all P > 0.168). Here and elsewhere, analysis

of post-sound silence blocks was done to explore the possibility
of a carry-over effect from the sound blocks.

For RTs, there was again no effect for the initial silence
(P = 0.645). For the sound blocks, the main and interaction effects
of time were nonsignificant (all P > 0.644). However, we found
faster responses when metricality was high as compared with
low (F[1,63] = 6.27, P = 0.015, ηG

2 = 0.003) and when regularity was
high as compared with low (F[1,63] = 8.11, P = 0.006, ηG

2 = 0.007).
Notably, the regularity effect size was twice that of the met-
ricality effect. For the post-sound silence, effects were again
nonsignificant (all P > 0.271) (Figure 4).

Last, we conducted a planned comparison testing, specif-
ically the RT entrainment effect observed in previous work
(Escoffier et al., 2010, 2015; Brochard et al., 2013). However,
rather than comparing on vs off-beat target positions, here and
elsewhere in the manuscript, we focused on the metricality
effect for on-beat targets. Specifically, we compared responses
to on-beat targets presented with a high as compared to
a low metricality background reasoning that the former
should facilitate processing relative to the latter. Contrasting
backgrounds is preferable over contrasting target positions
because the foreperiod remains constant. To further increase
comparability with previous research, we isolated the regular
background condition for our analysis. A paired one-sided
t-test comparing high with low metricality was significant
(t(63) = 1.76, P = 0.041) indicating that a metrical background
rhythm facilitated responses to on-beat stimuli, thus replicating
previous results. Notably, however, there was a similar tendency
for targets occurring at an off-metrical (t(63) = 1.44, P = 0.077) and
an off-nonmetrical position (t(63) = 1.4, P = 0.083). These results
concur with the metricality main we observed in the absence
of a metricality by time interaction (F[2126] = 0.43, P = 0.649) in
the primary analysis and conflict with the notion that visual
attentional peaks align to the beat position of the auditory
background.

Event-related potentials

We derived ERPs time-locked to measure and target onset as
to explore meter and beat entrainment, respectively. Both are
illustrated in Figure 5.

The first note of each measure was identical with differ-
ences emerging only after 131.25 ms, thus giving us enough
time to examine the P1 (110–130 ms) without stimulus con-
founds. The mean P1 amplitudes over temporal electrodes (T8,
TP8, T7, TP7) were subjected to an ANOVA with the repeated
measures factors metricality, regularity and hemisphere. This
revealed a marginal effect of regularity (F[1,63] = 2.99, P = 0.089,
ηG

2 = 0.002) and a significant interaction of metricality and hemi-
sphere (F[1,63] = 5.79, P = 0.019, ηG

2 = 0.003). However, follow-
up of the latter effect yielded only a marginal P1 reduction
when metricality was high as compared to low over the right
(F[1,63] = 4.42, pB = 0.079, ηG

2 = 0.006) an no effect over the left
temporal lobe (F[1,63] = 0.844, pB = 0.723, ηG

2 = 0.001). All other
effects were nonsignificant (all P > 0.105).

To analyze the target ERP, we identified the mean ampli-
tudes for N1 (150–170 ms) and P3 (250–400 ms) as measured
over occipital electrodes (O1, Oz, O2) and subjected them to
separate ANOVAs. Due to low trial numbers, we did not pur-
sue the initial silence. For the sound blocks, we conducted an
ANOVA with time, metricality and regularity as repeated mea-
sure factors and found that when regularity was high, both
N1 (F[1,63] = 5.89, P = 0.018, ηG

2 = 0.004) and, but marginally, P3
(F[1,63] = 3.82, P = 0.055, ηG

2 = 0.003) had more positive amplitudes
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Fig. 4. Behavioral results for the sound blocks. The upper row shows d′ data and the lower row reaction time data. Individual black dots illustrate individual participants.

In the left graph, the thin black lines connecting dots link the two conditions for a given participant. The red line represents the condition mean. The right graph

contrasts the two levels of regularity as a function of metricality. It presents the same data as shown in the left graph. Points falling above the black diagonal represent

participants with greater values (higher d′ and longer RTs) in the low as compared to the high regular condition. Effects were nonsignificant for d′ . Reaction times were

faster when background regularity and metricality were high as compared to low.

