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Abstract

Traumatic brain injury (TBI) often results in balance impairment, increasing the risk of

falls, and the chances of further injuries. However, the underlying neural mechanisms

of postural control after TBI are not well understood. To this end, we conducted a

pilot study to explore the neural mechanisms of unpredictable balance perturbations

in 17 chronic TBI participants and 15 matched healthy controls (HC) using the EEG,

MRI, and diffusion tensor imaging (DTI) data. As quantitative measures of the func-

tional integration and segregation of the brain networks during the postural task, we

computed the global graph-theoretic network measures (global efficiency and modu-

larity) of brain functional connectivity derived from source-space EEG in different

frequency bands. We observed that the TBI group showed a lower balance perfor-

mance as measured by the center of pressure displacement during the task, and the

Berg Balance Scale (BBS). They also showed reduced brain activation and connectiv-

ity during the balance task. Furthermore, the decrease in brain network segregation

in alpha-band from baseline to task was smaller in TBI than HC. The DTI findings rev-

ealed widespread structural damage. In terms of the neural correlates, we observed a

distinct role played by different frequency bands: theta-band modularity during the

task was negatively correlated with the BBS in the TBI group; lower beta-band net-

work connectivity was associated with the reduction in white matter structural integ-

rity. Our future studies will focus on how postural training will modulate the

functional brain networks in TBI.
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1 | INTRODUCTION

Traumatic brain injury (TBI) is a significant medical and health problem

in the United States, with an estimated 2.8 million people sustaining a

TBI every year (Taylor, Bell, Breiding, & Likang, 2017). One of the

immediate consequences of TBI is an elevated risk of balance deficit

or the loss of postural control (Kaufman et al., 2006) (Pickett, 2007).

Yet, the pathomechanisms of the postural instability remain poorly
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understood. To develop effective rehabilitation strategies and prog-

nosticating tools for motor function recovery, we must delve into the

neurophysiological processes involved in postural control.

One aspect that could guide us in this direction is the “functional
connectivity (FC)” between the cortical regions involved in postural

control during the postural control task. FC refers to the statistical

interdependencies between the physiological time series of two

regions. In the event of a brain injury, the cortical lesion or the axonal

damage can disrupt not only the structural integrity of the white mat-

ter (WM) system but also the FC between regions (Gratton, Nomura,

Pérez, & DEsposito, 2012). Regardless of the type of network (i.e., the

physical synaptic connection between the set of neurons or the func-

tional connection between activities of two brain regions), a graph

theory-based approach is a promising tool to quantify the FC network

organization wherein the whole brain is viewed as a graph with sev-

eral nodes (e.g., anatomically parcellated region). Using these quantifi-

able measures to identify the cortical biomarkers of balance deficits in

TBI could better guide us in developing intervention strategies. This

brings us to three research questions:

1. How do the functional networks pertaining to the balance perturba-

tion task change due to TBI?

2. Are the global task-specific connectivity measures derived using

graph-theory highlight specific brain functional impairment related to

balance deficits in TBI?

3. Are task-based brain FC measures associated with the structural

integrity of WM?

In pursuit of answers to these questions, we look at the graph-

theoretical perspective of brain networks. In this framework, the brain

connectivity graph is considered as a network made of nodes and

edges. Each node corresponds to a cortical region of interest (ROI;

based on anatomical/functional parcellation) and the edge corre-

sponds to the strength of the FC between any two connected nodes.

Using these fundamental elements of a graph network, graph theory

aims at computing several metrics (i.e., node degree, local and global

efficiency [GE], clustering coefficient, modularity, etc.) to characterize

and study the functional or structural organization of a network of

nodes and edges to better understand the neuroanatomical and neu-

rophysiological basis of brain function. A graphical illustration is pres-

ented in Figure 1 to describe the basic concepts of network

neuroscience related to this study.

In particular, the concept of functional integration and functional

segregation is gaining significant attention in the network neurosci-

ence community (Cohen & DEsposito, 2016; Hagmann et al., 2008;

Newman, 2006; Rubinov & Sporns, 2010; Stam, 2014). In this concep-

tual framework, as shown in Figure 1, the connectivity structure of

the brain is considered to be organized in several statistically indepen-

dent clusters of nodes or subnetworks referred to as modules. The

nodes in each module are densely connected to each other while

being sparsely connected to other nodes of the brain, forming a com-

munity structure (Sporns, 2013). In this context, the brain must balance

its capacity to segregate information within modules to perform a spe-

cialized neural function in local circuits, with its ability to integrate

information between modules. The functional organization of the

brain into modules and their functional integration and segregation

are data-driven based on the FC matrix between all nodes (cortical

ROIs in this context). Functional segregation tells us how well the

nodes within the modules (cortical ROIs in this context) tend to have

a statistical dependence between their time-series (Sporns, 2013).

Contrarily, functional integration represents the joint processing of

specialized information across subnetworks (or modules). In the con-

text of our study, we could posit that during the postural perturbation,

brain subnetworks or modules must perform segregated functional

F IGURE 1 Illustration of graph-theoretic measures. In the context of brain networks in this study, every anatomical region-of-interest is a
node, whereas the connection between nodes is termed as an edge. Colored shaded regions correspond to modules which are groups of
interconnected nodes but have fewer connections to other modules. On the left, the concept of network segregation is presented as a network
comprising of multiple modules (or segregated subnetworks) whereas, on the right, the network integration is illustrated as a group of distant
regions interconnected by long-range connections via connector hubs (nodes with a high degree of connectivity)
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tasks such as processing visuosensory inputs, planning for the com-

pensatory response, and actually executing the motor response, while

maintaining a certain level of sensorimotor integration between mod-

ules to execute a timely, well-measured and coordinated response. To

better understand the applications of graph theory in neuroscience,

we recommend a review by Sporns (2013).

However, to better understand the dynamic aspects of postural con-

trol, one needs to study the association between the posturography/bal-

ance control measures and the cortical activity recorded during the motor

task. The relevant literature on neuroimaging of postural control in a pedi-

atric TBI population is found in Diez et al. (2017) where the postural con-

trol indices were reported to be correlated with increased resting-state

FC of the prefrontal cortex. In another study by Wang et al. (2016), the

postural control change and age were shown to have significant inter-

action with the prefrontal and sensorimotor connectivity, thus indicating

differences in connectivity across age populations. Although these studies

demonstrate the correlation between the EEG sensor-based FC and pos-

tural control (Edwards, Guven, Furman, Arshad, & Bronstein, 2018;

Varghese, Staines, & McIlroy, 2019), sensor-space FC must be interpreted

with caution because of its spurious nature associated with the inherent

challenge caused by volume conduction; instead, the source-space EEG is

recommended for measuring the FC (Bastos & Schoffelen, 2015; Handiru,

Vinod, & Guan, 2018; Van de Steen et al., 2016).

For more comprehensive literature on the neuroimaging of human

postural control and balance function, readers may refer to the systematic

meta-analysis review article (Wittenberg, Thompson, Nam, & Franz, 2017).

As most of the aforementioned articles focus only on healthy individuals

(young and elderly), the inferences do not offer a complete understanding

of balance deficits in the clinical populations suffering from such as TBI

and stroke. Moreover, the fMRI-based neuroimaging of the postural task

is impractical due to the device constraints of an MRI scanner; thus, EEG

offers a unique advantage of being able to noninvasively record the neural

recordings while the participant is performing the postural task.

In a preliminary study published by our group, we showed that

the N1 amplitude (a type of event-related negative potential) and the

center of pressure (COP) displacement were lower in the TBI group as

compared to healthy controls (HC; Allexandre et al., 2019). Further,

we would like to investigate the changes in cortical connectivity due

to postural perturbation in TBI and healthy individuals. We hypothe-

size that the postural control deficit in TBI could be associated with

the altered FC during a balance perturbation task.

While several studies investigated the changes in the cortical

activity during the lower-limb motor tasks (Munia, Haider, Schneider,

Romanick, & Fazel-Rezai, 2017; Slobounov, Teel, & Newell, 2013;

Wittenberg et al., 2017), the current understanding is still inadequate.

