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ABSTRACT

Interactions among transcriptional factors (TFs), co-
factors and other proteins or enzymes can affect tran-
scriptional regulatory capabilities of eukaryotic or-
ganisms. Post-translational modifications (PTMs) co-
operate with TFs and epigenetic alterations to consti-
tute a hierarchical complexity in transcriptional gene
regulation. While clearly implicated in biological pro-
cesses, our understanding of these complex regu-
latory mechanisms is still limited and incomplete.
Various online software have been proposed for un-
covering transcriptional and epigenetic regulatory
networks, however, there is a lack of effective web-
based software capable of constructing underlying
interactive organizations between post-translational
and transcriptional regulatory components. Here, we
present an open web server, post-translational hier-
archical gene regulatory network (PTHGRN) to un-
ravel relationships among PTMs, TFs, epigenetic
modifications and gene expression. PTHGRN uti-
lizes a graphical Gaussian model with partial least
squares regression-based methodology, and is able
to integrate protein–protein interactions, ChIP-seq
and gene expression data and to capture essential
regulation features behind high-throughput data. The
server provides an integrative platform for users to
analyze ready-to-use public high-throughput Omics
resources or upload their own data for systems bi-
ology study. Users can choose various parameters

in the method, build network topologies of interests
and dissect their associations with biological func-
tions. Application of the software to stem cell and
breast cancer demonstrates that it is an effective tool
for understanding regulatory mechanisms in biolog-
ical complex systems. PTHGRN web server is pub-
lically available at web site http://www.byanbioinfo.
org/pthgrn.

INTRODUCTION

Gene regulation of eukaryotic organisms is a very complex
process that is mainly carried out by tight interactions be-
tween transcription factors (TFs) and DNA sequences in
specific ways (activation or inhibition). The ability of TFs
to regulate target genes is modified by post-translational
protein–protein interactions (PPIs) among TFs, cofactors
and other proteins or enzymes upstream of transcriptional
gene regulation. A variety of post-translational modifica-
tions (PTMs), including protein phosphorylation, acetyla-
tion and ubiquitination have been implicated in transcrip-
tional gene regulation (1–3). Emerging evidences have indi-
cated that PTMs of proteins are involved in many biologi-
cal processes or human diseases through controlling DNA-
binding ability to modulate downstream gene expression
(4,5). In addition, epigenetic modifications, such as histone
methylation, have been documented as crucial elements for
regulation of genome function through changing chromatin
architecture without altering DNA sequences. The combi-
natorial action of PTMs, TFs, as well as epigenetic alter-
ations constitutes the hierarchical complexity in gene regu-
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lation. Despite its importance, we have incomplete knowl-
edge of these processes, which limit our understanding of
complex regulatory mechanisms.

The advent of high-throughput technologies allows bi-
ologists to examine molecule interactions at different lev-
els, and generates multi-dimensional Omics datasets. There
are several technologies used to detect PPIs, like co-
immunoprecipitation with display technology (6), tandem
affinity purification (7) and yeast two hybrid (8). Mass
spectrometry-based methods can identify numerous PTMs
(9), providing more insights into the associations between
PTMs and gene expression. Coupling chromatin immuno-
precipitation with next-generation sequencing (ChIP-seq)
offers high resolution mapping of TFs or epigenetic modifi-
cations’s interaction sites to genomic locations (10). ChIP-
based studies detect the binding regions of these regulators
on DNA sequences and show a genome-wide binding affin-
ity between protein–DNA sequences. Therefore, ChIP-seq
is informative for transcriptional or epigenetic regulatory
relationships and reconstructing gene regulatory networks
(GRNs).

A major goal of mining high-throughput data is to find
underlying structures in the data that provide a basis for
identification of regulatory modules and reconstruction
of complex protein/gene networks. Computational algo-
rithms have proven efficient for addressing this issue. For
example, MINDy facilitates genome-wide identification of
PTMs of TFs, and was successfully applied to determine
the regulation of MYC activity in human B lymphocytes
(11). Other methodologies have been developed to assemble
both gene expression profiling and ChIP-seq or TF binding
data for identifying TF–gene interaction modules, such as
Bayesian multivariate modeling (12), matrix decomposition
(13) and regression model (14). Graphical Gaussian model
(GGM) was widely used for inferring GRNs by exploiting
high dimensional throughput data (15–17). Recently, an in-
tegrative model Active Protein-Gene (APG) based on linear
GGM with matrix decomposition was designed to connect
upstream protein–TF networks with downstream TF–gene
networks (18). Partial least squares (PLS) is a well-known
regression tool suitable for statistical analysis of genomic
and proteomic data, and modeling of gene networks and
TF activity (19). Some studies have applied the PLS method
to examine connections between TF or microRNAs and
gene expression (20,21). Therefore, a strategy combining the
GGM with PLS regression could be powerful way to de-
velop network-related web software.