Fig. 5. Sound block mean ERP voltages. Maps illustrate the mean amplitude topography for P1 elicited at measure onsets and N1/P3 elicited at target onsets. Temporal

electrodes are shown for the first note in each measure and occipital electrodes for the targets occurring at and around the silent beat. For the latter ERP, we show a

difference wave derived by subtracting visual target trials from nontarget trials as to remove the influence of preceding or following sounds. Marked in gray are the

time windows used to quantify the P1 for measure onset and the N1/P3 for target onsets. There were no significant effects for the auditory P1. The visual N1 was

smaller with high as compared to low background regularity. An opposite effect approached significance for the P3.

than when it was low. All other effects were nonsignificant (all
P > 0.255). ERP voltages for the post-sound silence were subjected
to an ANOVA with metricality and regularity as repeated mea-
sures factors, and the results were nonsignificant (all P > 0.262).

Last, we conducted a planned comparison testing specifically
the N1 entrainment effect observed previously (Escoffier et al.,
2015). To this end, we used a paired one-sided t-test to compare
high with low metricality for the N1 amplitudes measured over

the right hemisphere (O2) in the highly regular on-beat condition
and found no condition difference (P = 0.278).

Frequency tagging analysis

We pursued the EEG frequency domain to determine whether
sound-related frequencies were significantly amplified in the
EEG over auditory and, possibly, visual cortex (Nozaradan et al.,
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2011, 2018; Lenc et al., 2018). Although there may be some overlap
between ERPs and the EEG frequency spectrum, the former
highlight event-related information, whereas the latter highlight
both event-related and event-unrelated oscillatory activity at
frequencies of interest. For the present purpose, we subtracted
the normalized cochlear output from the normalized temporal
and occipital EEG. A positive score denotes EEG activity exceed-
ing that of the stimulus-driven auditory response model and is
thought to index cortical amplification or tagging of cognitively
relevant stimulus frequencies. Scores were subjected to two sets
of analyses done on sound block data only.

The first set of analyses entailed a t-test conducted for each
region (temporal, occipital) and frequency (1/3 and 4/3 Hz) on
Z score differences between EEG and cochlear output averaged
across metricality and regularity. This demonstrated that across
conditions, measure and beat frequency were significantly
amplified in the EEG (all PB < 0.004).

Next, we conducted for each region separate ANOVAs
with frequency (1/3 and 4/3), metricality and regularity as
repeated measure factors. For the temporal region, effects
were nonsignificant (all P > 0.187). Analysis of the occipital
region revealed a significant effect of frequency (F[1,63] = 11.65,
P = 0.001, ηG

2 = 0.068) and significant interactions of regularity
and frequency (F[1,63] = 11.51, P = 0.001, ηG

2 = 0.018) and of
metricality, regularity and frequency (F[1,63] = 4.16, P = 0.045,
ηG

2 = 0.006). The interaction of metricality and frequency was
marginally significant (F[1,63] = 3.69, P = 0.059, ηG

2 = 0.006), and
all other effects were nonsignificant (all P > 0.25).

We pursued the significant three-way interaction for each
level of frequency. For the measure onset frequency, we observed
a significant effect of regularity (F[1,63] = 6.87, PB = 0.022,
ηG

2 = 0.014), indicating that EEG amplification was greater for
the more regular background. The metricality effect and the
interaction of metricality and regularity were nonsignificant (all
PB > 0.232). For the beat frequency, we again found an effect of
regularity (F[1,63] = 6.24, PB = 0.03, ηG

2 = 0.021). However, unlike for
the measure onset, low regularity was associated with greater
EEG amplification than high regularity. Again, the metricality
main effect and the interaction of metricality and regularity
were nonsignificant (all PB > 0.36) (Figure 6).

Discussion

The idea that, like motor processes, mental processes have a
periodicity that can be aligned or entrained by the metrical
structure of external rhythms has gained much popularity in the
past few decades (Calderone et al., 2014; Schirmer et al., 2016b;
Lakatos et al., 2019; Obleser and Kayser, 2019; Hoehl et al., 2020).
Our study fails to support this notion and instead highlights
the importance of temporal regularity irrespective of metricality
as an optimizer for cognitive and brain functioning. However,
before discussing our results in detail, we shortly revisit a few
important concepts.

As mentioned in the introduction, metricality is defined by
an integer ratio between intervals within a sequence (Figure 1)
(Jones, 1976; Grahn and Brett, 2007). It gives rise to feeling a
rhythm with an equidistantly spaced perceptual emphasis—
the beat—that one can readily tap to. By contrast, non-integer
ratios are thought to characterize nonmetrical sequences. Such
sequences are not perceived as rhythmical and when asked to
tap, one varies, unable to identify a clear beat. Note, however,
that the perception of metricality may not be a neatly binary but
a continuous phenomenon.