Not only should we be able to quantify the functional measures using

kinematic factors (e.g., trajectory, the COP, limits of stability, etc.) but

also be able to complement the underlying neurophysiological mecha-

nism of balance control through different modalities. Thus, in this arti-

cle, we present a group-level analysis of structural and functional

mechanisms of postural instability in TBI patients.

Notwithstanding the published literature on FC changes during

postural control tasks in healthy individuals (Varghese et al., 2019;

Wang et al., 2016), the studies are scarce in TBI or other clinical

populations. This motivated us to bridge the knowledge gap of the

neural correlates of balance deficits in TBI.

The current understanding points to the fact that TBI can cause

both focal injuries and diffuse axonal injury (DAI), which disconnects

large-scale brain networks (Ham & Sharp, 2012; Sharp, Scott, &

Leech, 2014). DAI is commonly induced by a sudden acceleration-

deceleration or rotational force, which is mainly affecting WM networks

such as corpus callosum and subcortical WM structures (Adams

et al., 1989; Basser & Pierpaoli, 1996; Inglese et al., 2005). The injuries

are seldom visible on computed tomography (CT) and conventional MRI

scans, besides the fact that not many approaches are available to assess

the WM damage (Adams et al., 1985). Previous studies have suggested

that the DAI is only visible by using advanced neuroimaging techniques

that can distinguish microstructural tissue damages (Douglas et al., 2018;

Smith et al., 2019). Using diffusion tensor imaging (DTI), WM connectiv-

ity, and integrity changes can be identified by several measures of

diffusion anisotropy along fiber tracts (Douglas, Iv, et al., 2015; Douglas,

Michael, et al., 2015). Fractional anisotropy (FA) measures the direction-

ality of water diffusion or the amount of diffusion asymmetry within a

voxel or WM tract. Mean diffusivity (MD) quantifies the total water

diffusion, regardless of its direction (Uddin, Figley, Solar, Shatil, &

Figley, 2019). Mode of anisotropy (MA) is a measure recently developed

to help differentiate the local diffusion profile between a planar disc-like

(as in fiber crossing) shape and a linear, cylindrical shape (as in unidirec-

tional converging fibers bundle) (Ennis & Kindlmann, 2005).

DTI approach has been quite promising in evaluating WM DAI. Previ-

ous studies have shown that damaged WM due to TBI causes increased

MD and reduced FA in WM (Shenton et al., 2012). Our previous work

reported the relationship between region-based DTI connectivity

(FA values) and physical and cognitive performances in TBI patients (Alivar

et al., 2020). Although a few studies have explored the association between

motor impairments and WM integrity in TBI populations (Caeyenberghs

et al., 2010a, 2010b; Caeyenberghs et al., 2011; Drijkoningen et al., 2015),

we would like to further investigate the association between the changes

in DTI-based measures and balance deficit-related FC in TBI.

This work aims to study the graph-theoretical properties in an FC

graph computed from the source-constructed EEG during a balance

perturbation task in TBI. This is the first study to report the changes

in functional integration and segregation during a postural control task

in TBI to the best of our knowledge. Another key contribution is the

investigation of the association between the structural and FC per-

taining to postural control in TBI and its relation to balance outcomes.

2 | MATERIALS AND METHODS

2.1 | Participants

In this study, 18 individuals with chronic TBI and 18 HC with no his-

tory of brain injury participated. Participants were recruited through

our in-house patient information management system and Kessler

Institute for Rehabilitation. The definition of TBI was adopted from
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the TBI Model Systems National Database (“Identification of Subjects

for the TBI Model Systems National Database”), where one of the fol-

lowing criteria must be met (a) loss of consciousness for 30 min or

more; (b) posttraumatic anterograde amnesia for 24 hr or more;

(c) lowest Glasgow Coma Score (GCS) in the first 24 hr ≤ 15 (unless

due to intubation, sedation, or intoxication); or (d) evidence of signifi-

cant neurological injury on CT/MRI (e.g., subdural hematoma, cerebral

contusion, subarachnoid hemorrhage). Severity was further defined

using the following GCS score criteria (Teasdale & Jennett, 1974): mild

(14–15), moderate (9–13), or severe (3–8). Injury severity was con-

firmed from medical records when possible; in the absence of medical

records, severity was determined by family member attestations of

the length of loss of consciousness/coma. Three participants were

classified as “moderate/severe” due to the lack of information to

make the distinction. Inclusion criteria for participants were they must

be: (a) aged between 18 and 65 years, (b) diagnosed with a TBI at least

6 months prior to the participation (as defined above) or be a HC,

(c) medically stable in the past 3 months, and (d) be able to stand

unsupported for 5 min. Exclusion criteria were as follows: (a) history

of lower-limb injury in the past 90 days, (b) history of medication that

could affect the balance/muscle coordination, (c) having had any addi-

tional orthopedic, neuromuscular, or neurological conditions that

could affect balance, (d) having had a penetrating TBI, and (5) have a

history of previously diagnosed balance impairments (prior to TBI).

Upon careful visual inspection of the raw EEG data, we excluded

the data from four participants (one TBI, three HC) as the signals were

too noisy. This resulted in the inclusion of 17 TBI and 15 HC subjects

in our EEG data analysis. Our DTI analysis was further limited to a

subset sample of 12 TBI and 9 HC because they failed to meet MRI-

related inclusion/exclusion criteria or refused to consent to the MRI

scan. A summary of the demographics is presented in Table 1.

2.2 | Data acquisition

2.2.1 | MRI data acquisition and processing

A high-resolution T1-weighted (T1-W) image using MPRAGE

sequence was acquired using the Siemens Skyra 3 T scanner

(Erlangen, Germany) at the Rocco Ortenzio Neuroimaging Center at

Kessler Foundation. The following settings were used in the whole-

brain volumetric acquisition with the following specifications: 1-mm

isotropic voxel resolution, TE = 3 ms; TR = 2,300 ms; 1-mm thick

176 slices; field of view (FOV) 256 � 256 mm2.

A diffusion weighted (DW) dataset were collected with 64 non-

collinear DW gradients with b = 1,100 s/mm2 and 8 b = 0 images;

matrix size = 128 � 128; FOV = 256 � 256 mm2; TE = 75 ms;

TR = 9,000 ms; isotropic voxel dimensions = 2 mm; and 66 slices.

The gradient-echo field map images were acquired to correct for geo-

metrical distortion caused by susceptibility artifacts. The image

processing was performed using the FSL 6.0 toolbox that includes:

(a) skull stripping using the Brain Extraction Tool; (b) eddy current cor-

rection; and (c) DTIFIT diffusion tensors using FDT (FMRIB's Diffusion

Toolbox, http://www.fmrib.ox.ac.uk/fsl, Oxford, UK). The generated

results include parametric maps of DTI metrics, including MD, MA,

and FA. To measure the DTI parameters in WM regions only, we first

performed tissue segmentation on T1-W images for each individual.

Using FSL FAST (Zhang, Brady, & Smith, 2001), each skull-stripped

T1-W image was segmented into three different classes of tissue

probability maps namely WM, gray matter, and cerebrospinal fluid,

and then transformed into a binary mask of WM using a threshold of

0.7. This threshold was chosen based on a comparison of FA histo-

grams in WM-only and non-WM regions as in Benson et al. (2007).

Next, these thresholded WM binary masks were applied to the MNI

template-registered FA, MD, and MA maps to extract the global WM

FA, WM MD, and WM MA metrics using FSL maths and FSL stats

(Smith et al., 2004). Also, the voxel-wise statistical analysis of the FA

images was carried out using the tract-based spatial statistics (TBSS)

(Smith et al., 2006) tool from FSL. First, all the FA data across subjects

were aligned to the high-resolution FMRIB58_FA standard space

image using the nonlinear registration (Andersson, Jenkinson, Smith,

et al., 2007; Smith et al., 2007), and subsequently mapped into a

1 � 1 � 1 mm standard space. These data were then averaged across

subjects to obtain the group's mean FA image, from which the mean

FA skeleton was derived as a reflection of the center of fiber bundles.

