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A B S T R A C T

Modeling the trend of contagious diseases has particular importance for managing them and reducing the side
effects on society. In this regard, researchers have proposed compartmental models for modeling the spread of
diseases. However, these models suffer from a lack of adaptability to variations of parameters over time. This
paper introduces a new Fuzzy Susceptible–Infectious–Recovered–Deceased (Fuzzy-SIRD) model for covering the
weaknesses of the simple compartmental models. Due to the uncertainty in forecasting diseases, the proposed
Fuzzy-SIRD model represents the government intervention as an interval type 2 Mamdani fuzzy logic system.
Also, since society’s response to government intervention is not a static reaction, the proposed model uses a
first-order linear system to model its dynamics. In addition, this paper uses the Particle Swarm Optimization
(PSO) algorithm for optimally selecting system parameters. The objective function of this optimization problem
is the Root Mean Square Error (RMSE) of the system output for the deceased population in a specific time
interval. This paper provides many simulations for modeling and predicting the death tolls caused by COVID-19
disease in seven countries and compares the results with the simple SIRD model. Based on the reported results,
the proposed Fuzzy-SIRD model can reduce the root mean square error of predictions by more than 80% in
the long-term scenarios, compared with the conventional SIRD model. The average reduction of RMSE for
the short-term and long-term predictions are 45.83% and 72.56%, respectively. The results also show that
the principle goal of the proposed modeling, i.e., creating a semantic relation between the basic reproduction
number, government intervention, and society’s response to interventions, has been well achieved. As the
results approve, the proposed model is a suitable and adaptable alternative for conventional compartmental
models.
1. Introduction

Epidemic diseases have arisen in different periods of human civ-
ilization, and with all the sufferings they have inflicted on human
beings, they have changed the course of history. The Black Death and
the Spanish flu are Two examples of such epidemics [1]. Black death
occurred in the Middle Ages when it was impossible to record data
extensively. However, there are scattered monographs on this subject.
Especially in the post-disease environment, its impact on thoughts,
economy, and society has been recorded better. Although the impor-
tance of recording data was more widely understood in the late 19th
and early 20th centuries, during the Spanish flu, governments sought to
conceal disease statistics due to the condition arising from the conflict
between countries in the First World War [2]. However, compared
with the Black Death, information about the subsequent effects of this
pandemic is more available and precise. With all our advances in the
early 21st century, we are witnessing another pandemic, COVID-19.
Starting from Wuhan city in Hubei Province of the People’s Republic of
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China, COVID-19 has spread to many other countries [3]. By observing
the basic reproduction number (𝑅0) and the Case Fatality Rate (CFR)
of the COVID-19 disease, an alarm has been sounded for a global crisis.
The emergency committee of the World Health Organization (WHO) de-
clared a global health emergency on 30 January 2020. Unlike previous
pandemics, many countries actively identified cases and reported death
tolls. Excavating the connection of this information with the economic,
social, and demographic parameters makes governments more ready to
deal with the conditions created during and after the pandemics.

Most of the efforts done to analyze the COVID-19 data include
predicting the trend of infections and deaths. In [4], the authors
have proposed a hybrid approach for forecasting the COVID-19 time
series by combining the fractal dimension and fuzzy logic. In this
paper, the complexity of the time series dynamic has been measured
using the concept of fractal dimension. Also, the uncertainties of the
prediction process have been managed using fuzzy logic. The inputs
of the fuzzy system are linear and nonlinear fractal dimensions. The
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time series of both confirmed cases and death tolls are under study
in this paper. In another study, ensemble neural networks have been
used to make predictions about the COVID-19 time series, and fuzzy
logic has been used to aggregate the responses of the neural networks-
based predictors [5]. As a powerful tool for managing uncertainties,
fuzzy logic has been used to make the final decision in the forecasting
process. This study also uses the confirmed cases and deaths data for
simulations. In [6], deep learning methods and the Bayesian optimiza-
tion (BO) algorithm have been combined to predict the confirmed
cases of COVID-19. The Bayesian optimization algorithm has been
used to select parameters of three deep learning models; multi-head
attention, long short-term memory (LSTM), and convolutional neural
network. The results achieved by the proposed approaches have been
compared with many other methods, too. According to the authors of
this paper and based on the performance measures, the LSTM-BO has
outperformed other models. In [7], Auto-Regressive Integrated Moving
Average (ARIMA) and artificial neural networks have been utilized for
predicting the COVID-19 time series. Another model, which has been
utilized for COVID-19 time series prediction, is the Gompertz model [8,
9]. In [10], support vector machine (SVM), LSTM, Gated Recurrent
Units (GRU), and Bi-LSTM models have been studied for forecasting
the COVID-19 time series for several countries. Machine learning and
cloud computing have been combined to analyze and predict outbreak
behavior in different countries [11]. Also, the Gaussian mixture model
has been utilized for predicting the COVID-19 time series [12].

In [13], to have a better understanding of COVID-19 dynamics, a
sequential genetic algorithm-based probabilistic cellular automata has
been used. This article contains rich studies on the COVID-19 trend in
many countries. The authors claim that the motivation of the proposed
method was to develop a data-driven, generalized, and spatial frame-
work that can be used to estimate relevant epidemiological parameters.
Dendritic Neural Regression (DNR) approach has been used for the
COVID-19 time series prediction [14]. In this paper, DNR has been
improved using a combination of the S metric selection algorithm and
the scale-free local search. Also, different algorithms have been used in
this paper to predict the disease trend in many countries, and it contains
a rich comparative study. In [15], wavelet-coupled random vector
functional link networks have been used for modeling and forecasting
COVID-19 spread. In [16], the performance of the countries against
COVID-19 has been studied using machine learning algorithms and
weighted stochastic imprecise data envelopment analysis. Many other
methods have also been utilized for forecasting of COVID-19 trend,
which fuzzy time series [17], convolution–LSTM [18], auto-regressive
integrated moving average [19], seasonal auto-regressive integrated
moving average [20], and grey rolling model [21] are among them.

Compartmental models are traditional tools for modeling the dis-
ease spread in epidemiologic studies. In [22], a new time-varying
Susceptible–Infected–Recovered–Deceased (SIRD) model has been pro-
posed for modeling the COVID-19 outbreak in Italy. Given that the
parameters of the conventional SIRD model can change over time by
increasing knowledge about the disease, social reaction, and govern-
ment intervention, they can be estimated on a functional basis. In
another paper having a similar approach to the previous one, the SIRD
model parameters are exponential functions of time [23]. The results
achieved by this method are compatible with the COVID-19 time series
of Italy and China. Another time variable SIRD model is proposed
in [24]. The proposed method in this paper assumes parameters of the
model as a function of time and determines these functions intending
to minimize the model error. From a different point of view in [25],
lockdowns during epidemic diseases have been studied. This paper
seeks to find the optimal period of lockdown using the three-phase
maturation SIRD model. Based on the reported results in this paper,
the optimal lockdown time for China, India, and Italy would be 73, 69,
and 88 days, respectively.

Almost in all recent studies concerning the enhancement of the
2

Compartmental models, the model parameters have been assumed
time-varying. However, most of these newly proposed methods have
solved a curve-fitting problem instead of improving the compartmental
models from a fundamental point of view. The main feature of the com-
partmental models is that they are constructed based on the essential
properties of infectious diseases. In the case of emerging diseases, as a
strength, these properties can be extracted using system identification
techniques and collected data. So, any effort to improve these methods
should not overshadow their essential motivations.

A vast majority of the studies concerning the extraction of the
infectious disease parameters using compartmental models use the
confirmed cases data. However, it should be noted that the reported
data for confirmed cases is inaccurate due to the variety of testing
policies. Also, most COVID-19 diagnosis tests are done on the people
visiting the hospitals [26]. In other words, inconsistencies between
confirmed cases and the death toll are probable. So there can be a
considerable change in their proportion. That is why using either the
hospitalized case data or the death tolls will lead to more accurate, but
still underestimated, results [27].