The term regularity refers to whether intervals within a
sequence are repeated and/or occur with a consistent order.
Like metricality, regularity may be considered on a continuum
whereby looping a single interval produces an isochronous
sequence that maximizes regularity. Importantly, such an
extreme case also maximizes metricality, beat finding and
associated tapping performance. Past research on entrainment
typically compared an isochronous with a nonisochronous and
nonmetrical signal (Miller et al., 2013) or an isochronous signal
followed by an isochronously aligned as compared to misaligned
target (Jones et al., 2002).

Does the brain entrain?

In a simple tapping experiment, we established that our stimuli
elicited synchronized tapping with the beat when metrical-
ity was high and variable tapping when metricality was low.
Thus, we replicated previously documented effects of rhythm on
motor entrainment (Grahn and Brett, 2007). We then explored
auditory and visual stimulus processes to determine whether,
they too, had been subject to entrainment and aligned with
the beat.

Looking at auditory processes, we asked whether metricality
facilitates the representation of background sounds. One rele-
vant variable was the P1 amplitude to the first sound of each
background measure. The P1 is traditionally considered an index
of perceptual processes and is known to vary as a function
of stimulus and mental state characteristics. In this context,
smaller amplitudes are associated with reduced attention or
processing effort (Luck, 2005; Giuliano et al., 2014). In line with the
notion that metricality facilitates the processing of metrically
aligned sounds, we observed smaller P1 amplitudes in the high
as compared to the low metricality condition over the right
temporal region. Notably, however, this effect was small and
statistically nonsignificant despite our well-powered sample.

A second variable of interest was the amplitude of meter-
relevant frequencies in the EEG thought to index a frequency
tagging response (Nozaradan et al., 2011, 2018; Ding et al., 2016;
Lenc et al., 2018). This variable was first used to examine the
visual perception of stimuli flickering at a certain frequency
and in this context is known as a steady-state visual evoked
potential (Norcia et al., 2015; Wieser et al., 2016). Its extension to
auditory rhythm perception has been much debated (Henry et al.,
2017; Rajendran and Schnupp, 2019). As with the present study,
relevant stimuli typically vary not only in one frequency. Their
temporal envelope and associated frequency representations are
significantly more complex creating challenges for interpret-
ing resulting FFT spectra and for linking them between stim-
ulus and EEG (Rajendran and Schnupp, 2019). Additionally, the
FFT approach discards temporal information, leaving uncertain
whether and in what way meter- and beat-related frequency rep-
resentations in stimulus and EEG may vary at different moments
in time.

Despite these problems, however, the frequency tagging
response is interesting (Lenc et al., 2019a) and in conjunction
with other measures elucidates the relation between external
and internal oscillations. Notably, in our hands, frequency
tagging indicated that important stimulus frequencies are
amplified in the EEG over the temporal region, which given we
applied a CSD transformation, may index activity of underlying
auditory cortex (Kayser and Tenke, 2015). Yet although on
average both measure onset and beat frequency were amplified
above and beyond the auditory stimulus, this amplification
or tagging response did not differ between conditions. We
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Fig. 6. Z-scored EEG and cochlear model response to the sound backgrounds. Upper row graphs show the individual Z-scores for the temporal and occipital EEG (left)

and the cochlear model (right). Lower row graphs show the difference score obtained when subtracting cochlear from temporal (left) and occipital EEG z-scores (right).

Dots/diamonds represent individual participants. The red vertical lines represent the condition mean. The within-participant regularity effects are represented by the

thin lines in the lower left graph and by data point distance from the diagonal in the lower right graph. Statistical analyses yielded only nonsignificant effects for the

temporal leads. For occipital leads, there was a significant effect of regularity at both measure onset and beat frequency.

suspect that because the measure onset frequency was present
consistently irrespective of background and the beat frequency
was the fourth measure onset frequency harmonic, the former
sufficed to induce a strong frequency tagging response at
both frequencies. Importantly, within-measure metricality was
irrelevant.