An FA threshold value of 0.2 was used for the FA skeleton to exclude

tracts with high variability among subjects as well as gray matter and

poor WM representations (Smith et al., 2006). Finally, the subject-

specific FA images were projected onto the mean FA skeleton to

perform a between-group analysis with the FSL function “randomize”

TABLE 1 Summary of participant
characteristics

Parameters TBI HC p-Value

N 17 15

Severity Mild = 3; moderate = 3; NA NA

Moderate/severe = 3; severe = 8

Years post injury (mean, range) 10.04, [1.67, 57.87] NA NA

Age (mean ± SD) 48.7 ± 12.5 47 ± 12.8 .7

Gender (M/F) 13/4 8/7

Height in cm (mean ± SD) 177.3 ± 8.6 171.9 ± 10.8 .13

Weight in kg (mean ± SD) 90.87 ± 22.8 78.26 ± 19.4 .11

Abbreviations: HC, healthy controls; TBI, traumatic brain injury.
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and the threshold-free cluster enhancement and family-wise error

corrected at p < .05 (Salimi-Khorshidi, Smith, & Nichols, 2011). In

addition to FA, diffusivity maps based on MD and MA were created

as described above.

2.2.2 | Postural data acquisition and processing

A computerized dynamic posturography (CDP) platform (NeuroCom

Balance Master, NeuroCom Intl, Clackamas, OR) as shown in Figure 2

was used to study the neural and postural response to unpredictable

balance perturbations. Henceforth, we use the term “CDP platform”
and “balance platform” interchangeably. The participants were asked

to stand on the balance platform, and they were subject to five blocks

of random, unpredictable perturbations in the anterior (forward) and

posterior (backward) sinusoidal perturbations at 0.5 Hz, (two cycles

for a total of 4 s duration) at low (0.5 cm) and high (2 cm) amplitude

with an inter-trial separation of 4–8 s. Thus, there are 2 � 2 combina-

tions of perturbation—anterior and posterior (direction), low and high

(amplitude). We measured the COP time series from the ground reac-

tion force data. The COP data were epoched, low-pass filtered

(10 Hz), detrended, and averaged across trials and conditions for each

subject. The COP displacement was computed as the cumulative dis-

tance traveled by the trial average COP in the anterior/posterior

direction for the first 2 s of the balance perturbation. In this article,

our analysis is limited to the high amplitude perturbation in the poste-

rior direction, which led to greater instability across all subjects.

2.2.3 | EEG data acquisition

Throughout the duration of the task, the brain activity was recorded

using the 64-channel EEG system (ActiCAP BrainAmp standard, Brain

Products, Munich, Germany) positioned according to the International

10–20 systems where the electrode “FCz” and “AFz” serve as the

common reference and ground respectively. EEG data were sampled

at 500 Hz and the skin-electrode contact impedance was ensured to

be below 20 k ohms by applying electrode gel. The EEG electrode

positions were 3D digitized using the Brainsight navigation system.

2.3 | Data processing

2.3.1 | EEG data preprocessing

EEG recordings were analyzed offline using the EEGLAB toolbox

(Delorme & Makeig, 2004). The raw EEG signals were first down-

sampled to 250 Hz, followed by band-pass filtering between 1 and

50 Hz using a fourth-order Butterworth filter. Thereafter, the line

noise was removed using the Cleanline plugin for EEGLAB; artifact-

contaminated channels and noisy continuous-time segments were

removed using the artifact subspace reconstruction (ASR) plugin for

EEGLAB (Mullen et al., 2015). The ASR parameter to reconstruct the

high variance subspace was set as 20 based on the findings reported

in Chang, Hsu, Pion-Tonachini, and Jung (2020). Subsequently, we

performed the independent component analysis via extended Infomax

algorithm (Makeig, Bell, Jung, & Sejnowski, 1996). The resulting ICs

presumably originated from the following physiological or miscella-

neous sources—brain, muscle, eye, line noise, channel noise, heart, or

other—were labeled accordingly with the ICLabel plugin in the

EEGLAB toolbox (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019).

The ICLabel is a machine learning approach, which has been trained to

classify the ICs derived from EEG data based on several characteristics

such as spectral properties, brain topography. Furthermore, to validate

the ICs supposedly generated by neural sources, the DIPFIT tool

(available in EEGLAB) was used that localizes the dipoles within the

brain volume (Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012;

Oostenveld & Oostendorp, 2002). In our study, we only retained the

ICs that were (a) identified as “Brain” by the ICLabel plugin and

(b) having a residual variance of <15% after localization by DIPFIT

modeling. Although we used the ICLabel for automating the labeling

of ICs, we also visually inspected whether the characteristic topogra-

phy and spectral properties of ICs corroborated with their respective

labels. Once the ICs were selected, we used the back-projected sensor

EEG for source localization. The EEG data processing pipeline is sum-

marized in the block diagram shown in Figure 3.

2.3.2 | EEG source localization and FC estimation

EEG source localization (ESL) allows one to study the cortical dynam-

ics using the underlying cortical sources estimated from the sensor-

space EEG (Handiru et al., 2018; Michel & Brunet, 2019). As shown in

Figure 3, ESL is implemented in two stages: forward and inverse

modeling. Forward modeling is done to compute the volume conduc-

tion model, which realistically approximates the electromagnetic field

propagation through different layers in the head model (scalp, skull,
F IGURE 2 A representative subject standing on the dynamic
posturography platform used in the study
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cerebrospinal fluid, gray matter, and WM). Using the subject-specific

anatomical data comprising of T1-weighted MRI ad 3D digitized EEG

positions, a realistic forward model is created using the Boundary Ele-

ment Method (Fuchs, Drenckhahn, Wischmann, & Wagner, 1998;

Gramfort, Papadopoulo, Olivi, & Clerc, 2010). Inverse modeling based

on standardized low-resolution electromagnetic tomography algo-

rithm (Pascual-Marqui, 2002) is used to compute the cortical time

series data. More mathematical details of the ESL can be found in the

supplementary material (Section S1). All the aforementioned steps

were implemented using Brainstorm software (Tadel, Baillet, Mosher,

Pantazis, & Leahy, 2011).

Once the source time series is obtained, we computed the ROI

time series by averaging the time-series of all the voxels with each

anatomical region parcellated according to the Desikan–Killiany Atlas.

Between each ROI, we then estimated the FC using imaginary coher-

ence Im Γð Þ with Γ�CU�U�V being a three-way tensor, where U and V

are the number of ROIs and frequency bins of interest, respectively.

In this study, Im Γð Þ is computed during the baseline (t =�2 to 0 s) and

task (t =0–2 s) period for each frequency bin and averaged across fre-

quencies to obtain coherence measures for the theta band (4–8 Hz),

alpha-band (8–13Hz), and beta-band (13–30Hz), given their distinct

role in sensorimotor function (Buchholz, Jensen, & Pieter

Medendorp, 2014; Omlor, Patino, Mendez-Balbuena, Schulte-Mont-

ing, & Kristeva, 2011).

2.3.3 | Graph-theoretic measures

As mentioned earlier, the functional segregation informs about the

local network properties, such as how densely connected are the sub-

networks (or modules) (Newman, 2006) (Figure 1a). On the other hand,

functional integration captures the information about the ease of inter-

action between these subnetworks (Figure 1b). The following graph-

theoretic measures to characterize the functional segregation and

integration of the network were computed for theta-, alpha-, and -

beta-band connectivity. The weighted rather than the binary defini-

tion of the connection or edge between nodes are used, which is

defined as the normalized connectivity strength with values between

0 and 1 (Rubinov & Sporns, 2010).

The measure of functional integration

Global efficiency: It describes how well connected is the neighborhood

of a node. It is a measure of the efficiency of information transfer

among all pairs of nodes in a graph, given by:

F IGURE 3 Block diagram of the EEG
processing pipeline
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GE¼ 1
N N�1ð Þ

X
i,j � G

1
dwij

ð1Þ

where N denotes the number of nodes in a graph G and dwij ¼P
auv � gw

i$j
f wuvð Þ denotes the shortest weighted path length between

the nodes i and j in a graph G computed using the Djikstra's algorithm.

gwi$j corresponds to the shortest weighted path between the nodes i

and j, and f wuvð Þ denotes the mapping from connection weight to the

path length (i.e., f wuvð Þ¼ wuvð Þ�1). In the context of brain connectivity,

wuv is the imaginary coherence value measured between the nodes u

and v . Greater GE would reflect overall more direct communication

that is, shorter path length between nodes.