This paper proposes a new fuzzy-SIRD model for overcoming de-
ficiencies of the conventional SIRD model. The biggest weakness of
the conventional SIRD models is that the epidemiological parameters
of infectious diseases are assumed to be invariant over time, while
epidemics occur in a complex system named society with complicated
behavior. Therefore, it is essential to model the society’s response and
changes in the epidemiological parameters caused by it. Government
intervention is the main link between society’s response and epidemic
disease. That is why this paper aims to model the effects of government
intervention on society’s response and, as a result, on infectious disease
parameters.

Fuzzy systems allow the construction of mathematical models using
verbal expressions. Based on this feature of fuzzy systems, in the
proposed Fuzzy-SIRD model, an Interval Type 2 Fuzzy System (IT2
FLS) models the government intervention using fuzzy IF-THEN rules.
Type 2 fuzzy logic has been chosen because of the capability of this
approach for handling uncertainties. The efficiency of the proposed
model has been evaluated by predicting the COVID-19 time series.
For this purpose, seven countries have been selected, and the time
series of death data have been used for modeling in two different time
horizons. The model parameters have been selected by the Particle
Swarm Optimization (PSO) algorithm aiming to minimization of the
Root Mean Square Error (RMSE). The results approve the efficiency of
the proposed model for predicting the COVID-19 death toll time series.

The rest of the paper is organized as follows: Section 2 introduces
some preliminaries about this work, including the factors affecting
disease outbreaks, the conventional SIRD model, and interval type 2
fuzzy logic systems. The proposed model is introduced in Section 3.
The simulation results are reported in Section 4. And finally, the paper
conclusions are provided in Section 5.

2. Preliminaries

This section discusses some preliminaries of the proposed Fuzzy-
SIRD model and aims to clarify the motives for proposing a new
SIRD-based model. Also, it introduces the mathematical basis on which
the new model has been constructed over it.

2.1. Factors affecting disease outbreaks

Many studies have been done to predict the course of epidemic
diseases and subsequent deaths. However, most of them rely solely on
reported data without considering the influential factors. Another issue
that makes the results of studies less reliable is the use of confirmed
cases of infection, which is a function of disease diagnosis and testing
policies. However, more attention should be paid to the effective pa-
rameters for controlling disease rather than the course of time series.
Decisive factors in the spread of diseases and subsequent deaths can be
divided into several categories such as economic, social, demographic,

etc. Some of these factors that can be considered to study are as follows:
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• Purchasing power parity (PPP)
• Expenditure on health per capita
• The moral stance of the society (Individualistic or communitar-

ian)
• Government intervention
• Age structure (Population over the age of 65)
• Residential population density

urchasing power parity is an economic indicator that makes it possible
o compare the absolute purchasing power of the countries’ currencies.
he potential importance of economic factors, like PPP, has been also
ointed out in other studies concerning the COVID-19 pandemic [28].
nother economic factor that directly affects the death tolls of epidemic
iseases is the expenditure on health per capita. Some researchers have
laimed that higher expenditure on health by countries causes lesser
ase fatality [29]. The pursuit of the public interest by the individuals
n a society largely depends on their moral stance. It can be argued that
ompared with individualistic, in communitarian societies, people pay
ore attention to advice on social behaviors [30], such as keeping a

ocial distance and using face masks. The accuracy of this claim can be
etermined by measuring the impact of the government intervention
o control the disease by imposing restrictions. Another important
actor concerning the death rate due to epidemics is the demographic
arameters of the countries [31]. From the first days of the COVID-19
andemic, it has been reported that ages over 65 constitute the most at-
isk population facing the disease [32]. Thus, the population pyramid of
he countries would play a decisive role in COVID-19 and other disease
eath tolls. Another issue affecting the prevalence of the disease is
esidential population density [33]. Numerous other influential factors
an be mentioned, too.

However, the proposed enhanced compartmental models had not
een able to assume the impact of these parameters, and a more general
ethod is needed for this purpose. It can be argued that these factors

ffect epidemic diseases more than their intrinsic characteristics. So
ny attempt to develop epidemiologic models must aim to model these
actors or the outcomes of their impacts. This paper tries to assume
he government intervention directly and some other parameters indi-
ectly for modeling and predicting epidemics. The Fuzzy-SIRD approach
roposed in this paper can model the effects of these parameters.

.2. SIRD model

One of the well-known and common models, which has been used
n several studies on mathematic modeling of infectious diseases’ dy-
amics and has achieved good results, is the Susceptible–Infectious–
ecovered–Deceased (SIRD) model. This model is defined by a set of
ifferential equations as below: [34]:
𝑑𝑆
𝑑𝑡

= −
𝛽𝐼𝑆
𝑁

,

𝑑𝐼
𝑑𝑡

=
𝛽𝐼𝑆
𝑁

− 𝛾𝐼 − 𝜇𝐼,

𝑑𝑅
𝑑𝑡

= 𝛾𝐼,

𝑑𝐷
𝑑𝑡

= 𝜇𝐼.

which 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐷(𝑡), and 𝑁 represent the susceptible, infec-
tious, recovered, deceased, and total population, respectively. Based on
this definition it is obvious that 𝑆(𝑡) = 𝑁−𝐼(𝑡)−𝑅(𝑡)−𝐷(𝑡). Furthermore,
𝛽, 𝛾, and 𝜇 are infection, recovery, and mortality rates, respectively.
These parameters can be affected by many factors. Some of these factors
have been reviewed in Section 2.1.

2.2.1. Closed-form solution of SIRD model
First we assume that 𝐶 (𝑡) = 𝑅 (𝑡) + 𝐷 (𝑡) denote the removed

individuals, and 𝜂 = 𝛾 + 𝜇. Then the solution of the SIRD model can
be achieved as follows [22].

𝑆 𝑡 = 𝑆0 1 + 𝜅 𝜚 (1 + 𝜅𝑒(𝛽−𝜂)𝑡
)−𝜚 (1)
3

( ) ( ) 𝑌
𝐼 (𝑡) = 𝐼0 (1 + 𝜅)𝜚
(

1 + 𝜅𝑒(𝛽−𝜂)𝑡
)−𝜚 𝑒(𝛽−𝜂)𝑡 (2)

𝐶 (𝑡) = 𝑁 − 𝑆0 (𝑆0 + 𝐼0
)𝜚 (𝑆0 + 𝐼0𝑒(𝛽−𝜂)𝑡

)−𝜚 (3)

Where the zero superscripts indicate the initial value of the variables,
𝜅 = 𝐼0

𝑆0 and 𝜚 = 𝛽
𝛽−𝜂 . Also, based on the solution for 𝐶 (𝑡), 𝑅 (𝑡),

nd 𝐷 (𝑡) can be calculated using the 𝛾 and 𝜇 coefficients. The closed-
orm solution of the SIRD model gives us a deeper insight into its
apabilities. Considering the formulas (1), (2), and (3), we get that the
lexibility and adaptability of this model are very low in medium and
ong-term periods while facing changes in parameters. So it is important
o update the conventional SIRD model to adapt to the variation of
pidemiological parameters over time.