Online tools or servers have been reported that build
transcriptional or epigenetic regulatory networks, for in-
stance, ChIP-Array (22), ChEA (23) and RENATO (24).
Our web-based framework CMGRN was devised for inte-
grative analysis of causal relationships between regulators
and complex gene regulation mediated by TFs, epigenetic
factors and microRNAs (25). MAGNET server can gen-
erate and score PPI networks and coexpression gene–gene
networks but did not connect both together computation-
ally (26). Although these methods show improved results in
uncovering transcriptional regulatory programs, there is a
lack of effective web-based software capable of constructing
underlying interactive networks linking post-translational
and transcriptional regulatory components.

Figure 1. A workflow of integrated data analysis and GRN construc-
tion. PPI, TF binding and gene expression data are used to infer protein–
TF interactions. The ChIP-seq binding peaks of TFs/epigenetic modifi-
cations are integrated with gene expression profile to infer TF/epigenetic
modification–gene interactions. Finally, the tabulated results are organized
to hierarchical GRNs.

A large number of PPI (such as BioGRID, STRING,
HPRD and Reactome), ChIP-seq and gene expression
(such as ENCODE, modENCODE, GEO and ArrayEx-
press) resources are publically available. To provide an easy
bioinformatics tool to use and interpret the high through-
put Omics data, we present an integrative web server, post-
translational hierarchical gene regulatory network (PTH-
GRN) (http://www.byanbioinfo.org/pthgrn) to unravel re-
lationships among PTMs, TFs, epigenetic modifications
and gene expression. The newly developed server performs
a GGM with PLS regression-based methodology to gen-
erate and score potential interactions of both protein–TF
and TF/epigenetic modification-gene. It is system-wide and
enables biologists to process the mixture information from
PPI, ChIP-seq and gene expression, using standard data
formatted with minimal need of bioinformatics skills. At
the end, PTHGRN server robustly constructs hierarchical
GRN for further evaluating the effect of PTMs on tran-
scriptional regulatory complexity. Application of the soft-
ware in mouse embryonic stem (ES) cell and human breast
cancer demonstrates that it can explore biologically mean-
ingful regulatory networks. Proof of principle analyses vali-
dates the use of PTHGRN for systems biology applications.

MATERIALS AND METHODS

Workflow of PTHGRN

As outlined in Figure 1, PTHGRN mainly conducts two
tasks simultaneously. To examine how proteins (including
cofactors, TFs, enzymes, etc.) affect TF performance post-
translationally, input datasets, comprised of PPI, TF bind-
ing and gene expression, are submitted to the server. In this
step, a GGM with PLS regression-based method will pro-
file protein effects on TF activity and evaluate all interac-
tions between TFs and proteins. The result is a list of the in-
ferred protein–TF interactions that satisfy cutoff P-values
(Table 1 of Figure 1), which can be used for constructing
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upstream protein–TF networks. Another task is inference
of regulator (TF/epigenetic modification)–gene interaction
networks. Two types of input data are required: ChIP-seq
binding peaks of the regulators or TF binding and gene
expression. By performing the similar methodology, PTH-
GRN generates and scores all possible interactions between
the regulators and genes. The resulting table is a list of
the inferred regulator–gene interactions that satisfy cutoff
P-values (Table 2 of Figure 1). Depending on availability
of input data, users can carry out transcriptional regula-
tory network task with only gene expression and binding
data of regulators. If with gene expression and PPI data
only, the server will construct PPI networks, where the pro-
teins are present in expression data. With all the three in-
put data, the server organizes the identified protein–TF and
regulator–gene interactions together and constructs a post-
translational hierarchical GRN.