The measure of functional segregation

Modularity (M) is a measure of functional segregation that describes the

community structure of a network (Newman, 2006). It compares the

number of connections within modules (or subnetworks) to the number

of connections across modules. Although there are different ways to

compute the modularity, here we used Newman's algorithm as provided

in the BCT toolbox (Rubinov & Sporns, 2010). The modularity score Qw

for a weighted connection matrix can be computed as follows:

Qw ¼ 1
lw
X

i,j � N
wij�

kwi k
w
j

lw

� �
δmimj ð2Þ

where lw is the sum of all weights in the given network (i.e., lw ¼P
i,jwij),

also defined as the network strength (NS). kwi and kwj denote the

weighted node degree of nodes i and j, respectively (i.e., kwi ¼P
j � Nwij).

mi and mj define the module containing the nodes i and j, respectively.

δ mi ,mj

� �
defines the community structure, that is, δmimj ¼1 , if both

nodes i and j belong to the same community.

2.4 | Statistical analysis

The normality assumption for all the data distribution was verified

using visual inspection and the Shapiro–Wilk test with a significance

level of α¼ :05. Based on the data distribution, the analysis was per-

formed using parametric or nonparametric statistics.

We performed the two-sample t test to compare the

demographics characteristics (age, height, and weight) and the

COP displacement. As the normality assumption was not met for the

Berg Balance Scale (BBS), we performed a nonparametric statistical

test (Wilcoxon rank-sum test) for cross-group BBS comparisons.

To investigate the cortical regions involved during the balance

perturbation task, we performed a nonparametric permutation test

(Maris & Oostenveld, 2007) at the population level (TBI and HC) to

identify significant voxel differences between the task period (t = 0–

2 s) and baseline period (t = �2 to 0 s) in each frequency band. As a

frequentist approach, the nonparametric permutation test does not

assume a specific distribution of the data. In the randomization proce-

dure, the group-averaged values of the cortical activity during the task

at each voxel within each group (TBI and HC) were permuted 1,000

times to generate a randomized distribution. For each permutation,

the empirical value based on the paired Wilcoxon signed-rank statis-

tics of the nonpermuted data was compared with the statistics

obtained from permuted distribution. The number of times the per-

muted statistic exceeding the empirical value divided by the total

number of permutations (N = 1,000) was used as the p-value. To cor-

rect for the multiple comparisons, we used the false discovery rate

correction based on the Benjamini–Yekutieli procedure (Benjamini &

Yekutieli, 2001) which is shown to be robust even under an arbitrary

dependency structure in the data.

Regarding the FC features, each imaginary coherence value

(FC measure) between any two nodes (or ROIs) for each subject was

tested for its statistical significance using Schelter's approach

(Schelter et al., 2006) as implemented in the Brainstorm toolbox. Only

significant connections were retained for further analysis of connec-

tivity strength and graph measures.

Since the data distribution turned out to be either normal or

pseudo-normal for the graph metrics, we performed a two-way

repeated-measures analysis of variance (2 � 2 rmANOVA) using a

general linear model, to compare across groups (TBI vs. HC) and time

(baseline period between �2 and 0 s and balance perturbation task

period between 0 and 2 s) for each frequency band. Whenever an

overall significant effect was found, corresponding post hoc analyses

using a two-tailed t test were performed to examine between-group

differences at baseline and/or during the task, between-group changes

over time, and/or changes within the group. The effect sizes are

reported using Cohen's d (for t test) and partial eta-squared (η2p for

rmANOVA) values. The statistical analyses related to ANOVA and

t test were performed with SPSS (version 26, IBM, NY), with the sig-

nificance level set at α < .05.

Furthermore, to determine whether network measures are associ-

ated with the behavioral measures, we calculated the Pearson correla-

tion. In the case of correlation analysis, we identified the influential

data points using a commonly accepted criterion of cook's distance

>4/N (Cook, 1977), where N is the number of data points in the

regression model. The corrections for multiple correlations were done

using the Bonferroni correction.

3 | RESULTS

3.1 | Participants characteristics and balance
outcomes

A two-tailed t test revealed no significant differences in the baseline

demographics (age, height, and weight) characteristics, as shown in

Table 1. With regard to the functional outcome measures, as shown

in Figure 4, TBI group showed a significantly (t = 3.07, p = .004,

Cohen's d = 1.09) larger COP displacement (mean ± SD = 11.64

± 4.28, 95% CI = [4.79, 19.18]) as compared to HC (mean

± SD = 7.82 ± 2.33, 95% CI = [4.7, 13.13]). Due to the non-normal

distribution of the BBS, we ran a Wilcoxon rank-sum test to compare

the BBS of both groups. We observed a significantly lower BBS
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(p = .007, z = 2.68) in TBI (median, range = 51, [34, 56]) than HC

(median = 56, range = [55, 56]).

3.2 | Task-induced cortical activity during balance
perturbation

The spatial distributions of the significant voxels in different fre-

quency bands are shown in Figure 5. The w-values (in the color bar)

denote the Wilcoxon signed-rank statistic (sum of the positive or neg-

ative ranks).

3.3 | Two-way rmANOVA

3.3.1 | Whole-brain FC network strength

Figure 6 shows the non-normalized FC and non-normalized node

strength for each ROIs (defined as the sum of connectivity values to

all other ROIs, i.e., how strongly connected that ROI is) based on

source-space EEG coherence in the theta- and alpha-bands during the

baseline period as well as during the balance perturbation task in TBI

and HC.

The two-way rmANOVA conducted on the graph measures are

summarized in Table 2 and the descriptive statistics in Table 3. Theta

coherence-based NS showed a main effect of Time, but only a

marginal nonsignificant Group effect and no Group � Time inter-

action. Within-group two-tailed t test revealed a significant baseline

to task change for both the groups (TBI and HC). Between-group

contrast analysis revealed a greater NS in HC compared to TBI at

baseline (Figure 6).

When comparing the alpha-band NS, two-way rmANOVA

revealed a significant main effect of Time as well as Group, but no

significant Group � Time interaction. Between-group contrast analysis

revealed a lower NS (alpha-band) in TBI compared to HC during the

task as well as the baseline (Figure 6).

We did not find any significant differences with the beta-band

results, but they are included in supplementary materials (Table S1)

for the sake of completion. Overall, we observed a pattern of globally

weaker connectivity and weaker node strength in TBI compared to

control.

F IGURE 4 A group-level comparison
of center of pressure (COP) displacement
(in cm) shown on the left. The black
horizontal line on the COP plot marks the
mean and the colored horizontal line
marks the SD. A group-level comparison
of the Berg Balance Scale (BBS) is shown
on the right as a boxplot due to its non-
normal distribution. The horizontal line

marks the median. The lower- and upper-
hinge of the boxplot corresponds to the
25th and 75th quartile, respectively.
Statistical significance values are plotted
as ***(p < .005), **(p < .01), *(p < .05),
respectively

F IGURE 5 Spatial distribution of task-specific significant voxels
mapped onto the cortex within each group. Nonparametric
permutation-based tests (N = 1,000 iterations) are used to identify
the voxels that are significantly different from the task period (t = 0–
2 s) as compared to the baseline period (t = �2 to 0 s). False
discovery rate (FDR) correction is done using the Benjamini–Yekutieli
procedure with the significance level of α = .05
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3.3.2 | Graph measures of functional integration
and segregation

Global network measures of functional integration and segregation

were measured using the GE and modularity (M), respectively, in

different frequency bands (during the baseline and balance perturba-

tion task) for each group. The boxplot summary of the group-level

comparison is shown in Figure 7. The results for beta-band coher-

ence connectivity were not significant, but for the sake of complete-

ness, they are included in the supplementary material (Tables S1

and S2).