.3. Interval type 2 fuzzy logic systems

Fuzzy systems allow the rapid construction of mathematical models
rom linguistic expressions. That is why they are widely used in various
pplications. In recent years, type 2 fuzzy systems have been used by
any researchers in different studies [36]. The main strength of type
fuzzy systems is their ability to handle uncertainty. Interval type 2

uzzy systems require lesser computational effort while maintaining the
apability for handling uncertainties. In this paper, an Interval Type
Fuzzy Logic System (IT2 FLS) has been used to model the effects

f government intervention on the basic reproduction number of the
OVID-19 disease. Fig. 1 represents the overall structure of an IT2
LS [35]. The first step in an IT2 FLS is the fuzzification of crisp inputs.
his is done using interval type 2 fuzzy sets, defined using their upper
nd lower membership functions. In most applications, the fuzzy sets
hosen for this purpose are interval type 2 singleton fuzzy sets. The
econd step in an IT2 FLS is evaluating fuzzy rules and calculating their
utcomes. Every fuzzy IF-THEN rule, in the rule-base of an IT2 FLS, can
e represented as below:
𝑙 ∶ 𝐼𝐹 𝑥1 𝑖𝑠 𝐹1,𝑙 𝑎𝑛𝑑 ⋯ 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹𝑝,𝑙 ,

𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 �̃�𝑙 𝑙 = 1, ⋯ , 𝑀

n which the 𝑙 shows the index of the rules and 𝑝 indicates the index
f the inputs. 𝑀 represents the number of rules. Furthermore, 𝐹𝑖,𝑙 and
̃ 𝑙 are input and output sets, respectively. To evaluate the fuzzy rules,
irst, the upper and lower firing strengths of the rules are calculated
sing the formulas below:

𝑓 𝑙 (𝑥) =
𝑝
∏

𝑖=1
𝜇𝐹𝑖,𝑙

(

𝑥𝑖
)

(4)

𝑓
𝑙
(𝑥) =

𝑝
∏

𝑖=1
𝜇
𝐹𝑖,𝑙

(

𝑥𝑖
)

(5)

Now the result of the 𝑙th fuzzy rule can be concluded as the interval
type 2 fuzzy set 𝐵𝑙, with upper and lower membership functions as
below:

𝜇�̃�𝑙 (𝑥) = 𝑓 𝑙 (𝑥) ∗ 𝜇𝐺𝑙 (𝑥) (6)

𝜇
�̃�𝑙

(𝑥) = 𝑓
𝑙
(𝑥) ∗ 𝜇

𝐺𝑙
(𝑥) (7)

After evaluating the rules, we must aggregate them to achieve the final
result. This aggregation is typically done by using the centroid method.
However, there are also other methods like Center of Sets (CoSets),
Center of Sum (CoSum), Height, and Modified Height. To calculate the
centroid of 𝐵𝑙s, we must calculate the Join of these sets:

𝑌 =
𝑀
∐

𝑙=1
�̃�𝑙 (8)

̃ is the output fuzzy set. In this step, we must perform a type-reduction
n the output set, which can be done using multiple algorithms such
s KM, EAISC, WM, NT, etc.

=
{(

𝑥, 𝜇 𝑥
)

∀𝑥 ∈ 𝑋
}

(9)
𝑌 ( ) |
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Fig. 1. Block diagram representation of the Interval Type 2 Fuzzy Logic Systems [35].
Fig. 2. Block diagram representation of the proposed Fuzzy-SIRD model.
r
d
e

w
b
t
a

The output of the type reduction algorithm is an all one fuzzy set, which
can be demonstrated as an interval in which the membership degree is
equal to 1.
[

𝑦𝑙 , 𝑦𝑟
]

(10)

Finally, the type-reduced fuzzy set must be defuzzified. The crisp output
is calculated as the center of the interval above.

𝑦 =
𝑦𝑙 + 𝑦𝑟

2
(11)

3. Fuzzy-SIRD model

This section proposes a new Fuzzy-SIRD model, which can effi-
ciently model the effects of government intervention in the outbreak of
infectious diseases. Governments enforce preventive restrictions based
on the death toll to control epidemics. Such an intervention primarily
affects the effective reproduction number, 𝑅𝑒, of the infectious diseases.
Therefore, the behavior of governments and its effectiveness will have
a great impact on the outbreak trend. So, it is important to consider
government intervention while modeling the spread of diseases.

The basis of the proposed model is the conventional SIRD model.
The proposed approach introduces a new variable for representing the
effective reproduction number of the disease. The Fuzzy-SIRD model
can be described by a set of differential equations as below:
𝑑𝑆
𝑑𝑡

= −
𝛽𝐼𝑆
𝑁

, (12)

𝑑𝐼
𝑑𝑡

=
𝛽𝐼𝑆
𝑁

− 𝛾𝐼 − 𝜇𝐼, (13)
𝑑𝑅 = 𝛾𝐼, (14)
4

𝑑𝑡
𝑑𝐷
𝑑𝑡

= 𝜇𝐼, (15)
𝑑𝑅𝑒
𝑑𝑡

= −𝛼1𝑅𝑒 + 𝛼2𝜓
(

𝜀, 𝑑𝐷
𝑑𝑡
, 𝐷𝑠𝑎𝑡

)

. (16)

The first four equations are the same as the conventional SIRD model.
In the fifth equation, 𝛼1 and 𝛼2 are model coefficients that indicate
society’s response to government intervention. 𝜓 is the sub-system
modeling the government intervention, and has three inputs 𝜀 (effi-
ciency factor), 𝑑𝐷

𝑑𝑡 (death rate), and 𝐷𝑠𝑎𝑡 (saturation factor of death
ate). The block diagram of the proposed Fuzzy-SIRD model has been
emonstrated in Fig. 2. According to the simple SIRD model, the
ffective reproduction number can be calculated by the equation 𝑅𝑒 =
𝛽
𝛾+𝜇 [37].

3.1. Fuzzy sub-system

The 𝜓 function consists of an interval type 2 Mamdani fuzzy system
ith the rule-base represented in Table 1. The rules in this table have
een designed to express the impact of the government intervention on
he effective reproduction number, 𝑅𝑒, according to the parameters 𝜀
nd 𝑠𝑎𝑡

(

𝑑𝐷
𝑑𝑡 , 𝐷

𝑠𝑎𝑡
)

. For example, let us assume the first rule of Table 1.

𝐼𝐹 𝜀 𝐼𝑆 𝐿𝑂𝑊 𝐴𝑁𝐷
𝑠𝑎𝑡

(

𝑑𝐷
𝑑𝑡 , 𝐷

𝑠𝑎𝑡
)

𝐼𝑆 𝐿𝑂𝑊 𝑇𝐻𝐸𝑁
𝑅∗
𝑒 𝐼𝑆 𝐻𝐼𝐺𝐻

(17)

In this situation, the efficiency of the government intervention is low,
caused by factors like economic condition, state of social cohesion in
society, etc. Also, the death rate is low, meaning there is little incre-

ment in the number of deceased people. In these circumstances, the
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Fig. 3. The gaussian interval type 2 fuzzy sets with uncertain standard deviation (std.) values used for defining the fuzzy sub-system.
government does not apply restrictions, so the effective reproduction
number of the disease will increase.

Also, the interval type 2 fuzzy sets used for defining the system
have been represented in Fig. 3. Fig. 3(a) demonstrates the fuzzy sets
defining both inputs of the system, 𝜀, and 𝑠𝑎𝑡

(

𝑑𝐷
𝑑𝑡 , 𝐷

𝑠𝑎𝑡
)

. Fig. 3(b) rep-
resents the fuzzy sets defining the output of the system. As can be seen,
the Gaussian membership functions have been used for constructing
interval type 2 fuzzy sets. The main reasons for such a choice are the
smoothness of the Gaussian membership functions and their non-zero
membership grades over the universe of discourse [38]. However, as
an alternative, triangular, or more generally trapezoidal membership
functions can also be used with similar performance [39].

An important issue concerning fuzzy systems is selecting the number
of fuzzy sets and fuzzy rules while defining them. Of course, using
more fuzzy sets and more fuzzy rules will improve the results achieved
by the system. But it will cause a significant increase in execution
time and an extra effort for adjusting the parameters of the fuzzy sets.
Therefore, there is always a tradeoff between number of the rules and
computational effort. In Section 4, we will discuss why we have used
three sets for each input of the fuzzy system and why consequently, we
have defined nine fuzzy IF-THEN rules.