In addition to looking at auditory processing, we also exam-
ined visual processing as to elucidate cross-modal entrainment
effects. Yet, such effects failed to materialize. Contrary to pre-
vious reports, there was no evidence for metricality modulat-
ing visual ERPs (Escoffier et al., 2015) or an occipital frequency
tagging response. Although, the present study could replicate
previous behavioral effects, it showed that they may have sprang
from local rather than global temporal processes. Specifically,
we observed faster RTs to on-beat visual targets presented on a
background with high as compared to low metricality and a con-
trol experiment (Supplementary Materials) with blocked forepe-
riods replicated faster RTs to on-beat as compared with off-beat
targets on a background with high metricality (Escoffier et al.,
2010; Brochard et al., 2013; Miller et al., 2013). However, the wider
context of the collected data revealed that these effects were not
rhythmical in nature (for further information on present forepe-
riod effects see Supplementary Materials). Indeed, a metricality
main effect in the absence of an interaction between metricality
and target position indicated that high as compared with low
metrical backgrounds facilitated the processing of visual targets
irrespective of when they occurred.

Together, the present auditory and visual results offer little,
if any support for the notion that metricality entrains unimodal
and cross-modal perceptual processes. Metricality, if relevant at
all, shows complex effects that interact with regularity and that
like the regularity effects discussed below may be best under-
stood as facilitating the overall representation of a rhythmic

or temporally regular input rather than attention at metrical
moments in time.

Temporal regularity underpins dynamic attending

If, contrary to popular belief, metricality matters little for the
temporal dynamics of mental processes, what other stimulus
feature could be relevant? Based on previous research as well
as the current results, we suggest a role for temporal regularity
(for a more extended discussion see Hoehl et al., 2020).

Evidence for the brain’s ability to leverage on temporal regu-
larity comes from three separate literatures. First, relevant work
has used the mismatch negativity (MMN), a negative deflection
in the ERP elicited to rare deviant sounds presented among
frequent standards in a task-irrelevant and unattended stimulus
stream. The MMN shows for simple physical as well as higher-
order rule-based deviations (for reviews see Näätänen et al.,
2010; Paavilainen, 2013) including those arising from temporal
stimulus properties (Yabe et al., 1997; Tse and Penney, 2006;
Schirmer et al., 2016a). Thus, it seems the brain automatically
represents input and derives regularities against which further
input is processed. Temporal regularities are just one dimension
of this.

A second line of evidence comes from a phenomenon called
statistical learning. It was first discovered in infants in a word-
learning experiment (Saffran et al., 1996). Four three-syllable
pseudowords were presented in random order such that the
transition probabilities of syllables within words were high,
whereas those of syllables between words were low. After only
2 min of exposure, infants picked up on these probabilities and
could use them to segment continuous speech into individual
words. This finding has been replicated across different ages,
senses and stimulus features (for a review see Fiser and Lengyel,
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2019). Additionally, a recent ERP study manipulating transition
probabilities in a sequence of tone triplets found overlap in
the processes supporting statistical learning and generating the
MMN (Mittag et al., 2016).

Last, evidence for the relevance of regularity in guiding
the temporal course of mental processes comes from work
by Breska and Deouell (2017), probing rhythmic entrainment
using a paradigm similar to that of Jones et al. (2002). A visual
stimulus sequence preceded a visual target. The sequence
was (i) isochronous in that a single interval was looped, (ii)
nonisochronous in that a single interval was repeated with
varying, nonmetrical delays or (iii) was random, comprising
varying intervals and delays with non-integer ratios. Compared
to the random condition, the other conditions elicited greater
delta phase coherence in the EEG and faster response times
when subsequent targets occurred with the sequence-specific
interval as opposed to a faster/slower interval. Moreover,
both effects were related as delta phase at target onset
predicted reactions times, and they existed irrespectively
of whether the sequences were isochronous (for a critique
see Obleser et al., 2017).

The present data corroborate and extend this work by
examining metricality and regularity orthogonally, dissoci-
ating rhythmic from broader temporal expectation effects
and pursuing cross-modal entrainment. Across our different
measures, regularity seemed more important than metricality.
Regularity marginally reduced the auditory P1 elicited at
measure onset. Additionally, it modulated our indexes of visual
target processing in a number of ways. First, targets occurring
on a high as compared with a low regularity background
elicited a smaller N1, a marginally larger P3 and faster
reaction times. A smaller N1 has been previously associated
with increased predictability or perceptual fluency (Robinson
et al., 2018), whereas a larger P3 and other late positivities
have been linked to a number of functions including task
relevance (Squires et al., 1977; Johnson Jr and Donchin, 1978) and
emotional salience (Hajcak et al., 2010; Liu et al., 2016; Schirmer
and Gunter, 2017). Regularity also modulated the frequency
tagging response over occipital cortex. Tagging was greater for
temporally regular as compared with irregular backgrounds
for the measure onset frequency, whereas a reversed effect
showed for the beat frequency. This suggests that regularity
enhanced the representation of the most regular interval across
all sound sequences and reduced the representation of that
interval’s fourth harmonic possibly because this harmonic
offered little information about the timing of individual
events in the sound background and events in the foreground
visual task.