Functional integration

The two-way rmANOVA was conducted on GE independently for

each of the frequency bands. Theta coherence-based GE showed a

significant main effect of Time and a marginal effect of Group, but no

significant Group � Time interaction. As illustrated in Figure 7, the

within-group post hoc analysis revealed a significant baseline to task

change in GE for both the groups.

In the case of alpha-band GE, the two-way rmANOVA showed a

significant main effect of Group but with no significant Time effect or

Group � Time interaction. Moreover, the within-group post hoc analysis

revealed no significant baseline to task change in GE for either group.
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F IGURE 6 Whole-brain functional connectivity based on source-space EEG coherence in different frequency bands in each group (traumatic
brain injury [TBI] and healthy controls [HC]) across time periods (baseline and task). Group-level connections are averaged and plotted as an edge
between different ROIs anatomically parcellated using Desikan–Killiany Atlas. For better visualization, the connections are thresholded at edge
weight = 0.3. Seed voxels of each ROI are indicated as spheres with a radius proportional to their node strength. On the right side, the boxplot
comparison of network strengths during the baseline versus task period is shown for both the groups. Statistically significant differences are
highlighted with asterisk * (p < .05), ** (p < .01), *** (p < .005), and marginally significant difference is highlighted with a † (p < .1). Visualization of the
cortical map is done with the help of BrainNet Viewer (Xia, Wang, & He, 2013)
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Functional segregation

To investigate the task and group effect on functional segregation,

the two-way rmANOVA comparison was performed on the modular-

ity (M) values derived from different frequency bands. We noticed a

significant effect of Time and Group for Theta-band M, but no

Group � Time interaction. The post hoc within-group analysis showed

a significant baseline to task decrease within both groups.

In the case of alpha coherence-based M, there was a significant

effect of Time and a marginally significant Group � Time interaction

but not of Group. Indeed, as shown in Figure 7, regions are function-

ally less segregated during the balance perturbation task compared to

baseline for HC but not for TBI. The post hoc analysis of baseline

to task change in alpha modularity revealed a marginally significant

difference (p = .067) between HC (�0.015 ± 0.013) and TBI (�0.005

± 0.017). Intuitively this suggests that during the perturbation task,

more cortical areas (aka “network node”) are interacting with each

other in HC, thus reducing the functional segregation, but not in TBI.

Given the lack of significance of beta-band results, we have included

the results in the supplementary material.

3.4 | Group differences in global DTI measures

Changes in structural networks were assessed by performing group

comparison of the global measures of DTI as FA, MD, and MA com-

puted for the whole brain for the subset of 12 TBI and 9 HC with DTI

data. All three metrics showed significant differences in the structural

integrity between TBI and HC subjects (see Figure 8a). More

TABLE 2 Summary of two-way repeated measures ANOVA

F(1,30) p Effect size F(1,30) p Effect size F(1,30) p Effect size

Network strength Theta 3.13 .09 0.095 58.9 .0001 0.66 0.002 .96 0.0001

Alpha 9.07 .005 0.23 11.07 .002 0.27 0.98 .33 0.032

Global efficiency Theta 3.05 .09 0.092 52.8 .0001 0.64 0.035 .96 0.0004

Alpha 8.86 .006 0.23 1.02 .32 0.032 0.17 .68 0.006

Modularity Theta 3.78 .06 0.11 28.6 .0001 0.49 0.42 .52 0.014

Alpha 1.31 .26 0.042 14.6 .001 0.33 3.52 .07 0.105

Note: Effect size is denoted using partial eta squared values (η2p ). Significant p-values (p < 0.05) are highlighted in bold.

Abbreviation: ANOVA, analysis of variance.

TABLE 3 Descriptive statistics and contrast analysis of graph measures

Baseline Task Within-group

Network strength Theta TBI 431 ± 59 666 ± 150 t = 6.02, p = 10e-5, d = 1.32

HC 478 ± 61 711 ± 147 t = 5.64, p = 10e-5, d = 1.41

Between group t = 2.2, p = .04, d = 0.98 t = 1.02, p = .32, d = 0.45

Alpha TBI 466 ± 38 519 ± 125 t = 1.66, p = .11, d = 0.4

HC 507 ± 51 605 ± 102 t = 3.3, p = .003, d = 0.8

Between group t = 2.6, p = .01, d = 0.91 t = 2.11, p = .04, d = 0.75

Global efficiency Theta TBI 0.36 ± 0.04 0.45 ± 0.05 t = 1.34, p = 10e-5, d = 5.4

HC 0.38 ± 0.29 0.47 ± 0.05 t = 5.62, p = 10e-5, d = 1.23

Between group t = 0.94, p = .35, d = 0.41 t = 1.9, p = .07, d = 0.83

Alpha TBI 0.39 ± 0.02 0.39 ± 0.043 t = 0.49, p = .63, d = 0.1

HC 0.41 ± 0.024 0.042 ± 0.045 t = 1.07, p = .29, d = 0.25

Between group t = 2.14, p = .04, d = 0.76 t = 1.74, p = .09, d = 0.62

Modularity Theta TBI 0.05 ± 0.01 0.034 ± 0.02 t = 3.27, p = .002, d = 0.82

HC 0.048 ± 0.01 0.025 ± 0.01 t = 5.07, p = 10e-5, d = 1.07

Between group t = 0.99, p = .33, d = 0.35 t = 1.54, p = .13, d = 0.54

Alpha TBI 0.044 ± 0.01 0.039 ± 0.01 t = 1.1, p = .28, d = 0.3

HC 0.044 ± 0.01 0.029 ± 0.01 t = 3.3, p = .003, d = 1.2

Between group t = 0.12, p = .90, d = 0.04 t = 1.9, p = .06, d = 0.67

Note: Between group (df = 30); within-group TBI (df = 32), within-group HC (df = 28), d: effect size is denoted using Cohen's d value. Bold values

represent significant p-values (p < .05).

Abbreviations: HC, healthy controls; TBI, traumatic brain injury.
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specifically, the global WM FA is significantly lower (t(1,19) = 3.4,

p = .003, Cohen's d = 1.49) in TBI (mean ± SD = 0.31 ± 0.026, 95%

CI: [0.29, 0.32]) than in HC (mean ± SD = 0.35 ± 0.03, 95% CI [0.32,

0.37]). MD values are significantly higher (t(1,19) = 2.65, p = .016,

Cohen's d = 1.14) in TBI (mean ± SD = 9.25e-4 ± 5e-4, 95% CI:

[8.9e-4, 9.6e-4]) than HC group (mean ± SD = 8.52e-4 ± 1e-4, 95%

CI: [7.9e-4, 9.1e-4]). Also, as shown in Figure 8a, significant difference

(t(1,19) = 2.13, p = .046, Cohen's d = 0.97) was observed for the

global MA between TBI (mean ± SD = 0.29 ± 0.03, 95% CI: [0.27,

0.31]) and HC (mean ± SD = 0.32 ± 0.02, 95% CI: [0.3, 0.33]).

To address the structural changes in brain WM between groups,

we conducted the voxel-wise analysis for the FA, MD, and MA images

using TBSS as shown in Figure 8b. For FA, areas highlighted in

red/yellow colors are regions where FA was significantly lower and MD

significantly higher (p < .05) in TBI compared to HC. Regions affected

are widespread and strongly overlap between FA and MD and notably

include the corpus callosum, corticospinal tract, and thalamus. No sig-

nificant difference in MA skeletons was observed between groups.

3.5 | Association between DTI measures and
behavioral measures

To explore the underlying association between WM damage and bal-

ance, the correlation between DTI global metrics (FA, MD, and MA) and

behavioral measures, that is, COP and BBS, in TBI patients were studied.

Given the multiple correlation analyses (three DTI measures � two

behavioral measures), we ran the Bonferroni correction with the

corrected p= .05/6 (i.e., .008). Upon correcting for multiple comparisons,

we did not find any correlation that survived the Bonferroni correction.