The parameters of this model, which must be extracted using time
series, are:

• Initial infectious population 𝐼0

• Initial recovered population 𝑅0

• Initial deceased population 𝐷0

• Initial effective reproduction number 𝑅0
𝑒

• Recovery rate 𝛾
• Fatality rate 𝜇
• Coefficients 𝛼1 and 𝛼2
• Saturation factor for death rate 𝐷𝑠𝑎𝑡

• Government intervention efficiency 𝜀

3.2. Response of society

One of the main features of the proposed model is modeling the
society’s response to government intervention by assuming it as a
first-order linear system. As it has been shown in Fig. 2, the system
representing the response of society can be defined in the frequency
domain as the linear system below:

𝐻 (𝑠) =
𝛼2 (18)
5

𝑠 + 𝛼1
Table 1
The rule-base of the fuzzy sub-system.

𝜀 𝑠𝑎𝑡
(

𝑑𝐷
𝑑𝑡

)

𝑅∗
0

LOW LOW HIGH
LOW MEDIUM HIGH
LOW HIGH MEDIUM
MEDIUM LOW HIGH
MEDIUM MEDIUM MEDIUM
MEDIUM HIGH LOW
HIGH LOW MEDIUM
HIGH MEDIUM LOW
HIGH HIGH LOW

The response of such a system for a Heaviside input function would be:

𝑦 (𝑡) =
𝛼1
𝛼2

(

1 − 𝑒−𝛼2𝑡
)

(19)

Such an assumption helps enhancement of the SIRD model in differ-
ent ways. In practice, when governments try to regulate the basic
reproduction number of infectious diseases, society pursues govern-
ment planning under the influence of governance tools. However, this
adaptation to government planning would not be ideal. It means that
the goal will not be fully achieved, and society will gradually adapt
to the new planning. The proposed model can demonstrate all these
conditions. In other words, the behavior of society is expressed by 𝛼1
and 𝛼2. The larger 𝛼2, the faster society will adapt. Also, the ratio of
𝛼1 and 𝛼2 reflects the difference in social behavior and government
expectations. It can be said that, in addition to being a tool for modeling
the behavior of society, this system and the two parameters are affected
by other sociological issues.

3.3. Parameters tuning

Generally, we can use two approaches for determining the model
parameters; using infection time series or deceased time series. Accord-
ing to epidemiology experts, while we have encountered an epidemic,
it is not possible to identify all the infected cases accurately with a fixed
criterion. So, the infected cases time series will not be a good choice for
accurately determining the epidemic disease trend. Unlike many other
studies in this paper, the deceased people time series has been used to
identify the model parameters. It should also be noted that delays in
data aggregation and reporting cause little fluctuations in their natural

course. Therefore in this study, a 7-day moving average filter has been
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Fig. 4. Block diagram representation of the relation between the PSO algorithm and the proposed Fuzzy-SIRD model.
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used. The error function to identify the model parameters has been
defined as below:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − �̂�𝑖
)2 (20)

In which, 𝑛 is the number of samples, 𝑦𝑖 represents the actual deceased
population until the 𝑖th day, and �̂�𝑖 shows the deceased population until
he 𝑖th day achieved by the model.

After defining the error function, an optimization algorithm can be
sed to select the parameters for minimizing the error. In this paper,
he PSO algorithm has been used to accomplish this task. Each particle’s
olution vector has been defined as below:

=
[

𝐼0 𝑅0 𝐷0 𝑅0
𝑒 𝛾 𝜇 𝛼1 𝛼2 𝐷

𝑠𝑎𝑡 𝜀
]

(21)

ig. 4 demonstrates the relation between the PSO algorithm and the
roposed Fuzzy-SIRD model.

The only constraint on these parameters is their positiveness. An
mportant issue that should be considered while searching for model
arameters using the PSO algorithm is consciously creating the initial
opulation of particles. It means that, for faster convergence, the initial
articles should be properly dispersed in the search space. The formulas
elow have been used for creating the initial population:

𝐼0 = 𝐼0∗ + 0.1 × 𝐼0∗ (𝑟𝑎𝑛𝑑 − 0.5) (22)

𝑅0 = 𝑅0
∗ + 0.1 × 𝑅0

∗ (𝑟𝑎𝑛𝑑 − 0.5) (23)

𝐷0 = 𝐷0
∗ + 0.1 ×𝐷0

∗ (𝑟𝑎𝑛𝑑 − 0.5) (24)

𝑅0
𝑒 = 2.0 + 4.0 × (𝑟𝑎𝑛𝑑 − 0.5) (25)

𝛾 = 0.05 + 0.1 × (𝑟𝑎𝑛𝑑 − 0.5) (26)

𝜇 = 0.05 + 0.1 × (𝑟𝑎𝑛𝑑 − 0.5) (27)

𝛼1 = 0.5 + 1.0 × (𝑟𝑎𝑛𝑑 − 0.5) (28)
𝛼2 = 0.5 + 1.0 × (𝑟𝑎𝑛𝑑 − 0.5) (29)
𝑠𝑎𝑡 = 50.0 + 100.0 × (𝑟𝑎𝑛𝑑 − 0.5) (30)

𝜀 = 0.5 + 1.0 × (𝑟𝑎𝑛𝑑 − 0.5) (31)

n which 𝐼0∗ , 𝑅0
∗, and 𝐷0

∗ represent the infectious, recovered, and de-
eased population in the starting time index of our data, used for fitting
odel parameters. Also, the 𝑟𝑎𝑛𝑑 term indicates a random number

enerated in the interval 0, 1 .
6

[ )
.4. Stability analysis of Fuzzy-SIRD model

We will study the stability of the proposed Fuzzy-SIRD model in
his section. The equilibrium point of the system can be achieved by
quating the five Eqs. (12)–(16) to zero. As a result, the equilibrium
oint would be:

= 0, 𝑅𝑒 =
𝛼2
𝛼1
𝜓
(

𝜀, 𝑑𝐷
𝑑𝑡

|

|

|

|𝐼=0
, 𝐷𝑠𝑎𝑡

)

(32)

The meaning of 𝐼 = 0 in the equilibrium point is that the number of
infected people is zero. In practice, we know that this means the end of
the epidemic. Now let us study the stability of this system. To prove the
stability of the Fuzzy-SIRD system, first, we divide the system into two
sub-systems and analyze the stability of these sub-systems separately.
The only state variable of the first sub-system is 𝑅𝑒, and the state
variables of the second sub-system are 𝑋1 = [𝑆 𝐼 𝑅 𝐷]𝑇 . Also, it must
e noticed that the function 𝜓

(

𝜀, 𝑑𝐷
𝑑𝑡 , 𝐷𝑠𝑎𝑡

)

is a positive real number
in the interval

[

𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥
]

. So the dynamic of the first sub-system can
be written as below:
𝑑𝑅𝑒
𝑑𝑡

= −𝛼1𝑅𝑒 + 𝛼2𝜓
(

𝜀, 𝑑𝐷
𝑑𝑡
, 𝐷𝑠𝑎𝑡

)

(33)

The equilibrium point of this system is �̄�𝑒 =
𝛼2
𝛼1
𝜓
(

𝜀, 𝑑𝐷
𝑑𝑡 , 𝐷

𝑠𝑎𝑡
)

. So, we
ssume both conditions when the 𝑅𝑒 > �̄�𝑒 and 𝑅𝑒 < �̄�𝑒.