Scoring interaction networks

PTHGRN used a GGM (15–17) with PLS regression (19)
to perform an integrated analysis of gene expression pro-
files with PPI and binding data of a set of regulators, and to
discover protein–TF and regulator–gene interactions. The
basic algorithm is to generate and then score every possi-
ble interaction. Based on the input data, the algorithm sets
several matrices: E represents expression level of genes, T
refers to concentrations of TF targeting genes, P stands for
concentrations of proteins affecting TFs and TFA repre-
sents TFs activities under different conditions. Except the
four matrices, the algorithm will also generate two tempo-
rary connectivity matrices (consisting of 1 and 0), A refer-
ring to one with TFs targeting genes and B referring to one
with proteins modifying TFs. In the matrix A, ‘1’ indicates
that a TF target gene in the ChIP-seq or TF binding data
is also found in matrix E, and ‘0’ otherwise. Similarly, ‘1’
in the matrix B indicates that a protein in input PPI is also
present in the ChIP-seq or TF binding data, and ‘0’ oth-
erwise. To estimate initial observations of the matrix T, the
median expression level of TF target genes from E and A are
used. Similarly, initial observations of the matrix P is calcu-
lated from E and B based on the median strategy. According
to the dependent and conditional independent features of
Bayesian network, the algorithm can establish the joint dis-
tribution Pr(T, P, E, TFA) corresponding to the four matri-
ces. A natural choice for representing continuous variables
is the use of Gaussian distribution. According to the Gaus-
sian model, if S is a node in graphical network, we have the
conditional density of S given its parents:

Pr(S|R1, . . . , Rn) ∝ N

⎛
⎝∑

i j

δi j rt∈{1,...,n}, σ 2

⎞
⎠ ,

where R1, . . . , Rn are the parents of S; N(μ, σ 2) is the den-
sity function of the normal distribution with mean μ and
standard variations σ , and r1, . . . , rn are the observations
of R1, . . . , Rn respectively. δi j is the effect strength of the
ith variable on the jth variable. Since the activities of TFs
depend on concentrations of both TFs and proteins, as de-
scribed in APG (18), we can use δi j representing the inter-

action scores of TFs targeting genes or proteins modify-
ing TFs to update the joint distribution Pr(T, P, E, TFA)
above. The TFA is a hidden variable depending on con-
centrations of both TFs and proteins. To set the joint dis-
tribution parameters, we employed PLS regression (19) to
find true TFAs and the associated interactions. PLS-based
network component analysis offers computationally highly
efficient and statistically robust strategies to identify likely
true TFAs for any given connectivity matrix. In addition,
it allows statistical assessment of the available connectiv-
ity information, and also the discovery of interactions and
natural groupings among regulatory components. During
the whole scoring process, we used the Maximum Likeli-
hood Estimation method to obtain optimal parameters or
network structure of the graphical model and maximize the
probability of observed interaction scores (17,18).

Estimating probability of interaction networks

In order to select potential interaction networks, PTHGRN
will evaluate P-values through a randomization test. First,
the server will generate all possible interactions between
protein–TF and regulator–gene based on the original data
without data randomization, so called signal interactions.
Next, to conduct the randomization test, the input data will
be randomly permutated a given number of times. The num-
ber, or ‘iteration’, can be chosen in the input web interface,
for example, iteration = 100, indicating that the server is go-
ing to run 100-time data permutations, i.e. 100-time tests.
For every permutation, PTHGRN randomly picks up the
same number of proteins as true protein–TF from the PPI
database, and the same number of genes as true regulator–
gene from the ChIP-seq or TF binding data. The server
then randomly sets the parameters for the matrices with
the same structure as signal interaction generation for ev-
ery test. Following the same procedure of scoring interac-
tion networks described above, the server will score each of
the randomized interaction networks, so called background
interactions, to form background scores. PTHGRN then
compares the obtained score with the background scores,
and calculates the P-values of every signal interaction. Fur-
thermore, we corrected the P-value based on False Discov-
ery Rate using R function P-adjust. The networks with P
or corrected-P-value satisfying a certain cutoff (for exam-
ple, P < 0.05 or corrected-P < 0.05) will be chosen for the
lists in output tables and visualization. In general, the score
of the likely true signal is higher than its corresponding
backgrounds due to data randomization, indicating lower
P-values. In the web interface, users can set cutoff of P-value
or corrected-P-value for selecting the output interactions.
The randomization-based method has been widely used in
many computational biology studies (13,27–29).