3.6 | Association between EEG graph-theoretic
measures and behavioral measures

To explore the brain-behavioral relation, Pearson correlation coeffi-

cients between EEG graph measures in each of the frequency bands

and behavioral measures (i.e., COP displacement [in cm] and BBS)

within the TBI group were calculated. To avoid spurious results given

the small sample size, any outlier with a strong influence on the corre-

lation based on the cook's distance D > 4/N criterion (Cook, 1977)

was removed. Both results with and without the outliers are reported

for completeness (Figure 9a). As the correlation analyses involved

three graph measures (NS, GE, and M) across three frequency bands,

and two behavioral measures (COP and BBS), we did the Bonferroni

correction for multiple comparisons with the corrected p-value being

p = .05/18 (i.e., .0027). Upon correcting for multiple comparisons, we

only observed a significant negative correlation between the theta

modularity and BBS (r = �.72, p = .001).

3.7 | Association between global DTI measures
and global EEG connectivity graph measures

To explore the underlying association between structural and FC graph

metrics during postural control task, the correlation between each of

the three functional graph metrics (GE, M, and NS) and global DTI met-

rics (FA, MD, and MA) were analyzed using the Pearson correlation

test. Due to the multiple comparisons (three DTI measures, three graph

measures in each of the three frequency bands), the Bonferroni-

corrected p-value is .05/27 (.002). The correlation between the beta-

band NS and the global MA (when outliers were removed: r = .89,

p = .0001) survived the Bonferroni correction. The significance level of

the correlation between the beta-band NS and the WM FA was close

to the Bonferroni-corrected significance level (r = .84, p = .0023 with-

out and r = .73, p = .0065 with outliers). A similar trend (but in the

opposite direction) was seen with the correlation between the beta-

band NS and the global WM mean diffusivity (r = �.77, p = .0055

without outliers; r = �.75, p = .0046 without outliers). Overall, these

results suggest a relationship between the structural integrity of the

WM system and the strength of the functional connections. For the

sake of completion, we report other significant correlations that did not

survive the Bonferroni correction in the supplementary material.

4 | DISCUSSION

In this study, we demonstrated the neural correlates of balance defi-

cits using global and topological measures of FC and structural

Theta Alpha

† †

†

Baseline Task
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Baseline Task
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Baseline Task
TBI

Baseline Task
HC

Baseline Task
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Baseline Task
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Baseline Task
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F IGURE 7 Group-level comparison of network measures of
functional integration (top half) and functional segregation (bottom
half) across frequency bands. The categorical scatter plot of the
network measures during the baseline and during perturbation (task)
within each group is shown above. Black horizontal line indicates the
mean and the colored horizontal lines indicate the SD. Statistically
significant differences are highlighted with asterisk * (p < .05), **
(p < .01), *** (p < .005), and marginally significant difference is
highlighted with a † (p <0.1)
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integrity of the WM in the TBI population as compared to HC. To the

best of our knowledge, this is the first report of EEG-based FC mea-

sures during a postural perturbation task in TBI and its association

with the altered WM integrity.

4.1 | Effect of TBI on balance

The widely used clinical measure of balance function using the BBS

showed an overall balance deficit and a significantly lower BBS score

in the TBI population compared to HC. However, there was a wide

range of deficits with half of our sample scoring near the healthy max-

imal values of 56, while the other half below 50, with the knowledge

that a score of 45 has been traditionally considered the cut-off for a

greater risk of falls (Berg et al., 1992, b).

Similarly, TBI as a group showed significantly greater postural

instability, that is, larger COP displacement (i.e., body sway) in

response to the balance perturbation compared to HC. This balance

impairment is, however, quite variable with half of our TBI population

having COP values in the range of those of HC.

Despite a moderate relationship between COP and BBS

(r = �.52, p = .03) in our sample, the two measures may reflect

(a)

(b)

F IGURE 8 (a) Boxplots showing the differences in global diffusion tensor imaging (DTI) measures across groups. Statistically significant
differences are highlighted with *(p < .05), **(p < .01). (b) Three views (sagittal, coronal, and axial) of significant differences in fractional anisotropy
(FA) and mean diffusivity (MD) using tract-based spatial statistics (TBSS) between traumatic brain injury (TBI) and healthy controls (HC) group.
The underlying image is the mean FA map, the green contour indicates the mean FA skeleton with a threshold of 0.2, and the red-yellow contours
(red showing higher p-values and yellow showing lower p-values) show the regions with significantly (p < .05) higher FA values and lower MD
values in HC group compared to TBI
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different aspects of balance control. Berg et al. found that BBS

was more strongly correlated with functional measures of balance

such as timed up-and-go than laboratory measures of body sway

during quiet standing or in response to perturbation (Berg

et al., 1992, b), which is consistent with our findings from our

group in the same population (Pilkar et al., 2020). The authors

suggested that BBS includes various tasks that may capture sev-

eral and different functional measures of balance impairment,

compared to the more controlled environment of laboratory mea-

sures (Berg et al., 1992, b). In comparison, the COP displacement

F IGURE 9 Plots of the ordinary least squares regression correlation between the functional outcome measure (Berg Balance Scale [BBS] in
the y-axis) and (a) theta modularity in the x-axis. (b) The significant correlations between the beta-band network strength during the postural task
within the traumatic brain injury (TBI) group and the global mode of anisotropy in white matter; similarly, (c) the beta-band network strength and
global WM fractional anisotropy; and (d) beta-band network strength and global WM mean diffusivity. The effect of outliers on the correlation is
highlighted with two separate regression lines (dashed line when outliers are removed, solid line when the outliers are retained). r and p-values
indicate the Pearson correlation coefficients and the significance level, respectively. rw and pw denote the correlation statistics when outliers are
also taken into account; rwo and pwo denote the correlation statistics without outliers
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during the balance perturbation measures the ability to dynami-

cally correct external disturbances.

It is finally worth noting that TBI severity at time of injury did not

correlate with and therefore, it is not predictive of long-term balance

deficit as measured by COP displacement or BBS.

4.2 | Effect of TBI on EEG brain connectivity and
graph measures

Postural control is a complex task that relies on the proper functioning

of distributed networks of sensorimotor-related brain regions

(Takakusaki, 2017). As TBI is often manifested as a DAI, the damage

of the WM system can disrupt the whole-brain network connectivity

and functioning (Caeyenberghs et al., 2012). Graph theory can help

identify alterations in the global brain connectivity organization

(Griffa, Baumann, Thiran, & Hagmann, 2013). Previous studies have

shown that TBI disrupts the optimal “small-world” architecture of the

network (as often observed in the healthy population), affecting

the optimal balance between local segregation within and global inte-

gration between specialized independent subnetworks (Griffa

et al., 2013; Imms et al., 2019; Zhou, 2017). We seek to evaluate how

TBI impairs this optimal integration/segregation balance at baseline

and during balance perturbation.

4.3 | FC during standing

Our graph-theoretical analysis revealed significantly reduced overall

connectivity strength during baseline in the theta-band but not in the

alpha or beta-band in the TBI group as compared to HC. This decreased

connectivity strength in lower frequency bands is in agreement with

(Boshra et al., 2020), who found lower delta and theta connectivity in

chronic mild TBI. Another study (Cao & Slobounov, 2010) also observed

decreased long-distance connectivity from frontal areas to other parts

of the brain, in the alpha band (the only explored band in the study).

However, this finding was for acute mild TBI 7 days after the concus-

sion, which may explain the discrepancies with our results. One of the

common findings reported in brain disorders is the hyperconnectivity

(increased FC) between certain areas within the disrupted network.

However, our results contradict the hyperconnectivity hypothesis in TBI

(Caeyenberghs, Verhelst, Clemente, & Wilson, 2017) where an increase

in connectivity strength or degree has been consistently found in

resting-state but also task-based fMRI literature such as in

Caeyenberghs et al. 2012 and Diez et al. (2017). Hyperconnectivity is

thought to result from an increase in local connection as a need to use

detour paths around neurological disruption (Hillary & Grafman, 2017)

or a compensatory response for the loss of long-range connections sec-

ondary to long-distance fiber tract damage (Venkatesan & Hillary, 2019).