𝑅𝑒 > �̄�𝑒 ⟶
𝑑𝑅𝑒
𝑑𝑡

< 0 (34)

𝑅𝑒 < �̄�𝑒 ⟶
𝑑𝑅𝑒
𝑑𝑡

> 0 (35)

This shows that the first sub-system is stable and tracks the 𝜓
(

𝜀, 𝑑𝐷
𝑑𝑡 , 𝐷

𝑠𝑎𝑡
)

value. The 𝜓 function itself, is depended on two constant
values 𝜀 and 𝐷𝑠𝑎𝑡, and a variable 𝑑𝐷

𝑑𝑡 = 𝐼 . So if the state variable 𝐼
ventually converges to a constant value, the 𝑅𝑒 would also converge

to a constant value. Next, we must prove the stability of the second
sub-system consisting of 𝑆, 𝐼 , 𝑅, and 𝐷 state variables. Considering
the Eqs. (14) and (15), proving the stability of the 𝑆 and 𝐼 is enough
to prove the stability of the overall system. Before starting the proof,
we should recall the property of the system under study. The initial
conditions for the state variables are always positive numbers. It can
also be proved that they will always remain positive. In this regard, we
will study three cases, (𝐼 > 0, 𝑆 = 0), (𝐼 = 0, 𝑆 > 0), and (𝐼 = 0, 𝑆 = 0).
The first case is when 𝐼 > 0 and 𝑆 = 0:
𝑑𝑆 = 0 (36)

𝑑𝑡
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𝑑𝐼
𝑑𝑡

= −𝛾𝐼 − 𝜇𝐼 (37)

In practice, this is the case when there is no susceptible person, and the
number of infected people decays over time because both 𝛾 and 𝜇 are
real positive numbers. When the state variable 𝐼 converges to zero, its
derivative will also tend to zero. The second case is when 𝐼 = 0 and
> 0:

𝑑𝑆
𝑑𝑡

= 0 (38)

𝑑𝐼
𝑑𝑡

= 0 (39)

In practice, this condition occurs when there is no infected person
anymore. Naturally, when there is no infected person, the number of
susceptible people would not be changed. Finally, the last case is when
𝐼 = 0 and 𝑆 = 0:
𝑑𝑆
𝑑𝑡

= 0 (40)

𝑑𝐼
𝑑𝑡

= 0 (41)

In practice, this situation occurs when all people have been infected,
and the results of all infected cases have been determined. We have
proved that the state variables 𝐼 and 𝑆, with real positive values,
cannot pass the 𝐼 = 0 and 𝑆 = 0 lines to negative values.

Considering these three conditions for 𝑆 and 𝐼 , we can prove
the stability of the system by applying the Lyapunov stability theory
conditions only for 𝑆 ≥ 0 and 𝐼 ≥ 0. Let us assume the Lyapunov
candidate function as below:

𝑉 (𝑆, 𝐼) = 1
2
𝑐1𝐼

2 + 1
2
𝑐2𝑆

2 + 𝑐3𝐼𝑆 (42)

n which 𝑐1, 𝑐2, and 𝑐3 are greater than zero. The derivative of the
yapunov candidate would be:

̇ (𝑆, 𝐼) =
𝑐1𝛽𝐼2𝑆
𝑁

− 𝑐1𝛾𝐼2 − 𝑐1𝜇𝐼2 −
𝑐2𝛽𝐼𝑆2

𝑁

−
𝑐3𝛽𝐼2𝑆
𝑁

+
𝑐3𝛽𝐼𝑆2

𝑁
− 𝑐3𝛾𝐼𝑆 − 𝑐3𝜇𝐼𝑆

=
(

𝑐1 − 𝑐3
) 𝛽𝐼2𝑆

𝑁
+
(

𝑐3 − 𝑐2
) 𝛽𝐼𝑆2

𝑁
− 𝑐1 (𝛾 + 𝜇) 𝐼2 − 𝑐3 (𝛾 + 𝜇) 𝐼𝑆

For achieving stability conditions, the coefficients of the Lyapunov
candidate must be selected in a way that 𝑐1, 𝑐2, 𝑐3 > 0, 𝑐3 > 𝑐1 and
𝑐2 > 𝑐3. So we proved that the system states starting from any feasible
initial condition (𝑆 > 0 and 𝐼 > 0) will reach to the region 𝐼 = 0, in
which the Eqs. (12)–(15) are zero there, and subsequently the 𝑅𝑒 will
converge to the constant value 𝜓

(

𝜀, 0, 𝐷𝑠𝑎𝑡). As it can be seen, the
stability of the second sub-system is unaffected by the first sub-system,
which determines the value of the parameter 𝛽. As proved, the state
variable 𝑅𝑒 (and consequently 𝛽) never diverges. Therefore the overall
system is stable.

4. Simulations

The Fuzzy-SIRD model has been used for modeling the epidemic
trend of COVID-19 disease in seven countries to evaluate its capability
and efficiency. These seven countries, which are as follows, are among
the populated and developed or under-development countries: USA,
Brazil, Germany, United Kingdom, Iran, Russia, and Italy. Matching the
model parameters has been done using two different time intervals,
one short (75 days) and the other longer (150 days), starting from
2020-01-22. Also, a 7-day moving average has been used to eliminate
the fluctuations due to delays or errors in the reports. The predictions
with the proposed model in scenarios 1 and 2 are in 10 and 20-day
intervals. So in the first case, 65 days of data have been used for
the learning phase and ten days for prediction. And in the second
7

Fig. 5. The output plot of the fuzzy sub-system for different 𝜀 values, 𝐷𝑠𝑎𝑡 = 100, and
𝑑𝐷
𝑑𝑡

in the interval [−150, 150].

case, 130 days of data have been used for learning and 20 days
for prediction. It should be noted that the data used in this study
have been taken from DATAHUB (https://datahub.io/core/covid-19,
LastAccessed:2022-03-29). DATAHUB has collected these data from
many sources like World Health Organization (WHO), European Centre
for Disease Prevention and Control (ECDC), US Centers for Disease
Control and Prevention (CDC), WorldoMeters, COVID Tracking Project,
etc.

The model parameters have been achieved using the PSO algorithm.
The number of particles and iterations have been assumed 100 and
200, respectively. For each case, the optimization process has been
repeated 100 times. The results achieved from the Fuzzy-SIRD model
have been compared with the simple SIRD model. To have a deeper
insight into the fuzzy sub-system of the proposed model, its output
for different 𝜀 values (0.0, 0.25, 0.5, 0.75, 1.0) has been depicted
n Fig. 5. In this figure, the 𝐷𝑠𝑎𝑡 has been assumed to be 100, and
he 𝑑𝐷

𝑑𝑡 is in the interval [−150, 150]. As it can be seen, when the
fficiency of the government intervention is at the most, the fuzzy
𝑒 lays in the interval [0.4507, 2.479]. And when the efficiency is the

east, the fuzzy 𝑅𝑒 varies in the interval [2.479, 4.524]. Furthermore,
y approaching the 𝜀 to 0.5 from both upper and lower values, the
ength of the 𝑅𝑒 interval is increased. The largest interval for effective
eproduction number is [0.841, 4.048], when 𝜀 = 0.5. It should be noted
hat the effective reproduction number of diseases varies in different
ountries, depending on the policies applied to control the disease
nd its success. So the existence of the factor 𝜀, which expresses the
ossible diversity of the effective reproduction number, has critical
mportance. In other words, this parameter, along with the 𝐷𝑠𝑎𝑡, makes
he algorithm adaptable for different countries with different policies.
he success of a government in implementing preventive policies is
eflected in the value of 𝜀. When the 𝜀 = 1, the maximum and minimum
xperienceable effective reproduction number will be the lowest, and as
he 𝜀 decreases, these values increase. This increment in the maximum
nd minimum effective reproduction number indicates a lower success
ate in government intervention. The 𝐷𝑠𝑎𝑡 affects the 𝑅𝑒 in another way.
t specifies at which point the 𝑅𝑒 would reach its minimum. Also, the
utput plane of the fuzzy sub-system has been depicted in Fig. 6.