Web interface

PTHGRN provides an easy web interface platform for in-
corporating three types of input data. The first one is a
tab-delimited list of PPI derived from public databases Bi-
oGRID, STRING, Dip, HPRD, Intact, Mint and Reac-
tome, and consists of two columns containing pairs of in-
teracting proteins. Currently, PTHGRN contains PPI data
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that covers human, mouse, rat, Drosophila melanogaster
and Caenorhabditis elegans. The server system also sup-
ports uploading of user datasets with a similar format. For
example, results from proteomics or metabolomics experi-
ments could be treated as PPI input. The second one is tab-
delimited regulatory signal, and consists of two columns in-
cluding the name of regulators (TFs or epigenetic modifica-
tions) and their target genes. A regular method to prepare
the signal data is to analyze significantly enriched ChIP-seq
binding peaks of the regulators along genomic sequences by
using MACS (30) or other ChIP-seq analysis software. EN-
CODE project stores available ChIP-seq binding peaks of
the regulators. We mapped these binding loci to the genomic
regions from transcriptional start site 2000 bp to transcrip-
tional end site 1000 bp on human or mouse genome. We
extracted these binding data, including 171 and 47 TFs,
as well as 45 and 13 epigenetic modifications in human
and mouse, respectively. Overall, our server recruited a to-
tal 135 cell types of ENCODE, 108 from human and 27
from mouse. We also collected ChIP-seq binding peaks of
D. melanogaster (including 42 TFs and 28 epigenetic mod-
ifications) and C. elegans (including 91 TFs and 91 epige-
netic modifications) from public database modENCODE.
Currently, PTHGRN provides ready-to-use binding peaks
of the regulators from the two projects. Moreover, users can
upload their own binding data in the required format. For
example, conserved binding motif of TFs on the promoter
can be treated as regulatory signals. In the server, we provide
TF target genes containing conserved binding sites on pro-
moters of human, mouse and rat (retrieved from ECRbase,
http://ecrbase.dcode.org/), as well as D. melanogaster (22).
The last input is tab-delimited numeric matrix and gene ex-
pression data, where the columns are sample ID and each
row represents gene names. The expression data should con-
sider the same biological materials as ChIP-seq experiments
if using ChIP-seq binding data. We suggest that expression
data contain differentially expressed genes, and are sepa-
rated to up-regulated and down-regulated subgroups, re-
spectively. In all the three input files, the gene and protein ID
format should be consistent for data integration. The cur-
rent databases of PTHGRN support official gene/protein
symbols.

The web interface provides example data from mouse ES
cell line V6.5 and human breast cancer cell line MCF-7.
The ES cell data contains mouse PPI, ChIP-seq binding
peaks of five histone methylations (H3K4me3, H3K27me3,
H3K79me2, H3K36me3 and H4K20me3), four TFs (Oct4,
Sox2, Nanog and Tcf3) and PRC2 component Suz12 from
GSE12241 and GSE11724 of NCBI GEO database. The
gene expression data was extracted from GSE3231 of GEO
and characterized with a time-course profiling of genes dif-
ferentially expressed from embryonic status to embryoid
bodies. In the breast cancer example study, we processed hu-
man PPI, ChIP-seq binding peaks of five histone modifica-
tions (H3K4me3, H3K27me3, H3K36me3, H3K9me3 and
H3K27ac) from GSE31755 of ENCODE project, and six
TFs (ER�, CEPBP, FOXM1, GATA3, JUND and MAX),
as well as cofactors p300 and CTCF from GSE32465 of EN-
CODE and GSE25684 of GEO. The gene expression data is
based on time-course profiling of genes differentially over-

expressed in the estrogen-stimulated breast cancer cell from
accession number E-TABM-742 of the EBI database.