Taken together, sound background regularity had non-
significant effects on auditory and small (ηG

2 < 0.021), but
consistent, effects on visual processing. The nonsignificant
auditory influence may be due to the regularity of measure
onsets irrespective of condition providing a salient temporal
cue that prevented us from observing more subtle responses
as a function of condition. In line with this, there was a robust
frequency tagging response at both measure onset and beat fre-
quency over temporal leads with all auditory backgrounds. The
emergence of a significant visual influence may arise from mul-
tisensory integration mechanisms that dynamically link object
information distributed across different modalities. Specifically,
we speculate that temporally regular sounds facilitate sound
representations in uni- and multimodal processing systems,
which then benefits visual perception by freeing mental
capacity.

The (limited) power of meter

Given the power of music, the convincing argumentation of
DAT and existing empirical data, the present failure to establish
robust mental entrainment came as a surprise. The metricality
of a rhythm clearly influences us in a special way; how then can
this influence be understood?

Perhaps we should think of metricality as a special form of
regularity. The integer ratio of sound intervals facilitates interval
processing, and the recurrence of certain intervals and interval
harmonics enables the perception of a highly regular beat. More-
over, because of the special interval relationships and the regular
beat, other less regular elements (e.g. varying interval durations,
small deviations from the beat) may be more readily tolerated
and integrated into ongoing sensory processing.

As such, metricality, like other forms of regularity, makes
stimulus encoding more efficient and frees resources for
the processing of other information. Importantly, the present
study shows this latter effect is independent of whether such
information aligns with the beat. Additionally, metricality plays
a highly significant and likely specific role in synchronizing
motor output. Although here we found little support for
rhythmically aligned attending, we observed a strong role of
meter in rhythmically aligned tapping. Similarly, work by Breska
and Deouell (2017) found that isochronous timing specifically
increased motor-preparatory but not other activity in the brain.
Thus, instead of broadly entraining the mind, metrical rhythms
may be more relevant in organizing behavior. In this manner,
they may usefully facilitate music making, dancing and other
social activities that humans perform in smaller and larger
groups (Launay et al., 2016).

Caveats and directions for future research

Because the present focus was on rhythmic entrainment, our
visual target time points were either metrically aligned or mis-
aligned with an auditory background stimulus. Moreover, they
did not vary based on the actual intervals present in the back-
ground stimulus. As such we were unable to test whether inter-
vals irrespective of their metricality modulate perceptual pro-
cesses dynamically by enhancing responses at interval congru-
ous and/or impairing responses at interval incongruous time
points. Such a test was first attempted by Breska and colleagues
(2017) and presents an important direction for future research.

Additionally, although the present study showed measure
convergence in the relevance of background metricality and
regularity for auditory and visual processing, it failed to establish
links between the different measures. As such it cannot speak
to how frequency tagging facilitates early ERPs or how both
are relevant in explaining the speed and accuracy of visual
target detection. We have attempted this at the subject level
without obtaining meaningful results. Likely one must adopt a
trial-based within-subject approach to shed light on measure
relationships and to develop a framework for the mechanisms
by which temporal interval and metrical properties organize
mental processes.

Conclusions
The idea that external rhythms entrain the peaks and troughs
of internal processes like visual attention has been very pop-
ular and attracted substantial scientific inquiry (for reviews
see Calderone et al., 2014; Schirmer et al., 2016b; Lakatos et al.,
2019; Obleser and Kayser, 2019; Hoehl et al., 2020). Yet, whether
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any temporal alignment is indeed rhythmical in that it springs
from and maps onto an underlying meter has not been clearly
established. The present findings contradict this possibility and
instead suggest that the timing of internal processes depends
on external stimulus regularities independently of their metri-
cality. Temporal regularity rather than metricality emerged as a
fundamental principle for mental resource allocation. Although
unexpected on the backdrop of current entrainment theory, our
findings converge with research on the role of repetition and
prediction in optimizing human functioning (Kilner et al., 2007;
Friston, 2010).
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