The achieved root mean square errors for predicting the COVID-19
isease trend in seven countries and two scenarios have been repre-
ented in Table 2. As can be seen, in all cases, the error achieved by the
roposed model is less than the conventional SIRD model. The last col-
mn of this table shows the decrement of RMSE in the proposed model
ompared with the conventional SIRD model in percent. According to

https://datahub.io/core/covid-19
https://datahub.io/core/covid-19
https://datahub.io/core/covid-19
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Fig. 6. The 3D representation of the fuzzy sub-system’s output plane.

Table 2
The RMSE error achieved by Fuzzy-SIRD and SIRD models for each country in both
time horizons.

Country Scenario SIRD Fuzzy-SIRD Change

USA Scenario 1 3510.8128 1414.4021 −59.71%
Scenario 2 2253.4547 348.9075 −84.52%

Brazil Scenario 1 1066.4176 431.3594 −59.55%
Scenario 2 5987.1328 915.4509 −84.71%

Germany Scenario 1 21.5559 6.2062 −71.21%
Scenario 2 153.3652 20.0909 −86.90%

Iran Scenario 1 61.1203 41.1801 −32.62%
Scenario 2 2203.4382 251.8999 −88.57%

Italy Scenario 1 29.1475 23.0834 −20.80%
Scenario 2 353.1337 77.0946 −78.17%

Russia Scenario 1 194.3770 79.4394 −59.13%
Scenario 2 170.8443 166.4179 − 2.59%

United Kingdom Scenario 1 56.9077 46.8063 −17.75%
Scenario 2 341.1123 59.8646 −82.45%

Table 3
The parameters of Fuzzy-SIRD and SIRD models achieved for the US COVID-19 time
series.

Parameter Scenario 1 Scenario 2

Fuzzy-SIRD SIRD Fuzzy-SIRD SIRD

𝐼0 959977.4761 767955.2043 1003654.3044 12660.6912
𝑅0 1013044.4219 2281038.7976 965102.5878 1439051.1596
𝐷0 73882.1078 73901.7487 72753.6761 83068.4621
𝑅0
𝑒 0.9470 0.0718 0.7588 0.1803

𝛾 0.4448 0.0912 0.1035 0.1176
𝜇 0.0018 0.0022 0.0019 0.0602
𝛼1 0.1131 – 0.0199 –
𝛼2 0.1131 – 0.0199 –
𝐷𝑠𝑎𝑡 593.7055 – 976.3858 –
𝜀 0.4372 – 0.7108 –

able 2, we can deduce that the conventional SIRD has a very poor
erformance in long-term predictions. However, the proposed model
utperforms the conventional SIRD model in both cases. In many cases,
sing the Fuzzy-SIRD model, learning and prediction errors have been
educed by over 80%. The detailed description of the solutions achieved
as been separately reported in corresponding tables for any case.

Also, it must be noted that, in order to select the number of the fuzzy
ets and fuzzy rules used for defining the fuzzy system, three different
imulations have been done. In each simulation, a fuzzy system has
8

been defined using a different number of fuzzy sets and, as a result, a
different number of fuzzy rules:

• System 1: 3 fuzzy sets per input and 9 IF-THEN rules
• System 2: 4 fuzzy sets per input and 16 IF-THEN rules
• System 3: 5 fuzzy sets per input and 25 IF-THEN rules

These systems have been used for the prediction of the COVID-19
time series for the US in the first scenario. Considering the results
achieved by the second system, increasing the number of rules to 16
has improved the results by 1.7112% with respect to the first system.
Compared with the first system, increasing the number of rules to 25
in the third system has improved the results by 2.1347%. This slight
improvement in the results is while the execution time has increased
by 80.8447% and 168.1486% for 16-rules and 25-rules systems, re-
spectively. Based on this observation, we decided to use three fuzzy
sets per input and nine IF-THEN rules in the fuzzy system to have a
good performance along with reasonable execution time. In this case,
the main reason that performance of the system is high, while there are
a few rules, is the use of type 2 fuzzy systems, which are more adaptable
to uncertainties.

Table 3 represents the parameters achieved by the PSO algorithm
for Fuzzy-SIRD and SIRD models in both 75 days and 150 days scenar-
ios for the United States. The actual, learned, and predicted deceased
population and the corresponding error achieved by the proposed
Fuzzy-SIRD model have been depicted in Fig. 7 in the left-most plot.
The middle plot represents the infectious and recovered population
over the time horizon.

The plot placed on the right side represents the achieved fuzzy
and real effective reproduction numbers. It must be noted that the
real effective reproduction number is the response of society to the
fuzzy effective reproduction number, which is directly affected by
government interventions. Fig. 8 demonstrates the real, learned, and
predicted deceased population.

Also, in the right-side plot, infectious and recovered populations
achieved by the conventional SIRD model have been represented. Both
these figures are the representation of results achieved for the 75-day
time horizon. Corresponding results for the 150-day time horizon have
been represented in Figs. 9 and 10. Also, Fig. 11 demonstrates the
convergence diagram of the PSO algorithm used for identifying the
system parameters for the US case. This convergence diagram has been
achieved by calculating the average convergence characteristics of the
algorithm over all 100 runs.

As it can be seen in Table 2, considering the United States of
America, for both scenarios, the Fuzzy-SIRD model has reached a better
prediction of death tolls. In the second scenario, the enhancement of
the results while using the Fuzzy-SIRD model is more noticeable and
even better than in the first scenario. Prediction of such a complex and
intricate time series affected by many environmental parameters gets
harder by extending the time horizon. This situation has two causes.
The first reason is the lack of ideal performance while running the
optimization algorithm for finding the model parameters. For handling
this problem, as it has been said, the optimization problem has run
100 times, and the best results have been reported. The second reason
is the coincidence of the forecast period with an event that has a
remarkable impact on the course of the data. In this situation, as the
time horizon of the data used for learning becomes longer, the proposed
model tries to digest the affecting event and thus reduces the error
in long-term prediction. Based on Fig. 7, it can be claimed that the
effective reproduction number experiences a gradual increase in the
first forty days, and after that, a shock enters it. However, the long-
term results give us a more precise and deeper insight. As it can be
seen in Fig. 9, after a slight decrease in effective reproduction number,
a gradual increase has been experienced until it approximately reaches
1.2. Then after experiencing a peak, the 𝑅𝑒 decreases, but a second peak
is on the way.
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Fig. 7. The results achieved by Fuzzy-SIRD model in the learning and prediction phases, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
system (fuzzy 𝑅𝑒) over the short time horizon for the US.
Fig. 8. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the short time horizon for the US.
Fig. 9. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the long time horizon for the US.
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The 𝐷𝑠𝑎𝑡 = 976.3858, achieved in the second scenario, shows that
ntervention of the US government facing COVID-19 reaches its maxi-
um when the daily death toll increases to about a thousand or more.

urthermore, 𝜀 = 0.7108 shows that the success of the US govern-
ent intervention was moderate, and because of this, the effective

eproduction number 𝑅𝑒 could be in the range [0.5842, 3.4048].
The results achieved for the COVID-19 time series of Germany

ave been represented in Figs. 12, 13, 14, and 15. The parameters of
uzzy-SIRD and SIRD models for both scenarios have been reported
9

t

n Table 4. One of the best results achieved by the proposed model
s for Germany, in which the predictions and actual values have only

little difference. The results show that the German government has
uccessfully controlled the disease, and the 𝑅𝑒 value was lower than 1
or a considerably long time. However, as it can be seen, the effective
eproduction number has increased over time, and approximately on
he 100th day of the second scenario, it has passed the value 1, meaning
hat the disease will spread in an exponential form again. As the fuzzy
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Fig. 10. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the long time horizon for the US.
Fig. 11. The convergence diagram of the PSO algorithm (average of 100 runs) for
identifying the parameters of the proposed system for the US in a 150-day time horizon.