After uploading the input files and selecting certain cut-
off parameters, users can start the PTHGRN procedure
by click ‘Submit’ button. The interface displays three cut-
off choices, P-value, corrected-P-value and iteration. A
low P-value indicates a high degree of confidence that a
protein/TF can be modified by another one or that a gene
can be targeted by a regulator. Following the submission ac-
tion, the server promotes an output interface showing resul-
tant networks exploring post-translational, transcriptional
and epigenetic regulatory hierarchies in graphical and tab-
ular formats. Based on the two main output tables (see Fig-
ure 1), the server automatically generates a third table with
a list of interacting protein pairs that can modify the TFs in
the second table. This process can be carried out by directly
searching the PPI database in PTHGRN server. The graphi-
cal interface would show a view of post-translational GRN
including the three output tables above. Users can choose
the interaction links of TF–protein or regulator–gene un-
der post-translational, transcriptional and epigenetic lev-
els. For example, users can click a TF of interest, and see
an overview of all nodes (its target genes and proteins that
modify it) and edges linking to this TF. The graphical topol-
ogy generated enables users to manipulate the pan/zoom
choice, search and retrieve text information showing score
and P-values of all interactive TF–protein or regulator–
gene for a selected node and its associated subgraph. In ad-
dition, the server can retrieve NCBI protein or gene infor-
mation for the selected node.

Implementation

PTHGRN platform is modularly designed to allow other
combination of regulatory networks, metabolic networks,
pathway networks and drug-target networks. The web
server is written in PHP with supporting scripts written
in Pascal. Network display was created using Cytoscape
web. PTHGRN does not have excessive computing require-
ments. In its current deployment and under typical server
loading conditions, PTHGRN can finish processing a typi-
cal input dataset with ∼5–15 min. Optionally, users provide
an Email address to receive a link for finished results if large
datasets or large numbers of iteration are requested. The re-
sults will be stored for a month by default, and storage times
can be longer or shorter depending on user’s requirement.

EXAMPLE STUDY

Mouse ES cell differentiation

Orchestrated interplays among three pluripotency TFs
Oct4, Sox2 and Nanog with other TFs, cofactors and
epigenetic modifications are critical for controlling ES
cell self-renewal and differentiation (31,32). We applied
PTHGRN to investigate the complex regulatory asso-
ciations in mouse ES cell. Figure 2 displays an out-
put hierarchical GRN coordinated by PTMs, TFs and
histone methylations. This result implies that a multi-
level regulatory complex is involved in down-regulating
genes that are related to transcriptional regulation, DNA
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Figure 2. A post-translational hierarchical gene down-regulatory network
in mouse ES cell. Triangle nodes represent proteins, with blue ones refer-
ring to those also targeted by TFs or epigenetic modifications and green
ones referring to those only interacting with proteins. Blue non-directional
edges are protein–protein interactions. Red and green arrow edges rep-
resent target genes of TFs and epigenetic modifications, respectively. Di-
amond and hexagon nodes represent TFs and epigenetic modifications,
respectively. The six subgraghs represent the selected interactions among
TFs, cofactors, epigenetic enzymes and other proteins in ES cell.

metabolic process and RNA processing, and thereby pro-
moting ES cell differentiation. Under protein networks,
we identified 44, 14 and 58 proteins that interact with
the Oct4, Sox2 and Nanog respectively (Supplementary
Table S1). In particular, several important modification
interactions among TFs, epigenetic enzymes and cofac-
tors were discovered (Figure 2), such as Sox2-Oct4-Nanog,
Jarid2-Ezh2-Suz12-Eed-Mtf2-Rbbp4, Esrrb-Rbbp4-Sall4-
Sox2-Klf5-Oct4, Phc1-Oct4-Nanog-Sox2-Eed, Klf4-Oct4-
Suz12 and Dnmt3b-Dnmt3l-Nanog-Oct4, some of which
are consistent with known reports (33–40). This finding val-
idates that three core TFs Oct4, Sox2 and Nanog inter-
act with each other and also with other TFs or proteins
for the regulation of their downstream genes in stem cells
(33). Three PRC2 components Ezh2 (H3K27 methyltrans-
ferase), Suz12 and Eed interact with each other to con-
tribute to H3K27 methylation for repressing gene expres-
sion of mouse ES cells (37). Their cofactor Jarid2 can re-
cruit the PRC2 proteins to common promoters for jointly
regulating gene expression (36). Interestingly, ChIP-based
experiments indicated that PRC2 binding is highly corre-
lated with binding of Oct4, Sox2 and Nanog (41). Our
analysis supports the roles of these key regulators dur-
ing ES cell differentiation. At transcriptional level, Oct4,
Sox2, Nanog can regulate 31–36% of genes differentially
under-expressed respectively, where 102 are common tar-
gets. Their target genes include key TF or epigenetic enzyme
genes, such as Mybl2, Mycn, Sall4, Trp53, Esrrb, Eed, Ezh2,
Phc1, Jmjd1a, Jmjd2c and Jarid2 (Supplementary Table S1).
At epigenetic layer, we identified 41–43% of differentially
under-expressed genes modified by three histone methyla-
tions, H3K4me4, H3K79me2 and H3K36me3 respectively.
Epigenetic factors Suz12, H3K27me3 and H4K20me3 only