The inclusion of more severe and chronic TBI in this study may explain

the difference, as it has been argued that more significant disruption

from severe injuries or long-term disease progression or age-related

degeneration may result in hypoconnectivity (decreased connectivity)

due to structural resource loss (Boshra et al., 2020; Hillary &

Grafman, 2017). This was illustrated in Boshra et al. (2020) where EEG-

based hyperconnectivity was observed in acute mild TBI and

hypoconnectivity in a chronic mild TBI. Alternatively, the brain imaging

modality (e.g., EEG vs. fMRI) might be a factor confounding this observa-

tion as suggested in Stam (2014), especially given that TBI may alter the

relationship between neural activity (EEG) and hemodynamics (fMRI)

(Medaglia, 2017). Another possible reason for the discrepancy is that the

brain networks are still involved in active control of balance during quiet

standing. Also, during this baseline period, sensorimotor networks are

considered to be involved in anticipatory processing of the forthcoming

postural perturbation (Varghese et al., 2019).

4.4 | Task effect

Regarding the balance task-related cortical activity, even though the

band-specific spatial pattern of activation is overall consistent between

groups, its amplitude is modulated differently by the task. We observe

a task increase in theta-band power suggesting an event-related syn-

chronization and a task decrease in alpha-band power indicating an

event-related desynchronization in both groups but of larger magnitude

in HC. This band specific task modulation is consistent with the findings

from an EEG-based balance perturbation study in healthy volunteers

(Peterson & Ferris, 2018). In terms of the functional mapping, based on

the visual inspection, we observed that most of the significant voxels

showing the contrast in theta and alpha-bands are located in the mid-

line central regions (e.g., paracentral lobule, superior parietal lobule, and

cingulate gyrus) pertaining to the lower-limb motor functions. The role

of these regions in postural control is well-documented in the literature.

For example, the cingulate gyrus is shown to calibrate the postural

response to a challenging continuous task (Goel et al., 2019) and the

role of the paracentral lobule in balance control is highlighted in Diez

et al. (2017), Goossens, Janssens, Caeyenberghs, Albouy, and

Brumagne (2019), Hagmann et al. (2008), and Boisgontier et al. (2017).

The involvement of the superior parietal region in detecting postural

instability is reported in Slobounov, Wu, and Hallett (2006).

Comparatively, we observed an overall increase in the network

connectivity strength (NS) from baseline to task with the largest effect

observed for theta (Figure 6) consistent with prior findings

(Peterson & Ferris, 2019). The increase in NS was similar for both

groups for theta, while it was significant only in HC for the alpha band,

and nonsignificant for the beta band. This resulted in a close to signifi-

cant lower alpha and beta NS in TBI compared to HC during the task.

These overall results point to impaired modulation of FC in alpha and

beta. Prior literature points to the evidence that the alpha oscillations

play a role in coordinating the event-related cortical processes in such

a way that they inhibit task-irrelevant functional networks but facili-

tates task-relevant networks (Klimesch, Fellinger, & Freunberger, 2011).

Furthermore, the function of alpha rhythms has been implicated in

anticipatory sensorimotor events (Babiloni et al., 2014; Talalay,

Kurgansky, & Machinskaya, 2018). Similarly, centroparietal beta con-

nectivity and activation have been implicated in attention and
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visuosensory processing to assist motor planning and execution

(Chung, Ofori, Misra, Hess, & Vaillancourt, 2017). This result is consis-

tent with our findings regarding increased connectivity and areas of

activation during the task.

Following our findings discussed above, theta-band activity has

shown to increase in the frontocentral and centroparietal regions sig-

nificantly, mainly when there is an increasing balance task demand

(Mierau et al., 2017; Peterson & Ferris, 2018; Solis-Escalante

et al., 2019). Frontocentral and frontoparietal theta band connections

also play a vital role in postural control by increasing attention and

sensorimotor processing to improve error detection and processing

for the proper planning and execution of postural movements

(Peterson & Ferris, 2019).

Greater activation for TBI, especially in the prefrontal area as

seen in the aging population with the increasing postural challenge

(Huang, Lin, & Hwang, 2017), would suggest an increased attentional

demand and/or more significant cortical effort to maintain balance.

We speculate this could be due to more considerable postural instabil-

ity, possibly as a compensatory response to reduced connectivity.

Similarly, the impaired alpha and beta neural activation and network

connectivity strength modulation, without a significant impact on the

balance control performance in terms of body sway, would suggest

that the TBI participants were able to find a compensatory way to

maintain balance for our specific balance task.

4.5 | Functional integration

Our findings showed no significant between-group differences at

baseline in terms of the global network measures of integration,

suggesting that the brain dynamics might not vary much due to

pathology when there is no task demand. We observed a significant

increase in theta band (but not alpha- or beta-bands) GE during the

task. This result is consistent with the findings in Huang, Chang, Tsai,

and Hwang (2016), where an increase in GE, that is, functional inte-

gration, was observed when participants were challenged to stand

on a tilted as compared to a level-surfaced stabilometry platform.

This functional integration is achieved likely through long commis-

sural and association fibers linking different brain regions across- and

within the hemisphere, respectively (Stam, 2014). In particular, the

regions that are activated along the parasagittal line of the brain

(e.g., cingulate gyrus, paracentral lobule, parietal cortex) are part of a

highly structurally connected backbone and can serve as a “hub” of

communication between other regions to facilitate functional inte-

gration (Hagmann et al., 2008). The important integrative role of

theta is consistent with the view that the neural synchronization at

low frequency facilitates distant regions' coordination, especially in

response to increased task demands (Babiloni et al., 2017). Interest-

ingly, at baseline, the theta-band GE was lower (marginally signifi-

cant) in TBI than in HC, but not during the task. We could speculate

that the greater increase in theta activity in TBI may reflect the

greater effort needed to increase NS and GE during the task, which

was lower than HC at baseline.

4.6 | Functional segregation

Concerning the functional segregation, we observed a decrease in

modularity during the perturbation task compared to baseline in theta

for both groups, in alpha for HC only and none for beta. More specifi-

cally, we noticed a significant reduction in the alpha modularity from

baseline to task in HC but not TBI. Our conjecture is that greater cog-

nitive demand during the task are likely to result in decreased func-

tional segregation in HC, a finding that is corroborated by Cohen and

DEsposito (2016). In HC, the decrease in modularity during balance

perturbation could be attributed to the increased complexity that

necessitates the merging of network modules segregated during the

resting state (Hearne, Cocchi, Zalesky, & Mattingley, 2017). Neuroim-

aging of stabilometry studies substantiate our findings (Huang

et al., 2016; Varghese et al., 2019). Varghese et al. (2019) postulated

that the neighboring cortical areas of fronto-centroparietal areas form

new short-range connections to meet the increased demand and inte-

gration required to maintain balance control. Their findings of

decreased modularity during the perturbation-related task compared

to baseline were attributed to cognitive processes possibly involved in

anticipatory proprioception in healthy individuals. Interestingly, there

is a lack of significant change in alpha modularity in TBI compared to

HC during the task. This could be the result of axonal damage in TBI,

disrupting task-specific connections which might lead to difficulties in

integrating different modules.

Regarding the temporal dynamics of brain activity, we construe

that these networks are functionally segregated or sparsely connected

during the baseline; however, they communicate with each other

depending on the demand for tasks. Balance control is a complex task

requiring the proper coordination of a wide visuosensory-motor net-

work (Takakusaki, 2017). The visuomotor and sensorimotor networks

must quickly integrate the proprioceptive information from the lower

limb (perturbation) in the current context of postural response to an

external perturbation. As a responsive action, the supplementary motor

area and associated systems try to initiate the upright posture control.

4.7 | Association between the EEG graph
measures and the functional outcomes (COP and BBS)

Only theta modularity was found to be negatively correlated with

BBS, and this correlation was statistically significant after corrections

for multiple comparisons between graph and functional measures.

This correlation suggests that a decrease in segregation would be

associated with increased functional performance (i.e., higher BBS).