𝑅𝑒 shows in Fig. 14, government intervention can successfully control
the disease, and 𝑅𝑒 may experience its peak at about 1.5.

In the case of Germany, 𝐷𝑠𝑎𝑡 is 40.4283 in the second scenario.
It means that the government in Germany shows the most reaction
when the daily death toll reaches about 40 or more. We can compare
this number with the achieved one for the US by normalizing them
with respect to these countries’ populations. The normalized 𝐷𝑠𝑎𝑡 for

ermany is 4.8568× 10−7, and for the US is 2.9632× 10−6. The achieved
umber for Germany is 6.1012 times less than the US, which shows
hat in the considered time interval compared with the US government,
he German government was more sensitive to its citizens. Also, the
overnment intervention efficiency factor, 𝜀, for Germany is 1.0, which
s the maximum efficiency. Based on the achieved 𝜀 factor, the effective
eproduction number could be in the range [0.4507, 2.479], which is less
han the achieved one for the US with 𝜀 = 0.7108.

The rest of the simulations have been provided in the Appendix
ection. It must be noted that the simulations have been done by Python
sing the PyIT2FLS [40], Numpy [41], and SciPy [42] libraries. Also,
epresentation of the data has been done using the Matplotlib [43]
ibrary.
10
Table 4
The parameters of Fuzzy-SIRD and SIRD models achieved for the Germany COVID-19
time series.

Parameter Scenario 1 Scenario 2

Fuzzy-SIRD SIRD Fuzzy-SIRD SIRD

𝐼0 1983.6087 64324.9844 8311.0249 1548.0295
𝑅0 181336.6979 156181.2473 203670.9836 24998.4027
𝐷0 7047.6271 7081.7298 7059.6980 7174.2583
𝑅0
𝑒 0.0954 0.0828 0.0786 0.0565

𝛾 0.0205 0.1263 0.0434 0.0434
𝜇 0.0534 0.0014 0.0119 0.0497
𝛼1 0.0853 – 0.0090 –
𝛼2 0.0853 – 0.0090 –
𝐷𝑠𝑎𝑡 15.0644 – 40.4283 –
𝜀 1.0 – 1.0 –

5. Conclusion

In this paper, a new Fuzzy-SIRD model has been proposed for epi-
demiologic studies. The proposed innovative approach aims to model
the effects of government intervention on the effective reproduction
number of the disease. Considering that the reports of the infected
people are not accurate enough, the death toll time series has been used
for extracting the system parameters. Using the infected population as
data for tuning the model parameters may lead the models to predict
the governments’ policies of test and diagnosis rather than disease
spread. Some simulations have been done on the COVID-19 time series
to test the efficiency of the proposed model. Seven countries have been
studied with two scenarios, and the results achieved by the proposed
and conventional SIRD models have been compared. In all cases, the
proposed Fuzzy-SIRD model is much better than the conventional SIRD
model. Compared with the other method, the results show lesser root
mean square error, which approves the efficiency and preciseness of the
proposed method. In the short-term scenario, the minimum decrement
of prediction RMSE is 17.75% in the UK case, and the maximum
decrement is 71.21% in the case of Germany. Utilizing the proposed
Fuzzy-SIRD model causes an average decrement of RMSE equal to
45.83%. As it can be seen, the proposed method yields a significant
reduction in prediction errors. This decrement is even larger in long-
term time intervals. In long-term case studies, the proposed Fuzzy-SIRD
model causes an average decrement of RMSE equal to 72.56%. The
maximum decrement of RMSE in long-term scenarios belongs to Iran. In
the case of Iran, the RMSE of long-term predictions has been reduced by
88.57%. Also, the minimum decrement of RMSE in long-term scenarios
belongs to Russia, 2.59%. Among the different countries, the COVID-

19 trend in Russia shows great cohesion with the conventional SIRD



Artificial Intelligence In Medicine 134 (2022) 102422A.A. Haghrah et al.

s

s

m
p

t
a
w
p
t
i

Fig. 12. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the short time horizon for Germany.
Fig. 13. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the short time horizon for Germany.
Fig. 14. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the long time horizon for Germany.
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odel, but even in this case, the proposed model causes more precise
redictions.

The proposed approach is able to model the government interven-
ion and its effects on epidemiological parameters of the disease, such
s effective reproduction number. The achieved 𝑅𝑒 and the fuzzy 𝑅𝑒,
hich the latter is a measure of government intervention, have been
lotted for all seven countries and both scenarios. The variation of
hese two parameters over time has been interpreted in all cases. Such
nterpretations give us an insight into the actions done by governments
11

a

nd the state of disease transmission. Furthermore, the parameters of
he proposed model, such as 𝛼1 and 𝛼2, give us an estimation of society’s
esponse to government interventions. For example, considering the
ptimal parameters achieved for Iran and the US in the long-term
cenario, we can compare the society’s response in these two countries.
or Iran and the US, 𝛼2 has been achieved as 0.0292 and 0.0199,
espectively. It means that in the US, society responds faster than in
ran. According to Fig. 9, there is a three-week gap between Fuzzy 𝑅𝑒
nd 𝑅 for the US. While this gap for Iran is about four weeks, as can
𝑒
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Fig. 15. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the long time horizon for Germany.
Fig. 16. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the short time horizon for Brazil.
Fig. 17. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the short time horizon for Brazil.
e seen in Fig. 22. That is why the proposed model can be of particular
mportance in the study of epidemics.

Despite all the advantages listed for the model proposed in this
aper, the Fuzzy-SIRD model is not able to adapt to the condition
12
after starting the vaccination. Therefore, the idea of this paper can be
generalized for models in which vaccination is also included. However,
variety in vaccine types, the time required to provide immunity by dif-
ferent vaccines, the degree of immunity after injection of each dose, the
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Fig. 18. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the long time horizon for Brazil.
Fig. 19. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the long time horizon for Brazil.
Fig. 20. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the short time horizon for Iran.
c
m
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eduction of immunity after a specific time, the effectiveness of various
accines, the rate of transmission prevention in vaccinated individuals,
tc. make this task very difficult and unimaginably complex.

In conclusion, it can be said that the proposed approach has
chieved the goal of modeling the impact of government intervention
n epidemics. It has also significantly improved the conventional
13

t

ompartmental models. With the advent of machine learning-based
odels, compartmental models are receiving less attention. Consider-

ng the proposed method, we predict that compartmental models will
ain their place again in epidemiological time-series studies. It seems
hat by the development of hybrid fuzzy and classic models, in addition
o increasing the precision of the classical models, we will be able to
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Fig. 21. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the short time horizon for Iran.
Fig. 22. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the long time horizon for Iran.
Fig. 23. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the long time horizon for Iran.
xpress field data as human experiences. In future work, the factors
ntroduced in Section 2.1 can be described using fuzzy IF-THEN rules,
nd their effects can be considered in the proposed model. Such an
ffort can improve the precision of the proposed model and give the
esearcher a deeper insight into the complex society’s response facing
he epidemic disease.
14
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Fig. 24. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the short time horizon for Italy.
Fig. 25. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the short time horizon for Italy.
Fig. 26. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the long time horizon for Italy.
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The results for Brazil have been represented in Figs. 16, 17, 18,
nd 19, in the same manner as for the US. The optimal parameters
or both models in both scenarios achieved for Brazil have been re-
orted in Table 5. Similar to the US, the results achieved by the
uzzy-SIRD model in both scenarios are better than conventional SIRD.
y extending the time horizon, the RMSE error for the SIRD model
as increased more than fivefold, but for the Fuzzy-SIRD model, it has
nly been approximately doubled. Unlike the United States, effective
15
eproduction number experiences a slight reduction over time in both
hort and long scenarios.