regulate a few numbers of genes (Supplementary Table
S1). Similarly, we tested differentially over-expressed genes
using the same method. The result shows that repressive
Suz12 and H3K27me3 are able to target 35 and 15% of up-
regulated genes respectively, which are much greater than
down-regulated ones (Supplementary Tables S1 and S2).
This observation supports previous perspectives regarding
role of PRC2 and the repressive epigenetic factors in leading
to over-expression of developmental genes in the differenti-
ated stem cells (42,43).

Estrogen-induced human breast cancer cell

Estrogen receptor alpha (ER�) is an estrogen-inducible
TF that has been implicated in the development of hu-
man breast cancer. As a nuclear receptor, it can in-
teract with many TFs, coregulators and growth factor-
activated signalling to form a regulatory complex to mod-
ulate cancer-related biological processes (44). PTMs of
ER� have been found through phosphorylation, ubiqui-
tination, sumoylation and acetylation that affect its sta-
bility and activity (45). To dissect this complexity, we ap-
plied PTHGRN to analyze breast cancer data. The obser-
vation shows that ER� and cofactor p300 interacts with
73 and 33 proteins upon 24-h estrogen stimulation, re-
spectively, where including TF proteins E2F1, FOS, MYC,
FOXM1, IRS1 and IRS2 (Supplementary Table S3). ER�
was found to link with other proteins to form protein net-
works, such as ER�-MYC-IRS2-IRS2-CAV1, ER�-MYC-
HSPA8-HSPH1, ER�-MYC-TUBA1-TUBB, ER�-MYC-
FOS-NCL and ER�-MYC-CTSD. The previous study has
revealed that ER� and MYC physically interact with each
other to stabilize the ER�-coactivator complex and to facil-
itate estrogen-mediated signaling networks (46). ER� also
forms a complex with AP-1 family members (including
FOS) to modulate bone-specific genes in osteoblasts (47).
Although p300 and ER� does not directly interact each
other, both can link with MYC and FOS (Supplementary
Table S3). This analysis highlights a considerable interac-
tion of ER� as a master player with many coregulators
upstream of transcription in breast cancer cell. Further-
more, we identified target genes of eight TFs or cofactors
and five epigenetic modifications (Supplementary Table S3).
It is apparent that 25–27% of over-expressed genes could
be modified by three active epigenetic factors, H3K4me3,
H3K36me3 and H3K27ac, whereas repressive H3K9me3
and H3K27me3 only target a small number (4–6%) of genes.
The epigenetic features of histone modifications could con-
tribute to up-regulate estrogen-mediated gene expression in
breast cancer. Taken together, the example in breast can-
cer confirms that ER� is a key factor of regulatory com-
plex networks, which modulate estrogen-induced gene ex-
pression programs and promote molecular pathogenesis of
breast cancer.

CONCLUSIONS

PTHGRN is a freely available web server for an integrated
analysis of PPIs, ChIP-seq binding data and gene expres-
sion profiling. Using a GGM with PLS regression-based
method, it can generate and score all possible interac-
tions of protein–TF and TF/epigenetic modification-gene.
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Through statistical assessment, the server performs iden-
tification of highly potential interactions and reconstruc-
tion of hierarchical GRNs for evaluating roles of PTMs in
transcriptional gene regulation. The web interface provides
users ready-to-use input data derived from major high-
throughput Omics resources, so that users have an option
to submit these public or user-provided data. The work-
flow of PTHGRN produces output networks in graphi-
cal and tabular formats, which can be downloaded for fur-
ther systems biology studies and visualization. The exam-
ples presented here using mouse ES and human breast can-
cer cells show the identified interaction networks to be bio-
logically meaningful, in agreement with conclusions previ-
ously drawn from experiments and reports. It is expected
that the newly developed server is able to provide a pi-
lot framework for extensively unraveling regulatory asso-
ciations among multilayered molecules in many biological
complex systems, and thus would benefit not only biologists
but also the bioinformatics community.
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