This is consistent with the proposed important role of theta band as

the conduit and SMA as a major hub of information exchange

(i.e., decreased segregation) between a wide network of cognitive and

visuo-sensorimotor regions to facilitate the proper detection and plan-

ning of corrective motor response to balance perturbation

(Peterson & Ferris, 2019). Similarly, in a resting-state FC study con-

ducted by Scala et al. (2019), GE was negatively correlated with COP

displacement suggesting that the increase in GE would reflect better
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postural control. Theta-band modularity at rest was also recently

found to be a predictor for motor learning in a sensorimotor learning

task (Miraglia, Vecchio, & Rossini, 2018).

Our correlation results remain exploratory, and caution should be

exercised in interpreting this observation as causal.

4.8 | Effect of TBI on structural damage

As previously mentioned, TBI can damage the WM structure due to

DAI, potentially disrupting global functional network organization and,

consequently, motor response. WM structural changes in TBI patients

and HC were quantified using global DTI measures. Consistent with

previous research studies (Douglas, Iv, et al., 2015; Douglas, Michael,

et al., 2015; Hashim et al., 2017; OPhelan, Otoshi, Ernst, &

Chang, 2018; Voelbel, Genova, Chiaravalotti, & Hoptman, 2012), we

found a significant reduction in global WM microstructural integrity in

TBI as reflected by lower FA and MA, and higher MD compared to

controls. Reduced WM integrity and tract degeneration have consis-

tently been reported in chronic TBI (Caeyenberghs et al., 2014;

Hashim et al., 2017; Wallace, Mathias, & Ward, 2018). Following DAI,

WM tract degeneration would lead to greater free water molecules

movements, resulting in lower FA and higher MD. Furthermore,

reduced MA would signify more disc-like, less cigar-like shape water

diffusion, that is, more fiber crossing and less unidirectional fiber bun-

dle (Douaud et al., 2011; Yoncheva et al., 2016), which could reflect

the deterioration and thinning of WM tracts.

Furthermore, using TBSS, we compared the WM tracts in skele-

tonized maps in TBI and HC as a voxel-based group-level analysis for

all three measures. Significant group differences were found for FA

and MD, but not for MA. WM injury seems to be widespread and

strongly overlaps between and FA and MD. In particular, the main

regions affected include the thalamus, corticospinal tract, and most of

the corpus callosum, which is consistent with prior findings (Hashim

et al., 2017; OPhelan et al., 2018; Owens, Spitz, Ponsford,

Dymowski, & Willmott, 2018; Veeramuthu et al., 2015). These find-

ings have important implications given the role of the corpus callosum

in cross-hemisphere communication and error detection in balance

perturbation (Peterson & Ferris, 2018; Peterson & Ferris, 2019) and

thalamus and corticospinal tract in balance-related sensory-motor

functions (Surgent, Dadalko, Pickett, & Travers, 2019). Future ana-

lyses should further investigate the regional and tract-based WM

damage and their potential role in balance deficit and abnormal pos-

tural response to the perturbation task.

4.9 | Association between DTI and BBS, and DTI
and graph measures

There was no statistically significant correlation between the DTI

measures computed on the whole-brain WM and the functional

outcome measures such as COP and BBS. Our future work will

investigate whether diffusivity characteristics in more local tracts

would better correlate with posture control impairment in TBI than

global measures of WM integrity, as previously shown for the mid-

dle and inferior cerebellar peduncles (Caeyenberghs et al., 2010a,

2010b).

However, we did notice significant correlations between the DTI

measures (FA, MA, and MD) and EEG graph measure (beta-band NS).

The findings suggest that the WM integrity was positively associated

with the FC strength in beta-band during the balance task. This is

supported by Chu et al. (2015), in which the EEG source-based FC

(particularly, the high-frequency beta and gamma-band coherence)

was shown to be associated with WM connectivity. Interestingly, only

the high-frequency bands (beta and gamma) FC was significantly

reduced when the structural support was absent, which may explain

the observed relation between WM integrity and FC connectivity

strength only in beta-band in our study. While we remain cautious in

not overinterpreting this result, future studies should further explore

the structural–functional correlation in TBI.

4.10 | Limitations and future directions

We acknowledge that our study has some limitations, particularly with

the small sample size. Also, there is another limitation concerning the

heterogeneity within the sample population; this is particularly chal-

lenging in the TBI group because of the varying degrees of injury

(mild/moderate/severe) not necessarily correlating with the motor

deficits. However, we have tried our best to control for other factors

such as age, height, and weight, which contribute to the postural con-

trol performance. Similarly, the wide range of balance impairment in

TBI with the inclusion of individuals without deficit may have poten-

tially reduced or eliminated a group difference for some outcomes.

Future studies may want to have a balance impairment-related inclu-

sion criterion and consider a stronger study design that also compares

TBI with and without impairment.

We cannot completely rule out the potential effect of motion arti-

facts on our results especially for low frequencies (Nordin, David

Hairston, & Ferris, 2019). However, source-localized measures and

phase coherence rather than channel-based amplitude-based connec-

tivity or activity, are more immune to motion artifacts. Also, the band-

specific rather than a broad spatial pattern of activity modulation

(Figure 5) as well as the negative rather than positive correlation

between COP (movement) and integration, would suggest a true neu-

ral response to the task.

While we integrated information available from both task-based

neuroimaging using the EEG and the structural imaging using DTI, it

is worth highlighting that the FC between the time-series of two

regions is often modulated by factors independent from the struc-

tural connectivity. An FC measure between two areas can be

influenced by the third region with no direct fiber track in between,

but still coordinated functionally via cortico-thalamocortical path-

ways (O'Reilly, Lewis, & Elsabbagh, 2017). We recommend that

future studies investigate the causal association between structural

and functional connections.
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We must acknowledge that we did not compare the graph met-

rics to the null model in our graph-theoretic analysis. In our defense,

we highlight that the choice of the null model plays a critical role, and

it can dramatically change the small-world properties of the network

(Fallani, Richiardi, Chavez, & Achard, 2014). Moreover, the choice of

FC measurement (e.g., correlation/coherence) can also affect the com-

parison concerning the null model. Nevertheless, unlike the

correlation-based FC measurement, which often results in a spurious

association between two regions, the coherence-based FC is tested

for its statistical significance using Schelter's approach (Schelter

et al., 2006). Incorporating these methodological details is our priority

in the upcoming graph-theoretic studies.

In this study, our focus has been primarily on the global measures

of EEG connectivity graphs. However, the underlying neural mecha-

nisms of the postural control are too complex to summarize with a

single statistical value. Depending on the research question, this can

be either a strength or a weakness. In our current approach, we

attempted to address whether we can identify a type of neural bio-

marker based on the EEG connectivity graph. While the global graph

measures allow us to explore the association between the

connectivity-based graph measures and the functional outcomes, it

still does not answer questions related to the local characteristics of

task-relevant networks. Notwithstanding this limitation, we did

explore the local properties based on the weighted node strength and

the significant cortical activity in the ROIs to the postural control.

Future work will examine the significance of these nodes in terms of

local graph properties such as rich-club coefficient and centrality mea-

sures and their relation to local structural integrity measures.

5 | CONCLUSIONS

To the best of our knowledge, this is the first study investigating brain

network segregation and integration in a TBI population during a pos-

tural control task performed on a computerized stabilometric platform.

The findings from EEG graph measures in TBI compared to HC revealed

altered baseline and task modulation of global graph-theoretic mea-

sures of NS, GE, and modularity in the brain functional networks. Inter-

estingly, reduced network connectivity strength and integration, and

greater network segregation were correlated with poorer balance per-

formance (COP and BBS) and greater structural brain damage. Findings

from the graph measures were found to be frequency bands and

region-specific, thus highlighting their distinct role.

The combined use of EEG-based FC measures during the task

and the DTI-based structural integrity measures helped provide new

insights into the underlying structural–functional mechanisms of pos-

tural control in TBI. These observations could pave the way for future

research to identify cortical biomarkers of postural control deficits in

TBI, thus potentially assisting clinicians and researchers to better

understand neuromuscular disorders.

We believe that our findings and inferences from this pilot study

should provide directions to future studies on brain connectivity in

TBI and other neuropathologies.
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