Iran is the next country where the simulations have been done
ased on its time series. The output plots have been demonstrated
n Figs. 20, 21, 22, and 23. Table 6 represents the model parameters
chieved for this country. Like Germany, in which the results of both
cenarios were consequent, for Iran, the 𝑅𝑒 and fuzzy 𝑅𝑒 in Fig. 22

are almost a continuation of Fig. 20. In 150 days of the assumed time
horizon, Iran has experienced two peaks in the disease transmission
rate. In the first peak, which has approximately occurred 6th week
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Fig. 27. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the long time horizon for Italy.
Fig. 28. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the short time horizon for Russia.
Fig. 29. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the short time horizon for Russia.
of the time horizon, the effective reproduction number has reached
higher than 1.3. But through the actions done by the government with a
considerably large delay of about 30 days, the disease has been brought
under control. Also, the second peak, milder than the first, occurred on
approximately the 140th day of the time horizon. Although the data
have been accompanied by fluctuations, and the conventional SIRD
16
model has completely failed in the second scenario, the proposed model
has provided an acceptable result.

Figs. 24, 25, 26, and 27 depict the outputs achieved for Italy. Also,
Table 7 demonstrates the corresponding model parameters. In Italy,
according to the results, the effective reproduction number starts from
values lower than 1, and gradually in 100 days, the 𝑅 reaches its peak
𝑒
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Fig. 30. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the long time horizon for Russia.
Table 5
The parameters of Fuzzy-SIRD and SIRD models achieved for the Brazil COVID-19 time
series.

Parameter Scenario 1 Scenario 2

Fuzzy-SIRD SIRD Fuzzy-SIRD SIRD

𝐼0 48912.9733 76443.9333 67210.2989 62426.2085
𝑅0 120356.9097 106098.9387 101487.8183 61574.8858
𝐷0 7134.6536 5977.7386 6751.3856 3853.9964
𝑅0
𝑒 2.2212 0.0279 1.2377 0.0532

𝛾 0.0170 0.0124 0.0371 0.0372
𝜇 0.0122 0.0108 0.0110 0.0157
𝛼1 0.1011 – 0.0058 –
𝛼2 0.1011 – 0.0058 –
𝐷𝑠𝑎𝑡 2277.9255 – 1027.3267 –
𝜀 1.0 – 1.0 –

Table 6
The parameters of Fuzzy-SIRD and SIRD models achieved for the Iran COVID-19 time
series.

Parameter Scenario 1 Scenario 2

Fuzzy-SIRD SIRD Fuzzy-SIRD SIRD

𝐼0 17622.7468 13900.6365 19119.3638 36702.9093
𝑅0 134520.9409 60503.7486 130548.5783 114682.1795
𝐷0 6294.6422 6444.9966 5794.8825 5453.1067
𝑅0
𝑒 0.4865 0.3467 0.3677 0.0523

𝛾 0.0452 0.3179 0.1041 0.0420
𝜇 0.0035 0.0024 0.0071 0.0023
𝛼1 0.0256 – 0.0292 –
𝛼2 0.0256 – 0.0292 –
𝐷𝑠𝑎𝑡 129.9242 – 202.7566 –
𝜀 0.5769 – 0.8222 –

Table 7
The parameters of Fuzzy-SIRD and SIRD models achieved for the Italy COVID-19 time
series.

Parameter Scenario 1 Scenario 2

Fuzzy-SIRD SIRD Fuzzy-SIRD SIRD

𝐼0 141688.4272 65669.5624 121514.8229 80724.1999
𝑅0 180681.9331 8287.8052 271737.0489 227410.2261
𝐷0 29191.1873 29117.5745 29070.2029 29245.5362
𝑅0
𝑒 0.7672 0.0062 0.5613 0.1975

𝛾 0.1067 0.0470 0.1063 0.2339
𝜇 0.0018 0.0042 0.0024 0.0031
𝛼1 0.1748 – 0.0064 –
𝛼2 0.1748 – 0.0064 –
𝐷𝑠𝑎𝑡 2.9185 – 30.1318 –
𝜀 0.7636 – 0.6520 –

above 1.25. Approximately after the 100th day of the time horizon,
17

COVID-19 spreads in an exponential form.
Table 8
The parameters of Fuzzy-SIRD and SIRD models achieved for the Russia COVID-19 time
series.

Parameter Scenario 1 Scenario 2

Fuzzy-SIRD SIRD Fuzzy-SIRD SIRD

𝐼0 80077.4312 170118.6521 122759.6347 2857.1751
𝑅0 126455.4159 175410.9377 131940.8516 15.5306
𝐷0 1393.2686 1039.8632 1483.2160 502.3461
𝑅0
𝑒 0.7935 0.0815 0.4466 0.3642

𝛾 0.0796 0.0758 0.1908 0.3069
𝜇 0.0011 0.0008 0.0008 0.0608
𝛼1 0.1219 – 0.1015 –
𝛼2 0.1219 – 0.1015 –
𝐷𝑠𝑎𝑡 186.3529 – 109.5131 –
𝜀 0.7595 – 0.4363 –

Table 9
The parameters of Fuzzy-SIRD and SIRD models achieved for the United Kingdom
COVID-19 time series.

Parameter Scenario 1 Scenario 2

Fuzzy-SIRD SIRD Fuzzy-SIRD SIRD

𝐼0 57509.3925 418725.9331 307269.0862 181130.1661
𝑅0 9715.1647 202470.8131 182486.6248 124728.4758
𝐷0 28845.8782 28915.9224 28887.7614 28571.8191
𝑅0
𝑒 0.8197 0.4616 0.8145 0.0746

𝛾 0.1353 0.4757 0.1358 0.1134
𝜇 0.0083 0.0011 0.0015 0.0031
𝛼1 0.0138 – 0.0126 –
𝛼2 0.0138 – 0.0126 –
𝐷𝑠𝑎𝑡 92.2009 – 53.9868 –
𝜀 1.0 – 1.0 –

The outputs achieved by Fuzzy-SIRD and SIRD models in both
scenarios for Russia have been represented in Figs. 28, 29, 30, and 31.
The parameters obtained by the PSO algorithm for these two models
have been reported in Table 8. Based on the results achieved for the
COVID-19 time series of Russia, in the first two weeks of the time
horizon, a quick increase in 𝑅𝑒 has occurred, which is simultaneous
with the decrement of fuzzy 𝑅𝑒. Since the fuzzy 𝑅𝑒 is a measure of
government intervention and 𝑅𝑒 theoretically is following it, it can be
said that the Russian government has successfully controlled the disease
and reduced the spread speed by decreasing the fuzzy 𝑅𝑒. Until the
100th day of the time horizon, the 𝑅𝑒 for Russia is less than one, but
over time a small increment has been experienced.

The results achieved for the United Kingdom have been demon-
strated in Figs. 32, 33, 34, and 35. Table 9 presents the model param-
eters for different cases and models. In the first scenario, the effective
reproduction number is almost constant value over the time horizon.
However, in the second scenario, 𝑅 experiences a rise after a slight
𝑒
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Fig. 31. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the long time horizon for Russia.
Fig. 32. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the short time horizon for UK.
Fig. 33. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the short time horizon for UK.
ecrement. The maximum value for 𝑅𝑒 is approximately 1.3, which has
lso started its drop in the last two weeks of the time horizon. The fuzzy
ffective reproduction number starts a fast increment about the 50th
18
day of the time horizon, which shows that the UK government has lifted
some restrictions. After the 100th day, it seems that the government has
again intervened in the favor of lowering the 𝑅 .
𝑒
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Fig. 34. The results achieved by Fuzzy-SIRD model in the learning and prediction phase, the corresponding error, infectious and recovered population, 𝑅𝑒, and output of the fuzzy
ystem (fuzzy 𝑅𝑒) over the long time horizon for UK.
Fig. 35. The results achieved by SIRD model in the learning and prediction phases, infectious and recovered population over the long time horizon for UK.
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